1
|
Larasati L, Dendy D, Nugroho RA, Lestari WW, Sukowati C, Firdaus M, Masykur A, Wibowo FR. Facile and rapid one-pot electrosynthesis of curcumin modified MIL-101(Fe)–NH2 and the release and biological studies. MATERIALS CHEMISTRY AND PHYSICS 2025; 340:130832. [DOI: 10.1016/j.matchemphys.2025.130832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Haffez H, Sanad HH, Ebrahim H, Hassan ZA. Synergistic effects of abietic acid combined with doxorubicin on apoptosis induction in a human colorectal cancer cell line. Sci Rep 2025; 15:16102. [PMID: 40341222 PMCID: PMC12062260 DOI: 10.1038/s41598-025-99616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025] Open
Abstract
Cancer is a significant global disease with high mortality and limited therapeutic options. Chemotherapy is a cancer treatment option; however, there are still issues, including severe side effects, inadequate response, and drug resistance. Abietic acid is a natural diterpene with diverse pharmacological properties and can be used for cancer treatment. Therefore, this study aimed to assess the anticancer efficacy of abietic acid in combination with doxorubicin, a highly clinically used chemotherapeutic agent. Biochemical investigations include initial viability assays, combination therapy using isobologram analysis, apoptosis and cell cycle assays, gene expression assay, ELISA analysis of protein expression, DNA fragmentation, and wound healing assays. The data showed that doxorubicin-abietic acid (DOX-AB) is an effective and safe anticancer combination for Caco-2 cells. DOX-AB had a high safety index with minimal cytotoxicity at the combination dose on normal WI-38 fibroblasts cells. DOX-AB significantly decreased the proliferation and viability of Caco-2 cells, with an increase in the apoptosis rate in the late stage and necrosis with cell cycle arrest at the G2/M phase. Significant changes in the expression of modulators related to apoptosis, inflammation, and epigenetics were observed in gene and protein levels. DOX-AB combination had more efficient anticancer activity than doxorubicin alone. This study suggested that the use of abietic acid in combination with doxorubicin is a promising treatment for colorectal cancer because it enhances doxorubicin activity at relatively low doses with minimal cytotoxicity and overcomes multidrug resistance in tumors; these findings merit further investigation.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
- Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo, 11795, Egypt.
| | - Hend H Sanad
- Health Affairs Directorate, Mansoura Health Administration, Mansura city, , El Dakahlia, Egypt
| | - Hassan Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Zeineb A Hassan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
3
|
Shi Z, Kuai M, Li B, Akowuah CF, Wang Z, Pan Y, Tang M, Yang X, Lü P. The role of VEGF in Cancer angiogenesis and tumorigenesis: Insights for anti-VEGF therapy. Cytokine 2025; 189:156908. [PMID: 40049050 DOI: 10.1016/j.cyto.2025.156908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis, playing a pivotal role in both physiological and pathological processes. It promotes the formation of new blood vessels and activates downstream signaling pathways that regulate endothelial cell function. This review highlights recent advancements in the understanding of VEGF's molecular structure and its isoforms, as well as their implications in disease progression. It also explores the mechanisms of VEGF inhibitors. While VEGF inhibitors show promise in the treatment of cancer and other diseases, their clinical use faces significant challenges, including drug resistance, side effects, and complex interactions with other signaling pathways. To address these challenges, future research should focus on: (i) enhancing the understanding of VEGF subtypes and their distinct roles in various diseases, supporting the development of personalized treatment strategies; (ii) developing combination therapies that integrate VEGF inhibitors with other targeted treatments to overcome resistance and improve efficacy; (iii) optimizing drug delivery systems to reduce off-target effects and enhance therapeutic outcomes. These approaches aim to improve the effectiveness and safety of VEGF-targeted therapies, offering new possibilities for the treatment of VEGF-related diseases.
Collapse
Affiliation(s)
- Zijun Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Mengmeng Kuai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Baohua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | | | - Zhenyu Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyue Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Wang X, Li Q, Liu J, Xie C, Zou L, Shi Y, Jiang L, Qin X. Harnessing nano-delivery systems to un-cover the challenges for cervical cancer therapy. Int J Pharm 2025; 677:125657. [PMID: 40306445 DOI: 10.1016/j.ijpharm.2025.125657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Cervical cancer (CC) remains a prevalent malignancy among women, with current therapeutic strategies facing significant challenges in curbing its rising incidence. Nano-delivery systems have emerged as a promising approach to hinder CC progression. This review provides a comprehensive examination of CC pathogenesis and its physiological characteristics while focusing on applying various nano-delivery systems in CC therapy. Specifically, it highlights the potential of both internal (e.g., pH, reactive oxygen species, glutathione) and external (e.g., Photo, magnetism, sound waves, microwaves, electricity) stimuli-responsive nano-delivery platforms to enhance therapeutic efficacy. The challenges of nano-delivery systems in CC therapy, encompassing in vivo stability, biosafety, distribution, and metabolic processes, are addressed, along with potential remedies. Additionally, the review underscores recent preclinical advances in nano-delivery systems for CC therapy. By thoroughly exploring nanomaterial applications, this review provides valuable perspectives for advancing CC treatment and stimulating future research and innovation in this domain.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianxin Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Chunbao Xie
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Shi
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Xianyan Qin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
5
|
Goleij P, Rezaee A, Lam HY, Tabari MAK, Ouf N, Alijanzadeh D, Sanaye PM, Larsen DS, Daglia M, Khan H, Sethi G, Kumar AP. From bench to bedside: exploring curcumin-driven signaling pathways in immune cells for cancer management. Inflammopharmacology 2025:10.1007/s10787-025-01739-5. [PMID: 40244492 DOI: 10.1007/s10787-025-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 04/18/2025]
Abstract
The use of natural compounds as effective therapeutic agents is an expanding area of health and disease research. Curcumin, a bioactive component derived from the rhizome of the turmeric plant (Curcuma longa L.), has been primarily used in culinary applications for several centuries, but now its potential health benefits are the focus of growing scientific research. Interestingly, some studies have found that curcumin has antitumorigenic effects due to its ability to influence the tumor microenvironment and possibly promote immune system response by modulating specific signaling pathways in immune cells. The interaction of curcumin with immune cells in the field of cancer chemoprevention is a complex area of research. It has been suggested that curcumin might promote T cell recruitment, reduce neutrophil and macrophage accumulation in the tumor microenvironment, and prevent the conversion of infiltrating lymphocytes into immunosuppressive subpopulations. Thus, its possible mechanisms of action also include a shift of the immune balance toward activation by reversing the prevalence of immunosuppressive cells. With innovations and improvements in our understanding of the potential benefits of curcumin on immune cells in cancer prevention and treatment, it is important to have an overview of current findings. Therefore, in this study, we aim to provide a review of the latest discoveries regarding curcumin in the field of cancer and immune cell research.
Collapse
Affiliation(s)
- Pouya Goleij
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Noureldeen Ouf
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dorsa Alijanzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Alavi F, Majumder K, Ciftci ON. Designing Curcumin Particles with Improved Bioactivity and Bioavailability Using Aerogels and Supercritical Fluid Technology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19263-19275. [PMID: 40125824 DOI: 10.1021/acsami.4c17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Health benefits of curcumin (CUR) are widely acknowledged; however, its full potential remains untapped due to its limited bioavailability. Curcumin's high crystallinity and poor water solubility markedly limit its bioavailability. Therefore, there is a critical need for a method that decreases the crystallinity of CUR. This study aimed at increasing the bioavailability of CUR by forming first-of-its-kind low-crystallinity curcumin particles using nanoporous starch aerogels and supercritical carbon dioxide (SC-CO2). The formation of CUR-NP relied on the starch aerogel's nanopores and large surface area, which, combined with SC-CO2, reduced the size and crystallinity of CUR by controlling its recrystallization process. The results showed that this method was notably effective in decreasing the crystallinity of curcumin, where a higher impregnation temperature caused curcumin-impregnated aerogels with lower curcumin crystallinity and more homogeneous curcumin distribution into aerogels. The fluorescence studies suggested that curcumin was entrapped in the hydrophobic cavities in the backbone of starch aerogels. Curcumin-impregnated aerogels exhibited significantly increased antioxidant activity in aqueous media. Moreover, in vitro gastrointestinal digest experiments revealed ∼30 times higher bioaccessibility for curcumin impregnated at 120 °C compared to that of native curcumin. While native curcumin showed an untraceable intestinal cell transportation measured by the Caco-2 cell line, curcumin-impregnated aerogels prepared at an impregnation temperature of 120 °C demonstrated a total curcumin passing of 0.86 μg/mL. The optimal SC-CO2-assisted impregnation condition for curcumin crystallinity and bioavailability was determined to be an impregnation temperature of 120 °C and a curcumin-to-aerogel ratio of 1 to 9. Due to the high antioxidant activity and enhanced bioavailability of the curcumin impregnated in the edible starch aerogels, they can serve as functional food ingredients for health-promoting functional foods and supplements.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-6205, United States
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0726, United States
| |
Collapse
|
7
|
Akyuz Ozdemir F, Yildirim D. Analysis of YouTube Videos on Herbal Approaches Used in Coping with Cancer. Semin Oncol Nurs 2025; 41:151816. [PMID: 39909819 DOI: 10.1016/j.soncn.2025.151816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE The use of herbal approaches is very common among cancer patients. Patients obtain information about herbal products mostly from YouTube. However, toxicity and complications may develop as a result of unconscious use of herbal products. This study was conducted to evaluate the scope, validity, reliability and quality of English language videos on YouTube about herbal approaches to cope with cancer. METHODS The present descriptive study analyzed a total of 62 YouTube videos. All videos published on YouTube until 10 January 2024 were watched as a result of a search with English words 'herbal approaches for cancer treatment' and 'herbal approaches for medicine' . The 62 videos that met the inclusion criteria were assessed for reliability, quality, and content by 2 independent reviewers by using the Global Quality Score, DISCERN, JAMA scales and Herbal Approaches Checklist. The results indicated that the videos included in the study exhibited moderate quality. RESULTS Of the analyzed videos, 53.2% were found to be informative and 46.8% were found to be misleading. It was established that 59.7% (n=37) of the videos recommended the use of herbs that are known to be incompatible with chemotherapy. CONCLUSIONS It was concluded that the majority of the videos on YouTube about herbal approaches had low accuracy, low quality and insufficient information level. In addition, the use of many herbal products incompatible with cancer type and treatment was recommended. However, the level of knowledge of health professionals regarding herbal approaches should also be taken into consideration and it should be recommended that health professionals with expertise in this field inform patients. IMPLICATIONS FOR NURSING PRACTICE Nurses should educate patients about herbal approaches and guide them in evaluating the reliability of online sources. They should stay updated through continuous education on herbal products and collaborate with other healthcare professionals to prevent potential herb-drug interactions.
