1
|
Fu L, Han X, Wang Y, Hu YQ. Identifying genetic overlaps in obesity and metabolic disorders unlocking unique and shared mechanistic insights. Free Radic Biol Med 2025; 231:80-93. [PMID: 39999931 DOI: 10.1016/j.freeradbiomed.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVE Obesity has a high heritability and frequently co-occurs with metabolic disorders, indicating shared genetic susceptibility. The underlying causative genes and biological mechanisms of obesity and metabolic disorders remain predominantly elusive. METHODS The FinnGen R11 dataset, including over 450,000 subjects, was employed in conjunction with the Genotype-Tissue Expression Project (GTEx) v8 eQTls dataset to conduct cross-tissue transcriptome association studies, Functional Summary-based Imputation in single tissues, and Gene Analysis combined with Multimarker Analysis of Genomic Annotation, respectively, for identifying distinct and shared genetic architectures of obesity and metabolic disorders. We also employed RHOGE to ascertain the genetic correlation and putative causal directions between them. Subsequent Mendelian randomization, colocalization analyses, and other cell and tissue enrichment analyses were employed to enhance our understanding of the functional implications of these susceptibility genes. RESULTS A total of 35 genes were identified as obesity susceptibility and 10 genes linked to metabolic disorder susceptibility. Of these, three genes (MCM6, MAPRE3 and UBXN4) were identified as being shared. Mendelian randomization and colocalization analyses revealed the three shared genes have causal associations with obesity and metabolic disorders and serve as independent signals. Subsequent analyses indicated MCM6 may influence obesity and metabolic disorder risk by regulating DNA replication, cell proliferation, and interactions with chemical responses. MAPRE3 may confer protective effects against obesity and metabolic disorders through PAK Pathway, while UBXN4 may involve in regulating cholesterol metabolism. CONCLUSION Our study provides insight into the novel shared genetic mechanism between obesity and metabolic disorders and identifies potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Liwan Fu
- Center for Non-Communicable Disease Management, Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Xiaodi Han
- Center for Non-Communicable Disease Management, Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Abou-Shanab AM, Gaser OA, Galal N, Mohamed A, Atta D, Kamar SS, Magdy S, Khedr MA, Elkhenany H, El-Badri N. PHD-2/HIF-1α axis mediates doxorubicin-induced angiogenesis in SH-SY5Y neuroblastoma microenvironment: a potential survival mechanism. Sci Rep 2025; 15:7487. [PMID: 40032892 PMCID: PMC11876694 DOI: 10.1038/s41598-025-89884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The response of neuroblastoma (NB) cells to chemotherapeutics and their influence on NB microenvironment remain incompletely understood. Herein, we examined the underlying molecular mechanism via which Doxorubicin, a chemotherapeutic agent used for NB treatment, promotes proangiogenic response in the SH-SY5Y microenvironment. Doxorubicin treatment at 1 µg/ml reduced SH-SY5Y cell proliferation and primed the apoptosis pathway. Unexpectedly, SH-SY5Y cells treated with doxorubicin upregulated their expression of the pro-angiogenic factors, including vascular endothelial growth factor (VEGF), platelets-derived growth factor (PDGF), and matrix metalloprotease-2 (MMP-2) and secretion of nitric oxide. To assess the functional angiogenesis of SH-SY5Y cells pre-treated with doxorubicin, an indirect co-culture system with human umbilical vein endothelial cells (HUVEC) was established. These HUVECs acquired enhanced proliferation, migration capacity, and tube formation capability and exhibited increased nitric oxide (NO) production, in addition to upregulated α-smooth muscle actin expression, suggesting enhanced contractility. In-ovo studies of the neo-angiogenic response of SH-SY5Y pre-treated with doxorubicin further show their promoted neo-angiogenesis as indicated by the generated blood vessels and histological analysis of CD31 expression. Inhibition of PHD-2 could be a potential target for doxorubicin, as indicated by molecular docking, molecular dynamics (MD) simulation, and MM-GBSA calculations, leading to hypoxia-inducible factor-1 alpha (HIF-1α) stabilization. Bioinformatics analyses and enrichment analyses of RNA-seq data revealed activation of Pi3K pathway which is further validated in-vitro. These results provide evidence of the unexpected pro-angiogenic response of SH-SY5Y cells to doxorubicin treatment and suggest the potential use of multi-modal therapeutic regimens for a more comprehensive approach to NB treatment.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Noha Galal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Alaa Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Samaa Samir Kamar