Collapse
Affiliation(s)
- Ferda Akyuz Ozdemir
- Mugla Sitki Kocman University Fethiye Faculty of Health Sciences, Department of Internal Medicine Nursing, Fethiye, Mugla, Turkey
| | - Dilek Yildirim
- Istanbul Aydin University, Faculty of Health Sciences, Department of Nursing, Istanbul, Istanbul, Turkey.
| |
Collapse
|
8
|
Porfyris O, Detopoulou P, Adamantidi T, Tsoupras A, Papageorgiou D, Ioannidis A, Rojas Gil AP. Phytochemicals as Chemo-Preventive and Therapeutic Agents Against Bladder Cancer: A Comprehensive Review. Diseases 2025; 13:103. [PMID: 40277814 PMCID: PMC12026019 DOI: 10.3390/diseases13040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Bladder cancer has a high incidence worldwide and is characterized by a high recurrence rate, metastatic potential, and a significant socioeconomic burden. Conventional treatment modalities usually exhibit serious adverse complications, which also negatively affect patients' quality of life. In the context of exploring new treatment approaches with fewer side effects, the utilization of natural compounds as alternative and/or complementary therapeutic options seems appealing. In the present study, the potential use and effects of various bioactive phytochemicals, including curcumin, resveratrol, epigallocatechin, genistein, and several others, in bladder cancer treatment are thoroughly reviewed. A special focus is given to their potential to beneficially modulate important molecular signaling pathways and mechanisms affecting cell survival, proliferation, migration, and apoptosis, which play a crucial role in the pathogenesis of bladder cancer, such as the PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, Wnt/β-Catenin, Notch, Hedgehog, Hippo, JAK2/STAT3, and PAF/PAF-receptor pathways. Nevertheless, most studies have been conducted in cell cultures and animal models. Due to differences in genetics and metabolism, more clinical trials are needed to ensure the bio-efficacy of these phytochemicals in humans.
Collapse
Affiliation(s)
- Orestis Porfyris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece;
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Dimitris Papageorgiou
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese Panarcadian Hospital of Tripoli, Red Cross Terminal (Administrative Services) 2nd Floor, 22100 Tripoli, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| |
Collapse
|
9
|
Saka OM, Aygüler Cİ, Özdemir NS, Sürücü B, Çakırlı E, Nemutlu E, Demirbolat GM. An Experimental Design Approach for Producing Curcumin-Loaded Solid Lipid Nanoparticles. Pharmaceuticals (Basel) 2025; 18:470. [PMID: 40283907 PMCID: PMC12030020 DOI: 10.3390/ph18040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Curcumin has well-established efficacy in a variety of disorders due to its prominent antioxidant, antiaging, anti-inflammatory, chemosensitizing, and anticancer activities. Despite its numerous benefits, curcumin exhibits low bioavailability mainly due to its poor solubility, poor absorption, rapid metabolism, and quick excretion, consequently limiting its clinical applications. In this study, we investigated the most convenient ingredients in SLNs to enhance curcumin's solubility by examining the effects of multiple independent variables simultaneously using an experimental design. Methods: After curcumin's saturation solubility was investigated, SLN formulations were produced. The optimum formulation was determined with the help of experimental design. The SLNs were characterized in terms of the particle size and distribution, zeta potential, shape, entrapment efficiency, drug loading capacity, and drug release. The cell viability and cell internalization were also evaluated. Results: An impressive synergistic effect was achieved with the combination of Brij and Gelucire 48/16, which increased curcumin's solubility in water by 452.5 times. Curcumin-loaded SLNs were successfully produced with a spherical shape and particle size of 389.3 ± 9.95 nm. The encapsulation efficiency was directly proportionate to the amount of curcumin and the stirring speed. Curcumin in the SLNs entered the cancer cells more easily than curcumin alone. Conclusions: Our results demonstrate that the quantity of surfactant is a significant factor influencing the efficiency of drug loading. Finally, the 3:1 (Brij-Gelucire48/16) ratio markedly enhanced the loading efficiency. The cellular internalization and, consequently, the anticancer efficacy against adenocarcinomic human alveolar basal epithelial cells were improved with SLNs. This could be a promising approach for lipid-based colloidal drug delivery systems.
Collapse
Affiliation(s)
- Ongun Mehmet Saka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Cemre İrem Aygüler
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, 34752 Istanbul, Türkiye;
| | - Neval Sevinç Özdemir
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, 34752 Istanbul, Türkiye;
- ACU Biomaterials Center, Acıbadem Mehmet Ali Aydınlar University, 34752 Istanbul, Türkiye
| | - Bilge Sürücü
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İstanbul University, 34116 Istanbul, Türkiye;
| | - Egemen Çakırlı
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, 34752 Istanbul, Türkiye;
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, 34755 Istanbul, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06800 Ankara, Türkiye;
| | - Gülen Melike Demirbolat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, 34752 Istanbul, Türkiye;
| |
Collapse
|
10
|
Ullah R, Siraj M, Iqbal J, Abbasi BA. Potential of curcumin and its derivatives, modern insights on the anticancer properties: a comprehensive overview. Z NATURFORSCH C 2025:znc-2024-0220. [PMID: 40108840 DOI: 10.1515/znc-2024-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Globally, cancer is the top cause of mortality, placing a heavy load on the medical system. One of the first known secondary metabolites is curcumin, a bioactive substance. This study aims to emphasize the chemopreventive and chemotherapeutic properties of curcumin and its derivatives, therefore, offering important insights for the possible creation of certain supplemental medications for the treatment of different cancers. Electronic Google databases, including Google scholar, ResearchGate, PubMed/Medline, and ScienceDirect, were searched to gather pertinent data about the chemopreventive and chemotherapeutic effects of curcumin and its derivatives. Various studies have revealed a diverse array of significant biological effects. The majority of investigations pertaining to the potential anticancer effects and associated processes are currently in the experimental preclinical stage and lack sufficient clinical trial data to validate their findings. Clinical research is further needed to clarify the molecular processes and specific targeted action of curcumin and its derivatives, as well as their potential for toxicity and side effects in humans, in order to open up new therapeutic avenues for treating cancer.
Collapse
Affiliation(s)
- Rafi Ullah
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Siraj
- IBGE, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| |
Collapse
|
11
|
Odehnalová N, Šandriková V, Hromadka R, Skaličková M, Dytrych P, Hoskovec D, Kejík Z, Hajduch J, Vellieux F, Vašáková MK, Martásek P, Jakubek M. The potential of exosomes in regenerative medicine and in the diagnosis and therapies of neurodegenerative diseases and cancer. Front Med (Lausanne) 2025; 12:1539714. [PMID: 40182844 PMCID: PMC11966052 DOI: 10.3389/fmed.2025.1539714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes, nanosized extracellular vesicles released by various cell types, are intensively studied for the diagnosis and treatment of cancer and neurodegenerative diseases, and they also display high usability in regenerative medicine. Emphasizing their diagnostic potential, exosomes serve as carriers of disease-specific biomarkers, enabling non-invasive early detection and personalized medicine. The cargo loading of exosomes with therapeutic agents presents an innovative strategy for targeted drug delivery, minimizing off-target effects and optimizing therapeutic interventions. In regenerative medicine, exosomes play a crucial role in intercellular communication, facilitating tissue regeneration through the transmission of bioactive molecules. While acknowledging existing challenges in standardization and scalability, ongoing research efforts aim to refine methodologies and address regulatory considerations. In summary, this review underscores the transformative potential of exosomes in reshaping the landscape of medical interventions, with a particular emphasis on cancer, neurodegenerative diseases, and regenerative medicine.
Collapse
Affiliation(s)
- Nikola Odehnalová
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Viera Šandriková
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
| | - Róbert Hromadka
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Petr Dytrych
- Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - David Hoskovec
- Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- The Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Martina Koziar Vašáková
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
12
|
Kheradmandi R, Zamani S, Farahani MK, Ehterami A, Salehi M. Harnessing Nature's Power: Plant and Polymeric-Based Antibacterials as Potential Therapeutics for Infectious Skin Wound Healing. Biopolymers 2025; 116:e70007. [PMID: 40033706 DOI: 10.1002/bip.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
This comprehensive review explores the potential of plant- and biopolymeric-based antibacterials as innovative therapeutic agents for infectious skin wound healing. By researching the antibacterial properties of various plants, the review highlights their application in skin tissue engineering. Beyond reviewing antibacterial plant extracts, the article delves into the limitations these natural compounds face, such as hydrophilicity, drug release rates, cell attachment, and scaffold stability when integrated into tissue engineering constructs. The review also emphasizes the role of biopolymeric materials, hydrogel optimization, and crosslinkers to improve scaffold performance. This review provides a roadmap for future research by addressing critical factors in scaffold construction. In the end, it aims to guide the development of more effective wound dressings and tissue scaffolds, combining the natural power of plants with advanced biopolymeric materials for enhanced wound healing therapies.
Collapse
Affiliation(s)
- Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Majid Salehi
- Regenerative Medicine Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
13
|
Mohammed OA, Alghamdi M, Bahashwan E, Al Jarallah AlQahtani A, Alfaifi A, Hassan RH, Alfaifi J, Alamri MMS, Alhalafi AH, Adam MIE, BinAfif WF, Abdel-Reheim MA, Mageed SSA, S Doghish A. Emerging insights into the role of natural products and miRNAs in psoriasis: from pathophysiology to precision medicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2487-2509. [PMID: 39466441 DOI: 10.1007/s00210-024-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Psoriasis is a sustainable skin disease characterized by inflammation resulting from the interaction between immune cells and keratinocytes. Significant advancements have been achieved in studying the molecular process behind noncoding and coding genes, leading to valuable insights for clinical therapy. Nevertheless, our comprehension of this intricate ailment remains ambiguous. Natural products such as curcumin, vitamin D, omega-3, vitamin E, psoralen, gallic acid (GA), and resveratrol offer a promising alternative or adjunct therapy for psoriasis by modulating multiple pathways and exhibiting fewer side effects compared to conventional treatments. MicroRNAs (miRNAs) are short RNAs that are involved in regulating gene expression after transcription, namely by suppressing gene activity. Recent research on miRNAs has uncovered their significant significance in the development of psoriasis. In this review, we examined the latest developments in the investigation of miRNAs in psoriasis. Previous studies have revealed that imbalanced miRNAs in psoriasis have a significant impact on the processes of keratinocyte differentiation, proliferation, and the progression of inflammation. Furthermore, miRNAs exert an impact on the activity of immune cells involved in psoriasis, such as Langerhans cells, dendritic cells, and CD4+ T cells. Furthermore, we explore potential miRNA-focused treatment options for psoriasis, including the localized administration of external miRNA mimics, and miRNA inhibitors. The effectiveness of natural products and miRNAs in treating psoriasis, as well as the signaling pathways that may be involved, are summarized in this article.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Adel Alfaifi
- Department of Dermatology, Armed Forces Hospital - Southern Region, 62413, Khamis Mushait, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo, 11517, Egypt
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, , 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Nasr City, 11231, Egypt.
| |
Collapse
|
14
|
Panyajai P, Viriyaadhammaa N, Chiampanichayakul S, Sakamoto Y, Okonogi S, Moroishi T, Anuchapreeda S. Anticancer and cancer preventive activities of shogaol and curcumin from Zingiberaceae family plants in KG-1a leukemic stem cells. BMC Complement Med Ther 2025; 25:87. [PMID: 40022126 PMCID: PMC11869560 DOI: 10.1186/s12906-025-04829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Leukemic stem cells (LSCs) present a significant challenge in the treatment of leukemia in patients because they exhibit a drug-resistant phenotype, making them difficult to eliminate. Searching for a new anticancer drug is crucial for improving leukemia treatment. Plants from the Zingiberaceae family are frequently used in traditional medicines due to their safety and accessibility. This study explores the anticancer activity, cancer preventive properties, and apoptosis inducing mechanisms of active compounds derived from these plants. METHODS Ten crude ethanolic extracts from each plant of the Zingiberaceae family were obtained using maceration techniques. The cytotoxicity of all extracts anticancer was assessed in comparison to anticancer drugs (cyclophosphamide, cytarabine, doxorubicin, and idarubicin) using MTT assay on cancer cell lines (KG-1a, K562, A549, MCF-7, and HeLa) and peripheral blood mononuclear cells (PBMCs). Cancer prevention properties of the effective extracts and their active compounds were evaluated by measuring the levels of tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and nitric oxide (NO) using commercial kits. Cell cycle and cell death analyses were conducted using flow cytometry. Moreover, the effects of effective extracts and their active compounds on WT1 and CD34 expressions, as well as the apoptosis mechanism induced by the active compounds in KG-1a cells, were determined by Western blotting. RESULTS The cytotoxicity tests revealed that crude ethanolic extracts from Curcuma longa, C. zedoaria, and Zingiber officinale exhibited effective cytotoxicity against cancer cell lines while demonstrating lower impact on PBMCs. The active compounds of C. longa and C. zedoaria are curcuminoids, while those in Z. officinale are shogaol and gingerol. Notably, the IC20 values of curcuminoids and shogaol exhibited cancer prevention properties and reduced WT1 protein expression, thereby inhibiting cell proliferation. Furthermore, shogaol and curcumin demonstrated the ability to arrest the cell cycle at the G2/M phase and induce apoptosis through the Akt pathway. CONCLUSION These findings highlight shogaol and curcumin as promising compounds for leukemia treatment.
Collapse
Affiliation(s)
- Pawaret Panyajai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natsima Viriyaadhammaa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yasuhisa Sakamoto
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
15
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
16
|
Gallo E, Smaldone G, Cimmino L, Braile M, Orlandella FM, Luciano N, Accardo A, Salvatore G. Fmoc-FF Nanogel-Mediated Delivery of Doxorubicin and Curcumin in Thyroid Cancer Cells. Pharmaceutics 2025; 17:263. [PMID: 40006633 PMCID: PMC11858838 DOI: 10.3390/pharmaceutics17020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Thyroid cancer (TC) is the most prevalent endocrine malignancy, and is categorized into well-differentiated and aggressive anaplastic types. Novel therapeutic modalities are needed for TC. Nanomedicine is a promising strategy for the development of precision medicine. In this context, we investigated the use of nanogels (NGs) to deliver agents with different physicochemical properties, specifically the hydrophilic agent doxorubicin (DOX) and the hydrophobic compound curcumin (CUR), in TC cell lines. Methods: Nα-9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) peptide-based NGs loaded with DOX and CUR were formulated using the solvent-switch method. DOX-loaded NGs were previously characterized. CUR-loaded NGs were characterized through rheology, scanning electron microscopy (SEM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and Fourier transform infrared (FT-IR) spectroscopy. Confocal microscopy, q-RT-PCR, and ATP lite assays were performed to evaluate the uptake and delivery of DOX- and CUR-loaded NGs on TC cell lines. Results: CUR-loaded NGs exhibited a mean diameter of approximately 204.3 nm and a zeta potential of -34.6 mV, indicative of a good stability. In vitro release studies revealed a sustained release profile of CUR over 72 h. Functional analyses demonstrated that Fmoc-FF-loaded NGs were internalized into TC cell lines. They were primarily localized in the cytoplasm rather than in early endosomes, thereby ensuring intracellular stability. Furthermore, Fmoc-FF NGs reduced the nuclear uptake kinetics of DOX in TC cells, suggesting a potential reduction in dose-limiting toxicity. Comparative studies with CUR-loaded NGs revealed similar internalization and delayed nuclear uptake, highlighting the efficacy of Fmoc-FF NGs in delivering hydrophobic agents. Conclusions: Overall, the data suggest that Fmoc-FF NGs represent a promising strategy for delivering agents with diverse physicochemical properties in TC, enhancing their efficacy and safety and warranting further investigation.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, 80146 Naples, Italy; (E.G.); (L.C.); (M.B.)
| | | | - Luca Cimmino
- IRCCS SYNLAB SDN, 80146 Naples, Italy; (E.G.); (L.C.); (M.B.)
| | | | - Francesca Maria Orlandella
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy; (F.M.O.); (G.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Neila Luciano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Antonella Accardo
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Giuliana Salvatore
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy; (F.M.O.); (G.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
17
|
Yang P, Wang T, Zhang L, Wang L. Fluorescent Microorganism-Based Composite: Enhancing Curcumin Delivery Efficiency and its Antitumor Application in Prostate Cancer. J Fluoresc 2025:10.1007/s10895-025-04185-2. [PMID: 39954179 DOI: 10.1007/s10895-025-04185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Prostate cancer is a major global health concern, ranking as the second most common malignancy in men and the fifth leading cause of cancer-related deaths. Although curcumin exhibits potent antioxidant, anti-inflammatory, and antitumor properties, its clinical application is limited by poor solubility, low bioavailability, and rapid metabolism. In this study, we developed a microorganism-metal-organic framework (MOF)-based carrier (1-CP1) by combining a novel Zn(II) coordination polymer, [Zn(Hbcb)(PYTPY)] (1), with CP1. The carrier, loaded with curcumin to form 1-CP1@Curcumin, significantly enhanced the solubility, bioavailability, and stability of curcumin. Fluorescence assays revealed that the composite demonstrated a fluorescence emission peak at 511 nm, with a strong response to Fe³⁺ ions, showing a quenching efficiency of over 95%. In vitro experiments on LNCaP prostate cancer cells showed that 1-CP1@Curcumin significantly inhibited cell viability, with a reduction of approximately 50% at 20 µM curcumin concentration after 48 h of treatment. Additionally, quantitative PCR analysis of apoptosis-related gene expression revealed a significant decrease in Bcl-2 mRNA levels, indicating that the composite induced apoptosis in prostate cancer cells. These results highlight that 1-CP1@Curcumin effectively overcomes curcumin's delivery limitations and offers strong antitumor efficacy, providing an innovative platform for potential clinical applications in prostate cancer therapy.
Collapse
Affiliation(s)
- Ping Yang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, China
| | - Tian Wang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, China
| | - Lian Zhang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, China
| | - Li Wang
- Department of Urology, Liyang People's Hospital, Changzhou, Jiangsu, China.
| |
Collapse
|
18
|
Ashoub MH, Afgar A, Farsinejad A, Razavi R, Anvari S, Fatemi A. siRNA-mediated inhibition of hTERT enhances the effects of curcumin in promoting cell death in precursor-B acute lymphoblastic leukemia cells: an in silico and in vitro study. Sci Rep 2025; 15:3083. [PMID: 39856130 PMCID: PMC11760345 DOI: 10.1038/s41598-025-85329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination. Cell viability and proliferation were assessed via MTT and BrdU assays at 24- and 48-hour intervals post-treatment. Ferroptotic and oxidative markers were quantified using commercial assays, while cell death parameters and gene expression were evaluated through flow cytometry and qRT-PCR analyses. Molecular docking studies were performed to evaluate protein-ligand interactions. Results demonstrated that combined curcumin treatment and hTERT knockdown significantly enhanced cytotoxicity in Nalm-6 cells compared to individual interventions. This was characterized by the upregulation of ferroptosis promoters (lipid-ROS, Fe²⁺, ACSL4) and suppression of inhibitors (GSH, GPx, SLC7A11, GPx4). The response showed cell-line specificity, with Nalm-6 cells exhibiting enhanced ferroptotic sensitivity while REH cells underwent apoptotic cell death. Molecular docking revealed strong curcumin-protein interactions (∆G = -34.24 kcal/mol for hTERT). This study establishes hTERT as a critical regulator of ferroptotic cell death in pre-B ALL, operating through redox homeostasis, iron metabolism, and lipid peroxidation pathways. The cell-type-specific responses suggest promising therapeutic strategies through combined hTERT suppression and ferroptosis induction.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
19
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Qiao X, Xue R, Li S, Li J, Ji C. Expression of LASS2 Can be Regulated by Dihydroartemisinin to Regulate Cisplatin Chemosensitivity in Bladder Cancer Cells. Curr Pharm Biotechnol 2025; 26:525-538. [PMID: 38757331 DOI: 10.2174/0113892010305651240514100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the potential of dihydroartemisinin to augment the efficacy of cisplatin chemotherapy through the modulation of LASS2 expression. METHODS TCMSP, CTR-DB, TCGA-BLC, and other databases were used to analyze the possibility of LASS2 as the target gene of dihydroartemisinin. Cell experiments revealed the synergistic effect of DDP and DHA. Animal experiments showed that DHA inhibited the growth of DDP-treated mice. In addition, WB, real-time PCR, and immunohistochemical analysis showed that DHA enhanced LASS2 (CERS2) expression in bladder cancer cells and DDP-treated mice. RESULTS LASS2 is associated with cisplatin chemosensitivity.LASS2 expression levels are different between BLC tissues and normal tissues. COX analysis showed that patients with high LASS2 expression had a higher cumulative overall survival rate than those with low LASS2 expression. The Sankey plot showed that LASS2 expression is lower in BLC tissues with more advanced stage and distant metastasis. The docking score of DHA and LASS2 reached the maximum value of -5.5259, indicating that DHA had a strong binding affinity with LASS2 targets. CCK8 assay showed that the most effective concentration ratio of DHA to DDP was 2.5 μg/ml + 10μg/ml. In vivo experiments showed that DHA inhibited tumor growth in cisplatin-treated mice. In addition, WB, RT-qPCR, and immunohistochemical analysis showed that DHA was able to enhance LASS2 expression in BLC cells and DDP-treated mice. CONCLUSION The upregulation of LASS2 (CERS2) expression in bladder cancer cells by DHA has been found to enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Xuhua Qiao
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Rongbo Xue
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Shijie Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Jun Li
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| | - Chundong Ji
- Affiliated Hospital of Panzhihua University, Panzhihua Hospital of Chinese and Western Combination, Urology Basic and Clinical Research Team of Affiliated Hospital of Panzhihua University, Urology Research and Innovation Platform of Panzhihua City, Panzhihua, Sichuan 617000, P.R. China
| |
Collapse
|
21
|
Sah B, Singh J, Shen Y, Goldfarb N, Samie FH, Geskin LJ, Liu L. Loss of CELF2 promotes skin tumorigenesis and increases drug resistance. Int J Dermatol 2025; 64:101-110. [PMID: 38887832 PMCID: PMC11649858 DOI: 10.1111/ijd.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND CELF2 belongs to the CELF RNA-binding protein family and exhibits antitumor activity in various tumor models. Analysis of the pan-cancer TCGA database reveals that CELF2 expression strongly correlates with favorable prognosis among cancer patients. The function of CELF2 in nonmelanoma skin cancer has not been studied. METHODS We used shRNA-mediated knockdown (KD) of CELF2 expression in human squamous cell carcinoma (SCC) cells to investigate how CELF2 impacted SCC cell proliferation, survival, and xenograft tumor growth. We determined CELF2 expression in human SCC tissues and adjacent normal skin using immunofluorescence staining. Additionally, we investigated the changes in CELF2 and its target gene expression during UV-induced and chemical-induced skin tumorigenesis by western blotting. RESULTS CELF2 KD significantly increased SCC cell proliferation, colony growth, and SCC xenograft tumor growth in immunodeficient mice. CELF2 KD in SCC cells led to activation of KRT80 and GDF15, which can potentially promote cell proliferation and tumor growth. While control SCC cells were sensitive to anticancer drugs such as doxorubicin, SCC cells with CELF2 KD became resistant to drug-induced tumor growth retardation. Finally, we found CELF2 expression diminished during both UV- and chemical-induced skin tumorigenesis in mice, consistent with reduced CELF2 expression in human SCC tumors compared to adjacent normal skin. CONCLUSION This study shows for the first time that CELF2 loss occurs during skin tumorigenesis and increases drug resistance in SCC cells, highlighting the possibility of targeting CELF2-regulated pathways in skin cancer prevention and therapies.
Collapse
MESH Headings
- Humans
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/metabolism
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Mice
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation/drug effects
- CELF Proteins/metabolism
- Cell Line, Tumor
- Carcinogenesis/genetics
- Gene Knockdown Techniques
- Doxorubicin/pharmacology
- Ultraviolet Rays/adverse effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- RNA, Small Interfering
- Skin/pathology
- Skin/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/adverse effects
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Bindeshwar Sah
- The Hormel Institute, University of MinnesotaAustinMNUSA
| | | | - Yao Shen
- Department of Systems BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Noah Goldfarb
- Department of Internal Medicine and DermatologyUniversity of MinnesotaMinneapolisMNUSA
- Minneapolis VA Medical Center Health Care SystemMinneapolisMinnesotaUSA
| | - Faramarz H. Samie
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Larisa J. Geskin
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Liang Liu
- The Hormel Institute, University of MinnesotaAustinMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
22
|
Loo CY, Traini D, Young PM, Yeung S, Leong CR, Lee WH. Evaluation of curcumin nanoparticles of various sizes for targeting multidrug-resistant lung cancer cells via inhalation. Nanomedicine (Lond) 2025; 20:141-153. [PMID: 39660666 PMCID: PMC11731332 DOI: 10.1080/17435889.2024.2439241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Inhalation drug delivery can deliver high doses of chemotherapeutic drugs to the lung tumor. This study evaluates the efficacy and the mechanistic pathways of nebulized Cur NPs at various sizes to treat multidrug resistant lung cancer. METHODS AND RESULTS Cur-NPs (30 nm and 200 nm) were nebulized separately onto the multidrug-resistant lung cancer cells (H69AR). Smaller NPs induced significantly higher cell death owing to a higher rate of particle internalization via dynamin-dependent clathrin-mediated endocytosis. Owing to the higher lysosome trafficking of Cur-NP30 nm compared to Cur-NP200 nm, oxidation of lysosome was higher (0.47 ± 0.08 vs 0.38 ± 0.08), contributing to significantly higher mitochondrial membrane potential loss (1.57 ± 0.17 vs 1.30 ± 0.11). MRP1 level in H69AR cells was reduced from 352 ± 12.3 ng/µg of protein (untreated cells) to 287 ± 12 ng/µg of protein (Cur-NP30 nm) and 303 ± 13.4 ng/µg of protein (Cur-NP200 nm). NF-κB, and various cytokine expressions were reduced after treatment with nebulized Cur-NPs. CONCLUSIONS Nebulized Cur-NPs formulations could be internalized into the H69AR cells. The Cur-NPs toxicity toward the H69AR was size and time-dependent. Cur-NP30 nm was more effective than Cur-NP200 nm to retain within the cells to exert higher oxidative stresss-induced cell death.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Chean Ring Leong
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Melaka, Malaysia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia
| |
Collapse
|
23
|
Gutsche LC, Dörfler J, Hübner J. Curcumin as a complementary treatment in oncological therapy: a systematic review. Eur J Clin Pharmacol 2025; 81:1-33. [PMID: 39425780 PMCID: PMC11695395 DOI: 10.1007/s00228-024-03764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Curcumin, the active ingredient in turmeric, is employed by numerous cancer patients to support conventional cancer therapy. This systematic review aims to summarize the existing clinical evidence and to provide an overview of the potential benefits and risks associated with curcumin supplementation. METHODS In January 2024, we conducted a systematic search of five electronic databases (Embase, Cochrane, PsycInfo, CINAHL, and Medline) using a complex search strategy. We included randomized controlled trials on the use, effectiveness, and potential harm of additional curcumin therapy in adult patients under cancer treatment. The risk of bias was assessed using Cochrane revised Risk of Bias Tool 2.0. RESULTS This systematic review included 34 randomized controlled trials involving 2580 patients out of 11143 search results. Included patients were primarily diagnosed with head and neck cancer, followed by breast, prostate, and colorectal cancer. Therapy concepts encompassed topical or systemic curcumin administration. The studies reported heterogeneous results concerning oral and skin symptoms, pain, weight alteration and changes in body composition, survival, and disease progression. Significant findings were reported for oral mucositis and weight loss. Considering risk of bias, all studies had moderate to high risk of bias. Regarding side effects, one study reported significantly more vomiting in the curcumin group. CONCLUSION Although the results suggest promise in reducing mucositis and weight loss, a clear statement regarding the effectiveness of curcumin therapy on cancer patients cannot be made due to heterogeneous results and methodological limitations of the involved studies. Further investigations of higher quality are necessary to derive a definite recommendation for action.
Collapse
Affiliation(s)
- Lisa C Gutsche
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
| | - Jennifer Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany
| | - Jutta Hübner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany
| |
Collapse
|
24
|
Ferreira VR, Ventura A, Cândido M, Ferreira-Strixino J, Raniero L. Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer. Photochem Photobiol Sci 2025; 24:181-190. [PMID: 39841372 DOI: 10.1007/s43630-025-00682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects. In this way, the synthesis of IONPs (iron oxide nanoparticles) was carried out, and their subsequent coating was done with curcumin (IONPs@curcumin) so that they could act as therapeutic agents against breast cancer. Curcumin solubility tests were carried out to achieve the best results, with ethanol as a solvent, in different concentrations of ethanolic curcumin solution, with the optimal outcome observed at a concentration of 1 mM. Subsequently, the stability analysis was conducted by adjusting the pH of the medium, revealing that at pH 10, the IONPs@curcumin exhibited the best stability and dispersion conditions. Then, cytotoxicity tests of IONPs@curcumin were carried out on the MDA-MB-468 triple-negative breast cancer cell line, under experimental conditions without irradiation and subjected to PDT. The results revealed a viability greater than 70%, as it did not exhibit cytotoxicity for cells in the dark. After 1 h of incubation, the PDT associated with IONPs@curcumin showed 32% of cell viability at a concentration of 30 mg/mL.
Collapse
Affiliation(s)
- Virginia Rezende Ferreira
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Aveline Ventura
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Marcela Cândido
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab) - Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Leandro Raniero
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
25
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
26
|
Lu YT, Lin CW, Su SC, Ho YT, Yeh FL, Hsin CH, Yang SF. L48H37, a curcumin analog, suppresses matrix metalloproteinase-9 expression and activity to hamper nasopharyngeal cancer cell migration. Oral Oncol 2024; 159:107038. [PMID: 39284263 DOI: 10.1016/j.oraloncology.2024.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE Metastatic disease is a major issue of treatment failure in nasopharyngeal carcinoma (NPC) patients and often linked to high mortality. L48H37, a synthetic analog of curcumin with augmented bioavailability over its parent compound, has demonstrated several oncostatic characteristics. This study was aimed to explore the anti-metastatic effect of L48H37 on NPC cancer cells and its underlying mechanism. METHODS Cell viability was evaluated using MTT assay. Regulation of signaling pathways was elucidated by immunoblotting, and specific kinase inhibitors. RESULTS In this study, we showed that L48H37 suppressed TPA-stimulated invasive and migratory capacities of NPC cell lines and gave rise to very little cytotoxic responses. Such anti-cancer effect of L48H37 was accompanied with attenuated expression levels and enzymatic activities of matrix metalloproteinase-9 (MMP-9), a pivotal mediator of metastatic processes. In addition, L48H37 interfered with TPA-induced JNK activation, and the treatment of L48H37 combined with a JNK antagonist demonstrated a synergistic effect on restraining TPA-stimulated MMP-9 activity and migration events in NPC cells. CONCLUSIONS Our results revealed that L48H37 impeded the invasive potential of NPC cells via impairment of MMP-9 function and abundance, highlighting possible complementary therapies using curcumin or its effective analogs to manage NPC dissemination.
Collapse
Affiliation(s)
- Yen-Ting Lu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fang-Ling Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
27
|
Jiang E, Chen X, Bi Y, Pan C, Li X, Lan X. Curcumin Inhibits Oxidative Stress and Apoptosis Induced by H 2O 2 in Bovine Adipose-Derived Stem Cells (bADSCs). Animals (Basel) 2024; 14:3421. [PMID: 39682386 DOI: 10.3390/ani14233421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
In livestock production, oxidative stress (OS) is ubiquitous, reducing animal productivity and product quality. Hence, investigating the mechanisms of oxidative stress in livestock and inhibiting oxidative stress-induced damage is crucial. Curcumin, a plant-derived bioactive compound, exhibits antioxidant and anti-apoptotic properties. Adipose-derived stem cells (ADSCs) from animal adipose tissue are easily accessible and possess multilineage differentiation potential. Therefore, this work utilized bovine ADSCs to establish an oxidative stress model and investigated the effects of curcumin on oxidative stress and apoptosis. Firstly, bovine ADSCs were isolated and cultured from fetal calf subcutaneous adipose tissue. Their surface markers were identified by immunofluorescence, confirming the expression of CD29, CD44, CD73, CD90, CD105 and Vimentin, but not CD34, indicative of mesenchymal stem/progenitor cell characteristics. Secondly, to explore the effects of curcumin on oxidative damage and apoptosis in bovine ADSCs, an oxidative stress model was induced using H2O2. CCK-8 assays showed significantly reduced cell viability and SOD activity, along with increased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, indicating successful modeling. RT-qPCR further confirmed that 500 μM of H2O2 treatment for 24 h promoted apoptosis. Herein, CCK-8 assays indicated a significant reduction in cell viability at >8 μM of curcumin. Thirdly, using 4 μM and 8 μM of curcumin for pre-protection, 8 μM maintained SOD activity, reduced MDA and ROS, inhibited apoptosis-related gene changes (Bcl-2, Bax, Caspase-3), and suppressed apoptosis according to a TUNEL assay. Fourthly, curcumin's autophagy-inducing potential was hypothesized, which was confirmed by increased LC3-II and decreased P62 expression upon co-treatment with 3-MA. 3-MA inhibited curcumin's antioxidant and anti-apoptotic effects, suggesting that curcumin's antioxidant and anti-apoptotic roles may involve autophagy induction. In conclusion, bovine ADSCs are abundant, easily accessible, and multipotent, making them suitable for in vitro expansion. Curcumin alleviated H2O2-induced oxidative stress in bovine ADSCs, with curcumin also inhibiting apoptosis, likely through autophagy induction. This study validates the protective role of curcumin in bovine ADSCs, with potential applications in livestock production.
Collapse
Affiliation(s)
- Enhui Jiang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuanbo Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yi Bi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology Hermann-Von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Chuanying Pan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangchen Li
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
28
|
Nandhini M, Pitchumani Violet Mary C, Gopinath S, Vijayakumar S. Structure based interaction and molecular dynamics studies of cysteine protease Cathepsin B against curcumin and resveratrol. J Biomol Struct Dyn 2024:1-11. [PMID: 39589216 DOI: 10.1080/07391102.2024.2431658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 11/27/2024]
Abstract
The lysosomal cysteine peptidase Cathepsin B is identified as a pivotal contributor to cancer development. In the pursuit of discovering less toxic inhibitors for Cathepsin B, various organic compounds have undergone thorough investigation and are being studied at the moment in clinical studies for cancer treatment. Notably, curcumin and resveratrol emerge as prominent candidates. However, the precise molecular mechanism underlying the inhibition of Cathepsin B by these compounds remains elusive. To address this gap, we conducted molecular docking and dynamics studies to unravel the interaction dynamics between Cathepsin B and phytochemicals such as curcumin and resveratrol. Remarkably, Molecular docking studies revealed that curcumin and resveratrol exhibit high binding affinities 7.599 and 6.103 kcal/mol, respectively, positioning them as promising inhibitors for Cathepsin B. Further insights from 150 ns of molecular dynamics simulations, incorporating structural analyses encompassing RMSF, RMSD, Rg, SASA, and H-bond analysis, indicate the superior stability of curcumin compared to resveratrol. Additionally, we assessed their drug-likeness properties using the PreADMET web server, and the MM/BPSA method facilitated the calculation of binding energies for the complexes. On targeting Cathepsin B, this research promises to contribute to the development of drugs that inhibit the progression of cancer.
Collapse
Affiliation(s)
- M Nandhini
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - C Pitchumani Violet Mary
- Department of Physics, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - S Gopinath
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
29
|
Li N, Lou J, Wang L, Zhang W, Jin C, Zhuang X. Comparative Pharmacokinetic Assessment of Curcumin in Rats Following Intratracheal Instillation Versus Oral Administration: Concurrent Detection of Curcumin and Its Conjugates in Plasma by LC-MS/MS. Pharmaceutics 2024; 16:1459. [PMID: 39598582 PMCID: PMC11597260 DOI: 10.3390/pharmaceutics16111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE To establish and validate an LC-MS/MS method for the simultaneous determination of curcumin (CUR) as well as its glucuronide conjugate (COG) and sulfate conjugate (COS) in rat plasma. The method was employed to evaluate and compare the pharmacokinetic behaviors of curcumin following oral and intratracheal administration in rats. METHODS Rat plasma samples were separated by chromatography on a C18 column after protein precipitation with acetonitrile. Gradient elution with a mobile phase of 0.5 mM ammonium acetate in acetonitrile was utilized. Mass spectrometry detection incorporated an electrospray ionization (ESI) source, multiple reaction monitoring (MRM), and dual-mode (positive and negative) scanning for quantitative analysis. A total of 12 SD rats were randomly divided into two groups and were orally (20 mg/kg) or intratracheally (10 mg/kg) administrated curcumin, respectively. CUR, COG, and COS concentrations in plasma were measured to assess pharmacokinetic disparities. RESULTS The method demonstrated linearity within the ranges of 2-400 ng/mL for CUR and COS and 5-1000 ng/mL for COG. Intratracheal administration significantly elevated CUR plasma concentrations compared to oral administration. The exposure of COG was higher than COS following oral administration. Conversely, intratracheal administration resulted in markedly higher COS exposure, with no significant difference in COG exposure after dose normalization between oral and inhalation routes. CONCLUSIONS The established LC-MS/MS method provides a reliable tool for the simultaneous measurement of CUR, COG, and COS in rat plasma, facilitating preclinical pharmacokinetic investigations. The study reveals distinct pharmacokinetic profiles for CUR following oral versus intratracheal administration, suggesting that inhalation may offer superior therapeutic efficacy.
Collapse
Affiliation(s)
- Nan Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (N.L.); (J.L.); (L.W.); (W.Z.)
- College of Pharmay, Yanbian University, Yanji 133000, China;
| | - Jinle Lou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (N.L.); (J.L.); (L.W.); (W.Z.)
- College of Pharmay, Yanbian University, Yanji 133000, China;
| | - Lingchao Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (N.L.); (J.L.); (L.W.); (W.Z.)
| | - Wenpeng Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (N.L.); (J.L.); (L.W.); (W.Z.)
| | - Chunmei Jin
- College of Pharmay, Yanbian University, Yanji 133000, China;
| | - Xiaomei Zhuang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (N.L.); (J.L.); (L.W.); (W.Z.)
| |
Collapse
|
30
|
Shakori Poshteh S, Alipour S, Varamini P. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. DISCOVER NANO 2024; 19:177. [PMID: 39527354 PMCID: PMC11554965 DOI: 10.1186/s11671-024-04126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) bone metastasis poses a significant clinical challenge due to its impact on patient prognosis and quality of life. Curcumin (CUR), a natural polyphenol compound found in turmeric, has shown potential in cancer therapy due to its anti-inflammatory, antioxidant, and anticancer properties. However, its metabolic instability and hydrophobicity have hindered its clinical applications, leading to a short plasma half-life, poor absorption, and low bioavailability. To enhance the drug-like properties of CUR, nanotechnology-based delivery strategies have been employed, utilizing polymeric, lipidic, and inorganic nanoparticles (NPs). These approaches have effectively overcome CUR's inherent limitations by enhancing its stability and cellular bioavailability both in vitro and in vivo. Moreover, targeting molecules with high selectivity towards bone metastasized breast cancer cells can be used for site specific delivery of curcumin. Alendronate (ALN), a bone-seeking bisphosphonate, is one such moiety with high selectivity towards bone and thus can be effectively used for targeted delivery of curcumin loaded nanocarriers. This review will detail the process of bone metastasis in BC, elucidate the mechanism of action of CUR, and assess the efficacy of nanotechnology-based strategies for CUR delivery. Specifically, it will focus on how these strategies enhance CUR's stability and improve targeted delivery approaches in the treatment of BC bone metastasis.
Collapse
Affiliation(s)
- Shiva Shakori Poshteh
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shohreh Alipour
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Drug and Food Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
31
|
She R, Xu P. Mechanism of curcumin in the prevention and treatment of oral submucosal fibrosis and progress in clinical application research. BDJ Open 2024; 10:82. [PMID: 39455570 PMCID: PMC11512022 DOI: 10.1038/s41405-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Oral submucosal fibrosis is a potentially life-threatening oral disease that significantly impacts physiological functions such as speech and swallowing while also diminishing the quality of life for patients. Currently, the mainstream treatment for oral submucosal fibrosis in clinical practice involves invasive glucocorticoid drugs such as injection therapy. However, this method often leads to intraoperative pain, anxiety, fear, and poor medical experience due to associated side effects. METHODS There is an urgent need to actively explore new drugs and relatively noninvasive approaches for the treatment of oral submucosal fibrosis in order to enhance patients' medical experience and compliance. This has become a focal point of attention in clinical research. After conducting an extensive literature search, it was discovered that curcumin, a natural polyphenolic compound, exhibits potent anti-tumor, anti-inflammatory, antioxidant, anti-metastatic and anti-angiogenic properties. Moreover, curcumin holds significant clinical potential in the prevention and treatment of various diseases such as oral submucosal fibrosis. CONCLUSION This review presents a comprehensive elaboration encompassing the action mechanisms, biological activity, potential applications, and clinical characteristics of curcumin in the management of oral submucosal fibrosis, aiming to provide diagnostic insights and novel therapeutic perspectives for its prevention and treatment.
Collapse
Affiliation(s)
- Rong She
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Pu Xu
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
32
|
Kashyap VK, Nagesh PKB, Singh AK, Massey A, Darkwah GP, George A, Khan S, Hafeez BB, Zafar N, Kumar S, Sinha N, Yallapu MM, Jaggi M, Chauhan SC. Curcumin attenuates smoking and drinking activated NF-κB/IL-6 inflammatory signaling axis in cervical cancer. Cancer Cell Int 2024; 24:343. [PMID: 39428480 PMCID: PMC11492755 DOI: 10.1186/s12935-024-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated if smoking and/or drinking augment the molecular mechanisms of cervical carcinogenesis and defined a potential therapeutic approach for their attenuation. METHODS The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in their cell migration and invasion characteristics. Expression of HPV16 E6/E7, NF-κB, cytokines, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay, and confocal microscopy. Herein, we used curcumin (Cur), and PLGA nanoparticle formulation of curcumin (PLGA-Cur) and determined effectiveness of free Cur and PLGA-Cur formulation on smoking and drinking activated NF-κB/IL-6 mediated inflammatory signaling pathways using in vitro cervical cancer models. RESULTS Treatments with B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers in cervical cancer cells; it also enhanced migration and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF-α and NF-κB signaling, leading to IL-6 upregulation and activation of VEGF. The molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by curcumin (Cur)/PLGA-Cur treatment. CONCLUSIONS These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. In addition, attenuation of these effects by treatment with Cur/PLGA-Cur treatment, implies the role of curcumin in cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Ajay K Singh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Andrew Massey
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Godwin P Darkwah
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Aaron George
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Sheema Khan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Nadeem Zafar
- Department of Pathology, University of Washington, Seattle, DC, 98195, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
33
|
Boroughani M, Moaveni AK, Hatami P, Mansoob Abasi N, Seyedoshohadaei SA, Pooladi A, Moradi Y, Rahimi Darehbagh R. Nanocurcumin in cancer treatment: a comprehensive systematic review. Discov Oncol 2024; 15:515. [PMID: 39349709 PMCID: PMC11442806 DOI: 10.1007/s12672-024-01272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Curcumin, a compound in turmeric, shows potential in cancer treatment but is hindered by low bioavailability and solubility. Nanocurcumin, enhanced through nanotechnology, addresses these limitations, offering potential in oncological applications. This review systematically examines the efficacy, bioavailability, and safety of nanocurcumin in cancer treatment, collating data from in vitro, in vivo, and clinical studies. METHODS A comprehensive systematic search was conducted across four major databases: PubMed (Medline), Scopus, Web of Science, and Embase (up to February 2024). The selection criteria were based on the PICOT structure, and studies were assessed for risk of bias using the Cochrane bias risk tool for clinical studies and related checklists for in vitro and in vivo studies. Statistical analyses were performed in STATA software version 17. RESULTS In total, 8403 articles were identified and assessed, and then only 61 articles were found eligible to be included. Nanocurcumin formulations, especially with Poly (lactic-co-glycolic acid) (PLGA), displayed superior solubility and therapeutic efficacy. In vitro studies highlighted its enhanced cellular uptake and anti-proliferative effects, particularly against cervical cancer cells. In vivo studies confirmed its chemopreventive efficacy and potential synergy with other cancer therapies. Though in early stages, clinical trials showed promise in reducing side effects and improving efficacy in cancer treatments. CONCLUSION Nanocurcumin shows promise as an innovative approach in cancer therapy, potentially offering improved efficacy and reduced side effects compared to traditional treatments. Early clinical trials indicate its potential to enhance the quality of life for cancer patients by mitigating treatment-related toxicities and improving therapeutic outcomes. However, larger randomized controlled trials are necessary to definitively establish its clinical efficacy, optimal dosing regimens, and long-term safety profile across various cancer types. As research progresses, nanocurcumin could become a valuable addition to the oncologist's toolkit, particularly in combination therapies or for patients intolerant to conventional treatments. Future clinical studies should focus on optimizing treatment protocols, identifying responsive patient populations, and assessing long-term outcomes to facilitate the translation of these promising findings into standard clinical practice.
Collapse
Affiliation(s)
- Meshkat Boroughani
- Nanoclub Elites Association, Tehran, Iran
- Student Research Committee, Factually of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Hatami
- Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran
| | - Neda Mansoob Abasi
- Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran
| | - Seyedeh Asrin Seyedoshohadaei
- Department of Psychiatry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Arash Pooladi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, P.O.Box: 66135-756, Sanandaj, Iran.
- Nanoclub Elites Association, Tehran, Iran.
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran.
| |
Collapse
|
34
|
Ovcharenko D, Mukhin D, Ovcharenko G. Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology. Pharmaceutics 2024; 16:1237. [PMID: 39339273 PMCID: PMC11435428 DOI: 10.3390/pharmaceutics16091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval. The complex relationship between patent protection and pharmaceutical innovation complicates cancer drug development and contributes to high mortality rates. Adjusting patent criteria for alternative cancer therapeutics could stimulate innovation, enhance treatment options, and ultimately improve outcomes for cancer patients. This article explores the potential of alternative cancer therapeutics, chemopreventive agents, natural products, off-patent drugs, generic unpatentable chemicals, and repurposed drugs in cancer treatment, emphasizing the mechanisms and therapeutic potential of these unconventional compounds as combinatorial cancer therapies. The biological pathways, therapeutic effects, and potential to enhance existing therapies are reviewed, demonstrating their cost-effective and accessible options as adjuvant cancer therapies.
Collapse
Affiliation(s)
| | - Dmitry Mukhin
- Altogen Labs, 11200 Menchaca Road, Austin, TX 78748, USA
| | | |
Collapse
|
35
|
Luo M, Wong S, Thanuphol P, Du H, Han Y, Lin M, Guo X, Bechtel TD, Gibbons JG, Xiao H. Isolation and Identification of Human Gut Bacteria Capable of Converting Curcumin to Its Hydrogenated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20410-20418. [PMID: 39240774 DOI: 10.1021/acs.jafc.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Curcumin is widely recognized for its health benefits, though the role of gut microbiota in its metabolic transformation was not well studied. In this study, bacterial strains capable of metabolizing curcumin were isolated from human stool samples. Using 16S rRNA and whole-genome sequencing, two novel strains (Clostridium butyricum UMA_cur1 and Escherichia coli UMA_cur2) were identified. In addition, the metabolic products were analyzed using liquid chromatography-mass spectrometry. These strains efficiently converted curcumin into dihydro-curcumin (DHC) and tetrahydro-curcumin (THC). Notably, E. coli UMA_cur2 also produced hexahydro-curcumin (HHC) and octahydro-curcumin (OHC), marking the first identification of a strain capable of such transformations. The absence of the YncB gene (typically involved in curcumin conversion) in C. butyricum UMA_cur1 suggests an alternative metabolic pathway. Curcumin metabolism begins during the stationary growth phase, indicating that it is not crucial for primary growth functions. Furthermore, E. coli UMA_cur2 produced these metabolites sequentially, starting with DHC and THC and progressing to HHC and OHC. These findings identified two novel strains that can metabolize curcumin to hydrogenated metabolites, which enhance our understanding of the interaction between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Siu Wong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pongpol Thanuphol
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Margaret Lin
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tyler D Bechtel
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
36
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
37
|
Alotaibi BS, Hakami MA, Hazazi A, Alsaiari AA, Khalid M, Beg A. Investigating mechanistic insights of curcumin in blocking the Interleukin-8 signaling pathway associated with Breast Cancer: An in-silico approach. Saudi J Biol Sci 2024; 31:104035. [PMID: 38934013 PMCID: PMC11201349 DOI: 10.1016/j.sjbs.2024.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Interleukin-8 (IL-8) is a chemokine, a type of signaling molecule that has a role in immunological responses and inflammation. In recent years, IL-8 is additionally related to cancer growth and recurrence. Breast cancer growth, progression, and metastatic development are all linked to IL-8. Breast cancer cells are known to develop faster when IL-8 stimulates their proliferation and survival. It can also cause angiogenesis, or the creation of new blood vessels, which is necessary for tumor nutrition and growth. IL-8 and curcumin have been subjects of interest in drug design, particularly in the context of inflammation-related disorders and cancer. This study aims to give an overview of the role of IL-8. Inhibitor-based treatment approaches were being used to target IL-8 with curcumin. Molecular docking method was employed to find a potential interaction to supress competitive inhibition of IL-8 with curcumin. PASS analysis and ADMET characteristics were also being carried out. In the end, IL-8 complexed with curcumin is chosen for MD simulations. Overall, our results showed that during the simulation, the complex stayed comparatively stable. It is also possible to investigate curcumin further as a possible treatment option. The combined results imply that IL-8 and their genetic alterations can be studied in precision cancer therapeutic treatments, utilizing target-driven therapy and early diagnosis.
Collapse
Affiliation(s)
- Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al- Quwayiyah-19257, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al- Quwayiyah-19257, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anam Beg
- Jamia Millia Islamia University, New Delhi, India
| |
Collapse
|
38
|
Mishra B, Yadav AS, Malhotra D, Mitra T, Sinsinwar S, Radharani NNV, Sahoo SR, Patnaik S, Kundu GC. Chitosan Nanoparticle-Mediated Delivery of Curcumin Suppresses Tumor Growth in Breast Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1294. [PMID: 39120399 PMCID: PMC11314098 DOI: 10.3390/nano14151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Curcumin is a nutraceutical known to have numerous medicinal effects including anticancer activity. However, due to its poor water solubility and bioavailability, the therapeutic impact of curcumin against cancer, including breast cancer, has been constrained. Encapsulating curcumin into chitosan nanoparticles (CHNPs) is an effective method to increase its bioavailability as well as antitumorigenic activity. In the current study, the effects of curcumin-encapsulated CHNPs (Cur-CHNPs) on cell migration, targeted homing and tumor growth were examined using in vitro and in vivo breast cancer models. Cur-CHNPs possessed a monodispersed nature with long-term colloidal stability, and demonstrated significant inhibition of cell viability in vitro, which was potentiated by 5-Fluorouracil (5-FU). Outcomes of the in vivo imaging studies confirmed effective tumor targeting and retention ability of Cur-CHNPs, thereby suppressing breast tumor growth in mice models. Overall, the results demonstrated that Cur-CHNPs could be an effective candidate drug formulation for management of breast cancer.
Collapse
Affiliation(s)
- Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Amit Singh Yadav
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
- National Centre for Cell Science (NCCS), Pune 411007, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Simran Sinsinwar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - N. N. V. Radharani
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Saroj Ranjan Sahoo
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar 751024, India;
| | - Srinivas Patnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
- National Centre for Cell Science (NCCS), Pune 411007, India
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar 751024, India;
| |
Collapse
|
39
|
Janem A, Omar G, Hamed O, Jodeh S, Deghles A, Berisha A, Mansour W, Jabal SA, Fares O, Jaser A, Amireh A, Adwan G. Water soluble curcumin with alkyl sulfonate moiety: Synthesis, and anticancer efficacy. Heliyon 2024; 10:e33808. [PMID: 39040342 PMCID: PMC11261864 DOI: 10.1016/j.heliyon.2024.e33808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Curcumin is classified as a chemotherapeutic medication because of its potential against numerous cancer cell lines and ability to inhibit cancer cell proliferation. Despite these findings, curcumin has yet to be commercialized as a drug due to its low water solubility, low absorption, and restricted bioavailability. As a result, there is a demand for water-soluble curcumin with improved solubility, bioavailability, and thus bioactivity. In this study we report the synthesis and the anticancer activities of water-soluble curcumins derivatives with alkyl sulfonate moiety. The target water-soluble curcumin with alkyl sulfonate moieties was created utilizing a straightforward technique that involved reacting curcumin with various sultones. The cytotoxic (24 h) and cytostatic (72 h) anticancer effect on breast carcinoma (MCF-7), liver carcinoma (HepG2), skin melanoma (B16-F110), colon human cancer and HeLa cervical carcinoma cell lines viability % via MTT assay were determined for the prepared derivatives. Results showed that curcumin-derived compounds have a pronounced cytostatic anticancer effect rather than cytotoxic one in relation to the compound type, cancer cell line type, and examined concentration compared to curcumin. The curcumin sulfonates outperformed curcumin activity against the tested cancer cells and showed to be powerful anticancer candidate drugs as supported by the theoretical calculations. This is evident by their high capacity to form H-bonding during docking with the amino acid side chains and the Vina docking score.
Collapse
Affiliation(s)
- Alaa Janem
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ghader Omar
- Biology Department, Faculty of Sciences An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Othman Hamed
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Shehdeh Jodeh
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | | | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, Prishtina, 10000, Republic of Kosovo
- Materials Science-Nanochemistry Research Group, Nano Alb-Unit of Albanian Nanoscience and Nanotechnology, Tirana, 1000 Albania
| | - Waseem Mansour
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Saber Abu Jabal
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Oswa Fares
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ataa Jaser
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ameed Amireh
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ghaleb Adwan
- Biology Department, Faculty of Sciences An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
40
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
41
|
Mohammadi AH, Bagheri F, Baghaei K. Chondroitin sulfate-tocopherol succinate modified exosomes for targeted drug delivery to CD44-positive cancer cells. Int J Biol Macromol 2024:133625. [PMID: 39084997 DOI: 10.1016/j.ijbiomac.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Exosomes (Exos), natural nanovesicles released by various cell types, show potential as an effective drug delivery platform due to their intrinsic role as transporters of biomolecules between different cells. However, Exos functionalization with targeting ligands is a critical step to enhance their targeting capability, which could be challenging. In this study, Exos were modified to specifically bind to CD44-positive cells by anchoring chondroitin sulfate (CS) to their surface. Exo modification was facilitated with CS conjugation with alpha-tocopherol succinate (TOS) as an anchorage. The modified Exos were utilized for delivering curcumin (Cur) to pancreatic cancer (PC) cells. In vitro Cur release studies revealed that Exos play a crucial role in maintaining Cur within themselves, demonstrating their potential as effective carriers for drug delivery to targeted locations. Notably, Cur loaded into the modified Exos exhibited enhanced cytotoxicity compared to unmodified Exo-Cur. Meanwhile, Exo-Cur-TOS-CS induced apoptosis more effectively in AsPC-1 cells than unmodified Exos (70.2 % versus 56.9 %). It is worth mentioning that with CD44-mediated cancer-specific targeting, Exo-CS enabled increased intracellular accumulation in AsPC-1 cells, showing promise as a targeted platform for cancer therapy. These results confirm that Exo modification has a positive impact on enhancing the therapeutic efficacy and cytotoxicity of drugs.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Australia.
| |
Collapse
|
42
|
Murai H, Kuboniwa M, Kakiuchi M, Matsumura R, Hirata Y, Amano A. Curcumin inhibits growth of Porphyromonas gingivalis by arrest of bacterial dipeptidyl peptidase activity. J Oral Microbiol 2024; 16:2373040. [PMID: 38974504 PMCID: PMC11225630 DOI: 10.1080/20002297.2024.2373040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/23/2024] [Indexed: 07/09/2024] Open
Abstract
Background Curcumin is a multi-functional polyphenol with anti-bacterial and anti-inflammatory effects and may have potential for treatment of periodontal diseases. The present study was conducted to examine the molecular basis of the anti-bacterial effect of curcumin against Porphyromonas gingivalis using metabolome analysis. Materials and Methods P. gingivalis were incubated with 10 µg/mL curcumin, and then metabolites were analyzed with CE-TOF/MS. Expression levels of sigma factors were also evaluated using RT-PCR assays. The activities of dipeptidyl peptidases (DPPs) were assessed by examining the degradation reactions of MCA-labeled peptides. Results The relative amounts of various glycogenic amino acids were significantly decreased when P. gingivalis was incubated with curcumin. Furthermore, the metabolites on the amino acid degradation pathway, including high-energy compounds such as ATP, various intermediate metabolites of RNA/DNA synthesis, nucleoside sugars and amino sugars were also decreased. Additionally, the expression levels of sigma-54 and sigma-70 were significantly decreased, and the same results as noted following nutrient starvation. Curcumin also significantly suppressed the activities of some DPPs, while the human DPP-4 inhibitors markedly inhibited the growth of P. gingivalis and activities of the DPPs. Conclusions Curcumin suppresses the growth of P. gingivalis by inhibiting DPPs and also interferes with nucleic acid synthesis and central metabolic pathways, beginning with amino acid metabolism.
Collapse
Affiliation(s)
- Hiroki Murai
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Masae Kuboniwa
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| | - Miho Kakiuchi
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| | - Reiko Matsumura
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Yoshihiko Hirata
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Atsuo Amano
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| |
Collapse
|
43
|
Jantra J, Teepoo S, Thananimit S. Smartphone-based imaging colorimetric assay for monitoring the quality of curcumin in turmeric powder. ANAL SCI 2024; 40:1311-1321. [PMID: 38607598 DOI: 10.1007/s44211-024-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
This research developed a colorimetric assay for semi-quantitative curcumin detection. The screening test was performed using a ferric chloride to form a brownish color which was further used to evaluate the amount of curcumin in the turmeric powder samples. The quantitative assay was performed based on the color intensity of the curcumin target using a smartphone digital image colorimetry with a developed lightbox constructed with a white light-emitting diodes (LED) light source as the measurement device. Images in red, green, and blue (RGB) color were processed to obtain relevant colors from the image and the color values were used to analyze curcumin concentrations. The intensity of the ΔB was correlated to the concentration of curcumin with high sensitivity. The method showed a linear range between 0.25 and 5 mg L-1 with the LOD and LOQ of 0.12 and 0.41 mg L-1, respectively. Sample analysis was carried out in turmeric powders. Curcumin in turmeric powder samples was simply extracted using acetonitrile followed by dilution 100 times for sample preparation. The accuracy was tested by spiking 0.25, 1.00, and 4.00 mg L-1 of standard curcumin into the turmeric sample solution. The average percentage recoveries were acceptable in all samples (90-104%). The method was validated by comparing the results obtained from the proposed method and high-performance liquid chromatography (HPLC). There was no statistically significant difference between the two methods (P = 0.05).
Collapse
Affiliation(s)
- Jongjit Jantra
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, 86160, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | - Suchera Thananimit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
44
|
Iranpanah A, Majnooni MB, Biganeh H, Amirian R, Rastegari-Pouyani M, Filosa R, Cheang WS, Fakhri S, Khan H. Exploiting new strategies in combating head and neck carcinoma: A comprehensive review on phytochemical approaches passing through PI3K/Akt/mTOR signaling pathway. Phytother Res 2024; 38:3736-3762. [PMID: 38776136 DOI: 10.1002/ptr.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hossein Biganeh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
45
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
46
|
Ochoa-Sanchez A, Sahare P, Pathak S, Banerjee A, Estevez M, Duttaroy AK, Luna-Bárcenas G, Paul S. Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells. Front Pharmacol 2024; 15:1341773. [PMID: 38919255 PMCID: PMC11196415 DOI: 10.3389/fphar.2024.1341773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health concern, being the third most diagnosed cancer in men and the second most diagnosed cancer in women, with alarming mortality rates. Natural phytochemicals have gained prominence among various therapeutic avenues explored due to their diverse biological properties. Curcumin, extracted from turmeric, and resveratrol, a polyphenol found in several plants, have exhibited remarkable anticancer activities. However, their limited solubility and bioavailability hinder their therapeutic efficacy. To enhance the bioavailability of these compounds, nanomaterials work as effective carriers with biogenic silica (BS) attracting major attention owing to their exceptional biocompatibility and high specific surface area. In this study, we developed Curcumin-resveratrol-loaded BS (Cur-Res-BS) and investigated their effects on colorectal cancer cell lines (HCT-116 and Caco-2). Our results demonstrated significant concentration-dependent inhibition of cell viability in HCT-116 cells and revealed a complex interplay of crucial proto-onco or tumor suppressor genes, such as TP53, Bax, Wnt-1, and CTNNB1, which are commonly dysregulated in colorectal cancer. Notably, Cur-Res-BS exhibited a synergistic impact on key signaling pathways related to colorectal carcinogenesis. While these findings are promising, further investigations are essential to comprehensively understand the mechanisms and optimize the therapeutic strategy. Moreover, rigorous safety assessments and in vitro studies mimicking the in vivo environment are imperative before advancing to in vivo experiments, ensuring the potential of Cur-Res-BS as an efficient treatment for CRC.
Collapse
Affiliation(s)
- Adriana Ochoa-Sanchez
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Sujay Paul
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
47
|
Kang S, Kim M, Kim H, Hong J. Enhancement of Solubility, Stability, Cellular Uptake, and Bioactivity of Curcumin by Polyvinyl Alcohol. Int J Mol Sci 2024; 25:6278. [PMID: 38892468 PMCID: PMC11172464 DOI: 10.3390/ijms25116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
The biological activities and related mechanisms of curcumin, a major polyphenolic compound in turmeric, the rhizome of Curcuma longa, have been extensively investigated. Due to its poor solubility in water, the analysis of curcumin's biological activities is limited in most aqueous experimental systems. In the present study, the effects of polyvinyl alcohol (PVA), a dietary-compatible vehicle, on the solubility, stability, cellular uptake, and bioactivities of curcumin were investigated. Curcumin solubility was improved significantly by PVA; the color intensity of curcumin aqueous solution in the presence of PVA increased concentration-dependently with its peak shift to a shorter wavelength. Improved suspension stability and photostability of curcumin in an aqueous solution were also observed in the presence of PVA, even at 62.5 μg/mL. The scavenging activities of curcumin against DPPH, ABTS, AAPH radicals, and nitric oxide were enhanced significantly in the presence of PVA. PVA at 250 μg/mL also significantly enhanced the cytotoxic activity of curcumin against both HCT 116 colon cancer and INT 407 (HeLa-derived) embryonic intestinal cells by reducing the IC50 from 16 to 11 μM and 25 to 15 μM, respectively. PVA improved the cellular uptake of curcumin in a concentration-dependent manner in INT 407 cells; it increased the cellular levels more effectively at lower curcumin treatment concentrations. The present results indicate that PVA improves the solubility and stability of curcumin, and changes in these chemical behaviors of curcumin in aqueous systems by PVA could enhance the bioavailability and pharmacological efficacy of curcumin.
Collapse
Affiliation(s)
| | | | | | - Jungil Hong
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea; (S.K.); (M.K.); (H.K.)
| |
Collapse
|
48
|
Boyanova L, Medeiros J, Yordanov D, Gergova R, Markovska R. Turmeric and curcumin as adjuncts in controlling Helicobacter pylori-associated diseases: a narrative review. Lett Appl Microbiol 2024; 77:ovae049. [PMID: 38794899 DOI: 10.1093/lambio/ovae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
Non-antibiotic adjuncts may improve Helicobacter pylori infection control. Our aim was to emphasize curcumin benefits in controlling H. pylori infection. We discussed publications in English mostly published since 2020 using keyword search. Curcumin is the main bioactive substance in turmeric. Curcumin inhibited H. pylori growth, urease activity, three cag genes, and biofilms through dose- and strain-dependent activities. Curcumin also displayed numerous anticancer activities such as apoptosis induction, anti-inflammatory and anti-angiogenic effects, caspase-3 upregulation, Bax protein enhancement, p53 gene activation, and chemosensitization. Supplementing triple regimens, the agent increased H. pylori eradication success in three Iranian studies. Bioavailability was improved by liposomal preparations, lipid conjugates, electrospray-encapsulation, and nano-complexation with proteins. The agent was safe at doses of 0.5->4 g daily, the most common (in 16% of the users) adverse effect being gastrointestinal upset. Notably, curcumin favorably influences the intestinal microbiota and inhibits Clostridioides difficile. Previous reports showed the inhibitory effect of curcumin on H pylori growth. Curcumin may become an additive in the therapy of H. pylori infection, an adjunct for gastric cancer control, and an agent beneficial to the intestinal microbiota. Further examination is necessary to determine its optimal dosage, synergy with antibiotics, supplementation to various eradication regimens, and prophylactic potential.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - José Medeiros
- Gastroenterology Clinic, Rua do Carmo, 75-1º AA,, 3000 Coimbra, Portugal
| | - Daniel Yordanov
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
49
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
50
|
Duan JF, Zhang QJ, Zhu J, Lu JH. Curcumin affects autophagy of prolactinoma cells by upregulating miR-206 to exert antitumor effects. J Biochem Mol Toxicol 2024; 38:e23734. [PMID: 38764151 DOI: 10.1002/jbt.23734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
We explored the effects of curcumin on the aberrant biological behaviors of prolactinoma cells and the downstream pathways through which curcumin exerts its antitumor effects. We used quantitative reverse transcription-polymerase chain reaction assays to measure miR-206 expression levels in peripheral blood samples from patients with prolactinoma before and after curcumin treatment. We also investigated the proliferation level, viability, and invasion ability of groups of cells treated with different concentrations of curcumin using 3-(4,5)-dimethylthiahiazo (-z-y1)-3-di-phenytetrazoliumromide (MTT) assays, cell cloning assays, and Transwell assays, respectively. Furthermore, we determined the levels of autophagy-related proteins and protein kinase B/mammalian target of the rapamycin (Akt/mTOR) signaling pathway-related proteins in each group of treated cells by western blot. Curcumin treatment upregulated miR-206 expression levels in the peripheral blood of patients with prolactinoma and in GH3 cells. Knockdown of miR-206 expression enhanced the proliferation and invasive ability of GH3 cells, while curcumin treatment effectively inhibited the aberrant biological behavior of GH3 cells enhanced by miR-206 knockdown. miR-206 knockdown also activated the Akt/mTOR signaling pathway and inhibited autophagy in GH3 cells, and these changes were effectively reversed by curcumin treatment. Thus, curcumin inhibited the Akt/mTOR signaling pathway and promoted cell autophagy by miR-206 upregulation, resulting in antitumor effects that inhibited prolactinoma cell proliferation and invasion.
Collapse
Affiliation(s)
- Jia-Feng Duan
- Department of Neurology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Juan Zhang
- Department of neurology, Yueyang Integrated Chinese and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zhu
- Department of Neurology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Hui Lu
- Department of hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|