- Histology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
3
|
Wang J, Li X, Zhao L, Fan X, Cao J, Wang S, Li K, Wang H, Zhang Y, Wang H, Xu C, Ding L, Che T, Chen S, Yang L. The MCM6-c-Myc positive feedback loop mediates bladder cancer progression and cisplatin resistance. Int J Biol Macromol 2025; 296:139777. [PMID: 39805445 DOI: 10.1016/j.ijbiomac.2025.139777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains a cornerstone in the treatment of bladder cancer (BLCA); however, the development of chemoresistance substantially limits its efficacy and significantly affects patient survival. Thus, elucidating the molecular mechanisms underlying BLCA chemoresistance is critical to improving patient outcomes. Our study identified MCM6 as an oncogene that facilitates BLCA proliferation and invasion and is linked to cisplatin resistance. Further analysis demonstrated that MCM6 is upregulated in BLCA tissues with poor chemotherapy response. Moreover, MCM6 knockdown enhanced cisplatin sensitivity in BLCA cells both in vitro and in vivo, indicating that MCM6 is a key driver of cisplatin resistance. Mechanistically, MCM6 contributes to cisplatin resistance by enhancing DNA damage repair (DDR). Knockdown of MCM6 reduced nuclear c-Myc levels and promoted its ubiquitin-mediated degradation, thereby increasing DNA damage. Conversely, c-Myc, as a transcription factor, binds to the MCM6 promoter and promotes its transcription, thereby regulating MCM6 expression. Our findings suggest that targeting MCM6-mediated DDR represents a promising strategy to overcome cisplatin resistance in BLCA.
Collapse
Affiliation(s)
- Jirong Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital
| | - Xiaoran Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Liwei Zhao
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Xinpeng Fan
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Jinlong Cao
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Shun Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Kunpeng Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Huabin Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Yalong Zhang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Hao Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Changhong Xu
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China
| | - Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Tuanjie Che
- Baiyuan Company for Gene Technology, Lanzhou, China
| | - Siyu Chen
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China.
| | - Li Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, China.
| |
Collapse
|
4
|
Touioui S, Desandes E, Jannot L, Mansuy L, Clabaut D, Peuchmaur M, Rioux-Leclercq N, Khneisser P, Thiebaut PA, Gallo M, Nemos C, Schleiermacher G, Chastagner P, Sartelet H. Expression evaluated by digital image analysis techniques of PRAME more than MCM6 is associated with poor prognosis in neuroblastoma: A pilot study with 84 cases. Hum Pathol 2025; 155:105718. [PMID: 39842731 DOI: 10.1016/j.humpath.2025.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Neuroblastoma is a common childhood tumor originating from neural crest progenitors with variable clinical behavior. Despite improved overall survival, factors such as stage, histoprognosis, MYCN status, and age still influence outcome. MCM6 regulates DNA replication and contributes to cancer progression. PRAME, first identified in melanoma, also acts on cell replication, epithelial-mesenchymal transition, and cell migration and has been associated with poor outcomes in several cancers, including neuroblastoma, using molecular biology techniques. The study aims to investigate MCM6 and PRAME expression and prognostic roles in neuroblastoma. A retrospective study was conducted, which included data of 84 patients with neuroblastoma diagnosed between 2000 and 2022, sourced from the pediatric tumor registry. Patient's characteristics and prognostic tumor factors were collected. Expression of MCM6 and PRAME proteins was evaluated using digital image analysis techniques. Univariate and multivariate analyses were performed using Cox regression to assess the impact of protein expression on survival and their associations with these prognostic factors. A total of 84 children diagnosed with neuroblastoma were included. MCM6 and PRAME were associated with unfavorable histologies (p = 0.03). PRAME was associated with bone marrow metastases (p < 0.01), high mitotic-karyorrhectic index (p = 0.04), and poor histoprognosis (p < 0.01). PRAME and MCM6 expression was correlated with several neuroblastoma prognostic factors. PRAME was significantly (p = 0.05) associated with poor event-free survival (EFS) and not significantly (p = 0.08) associated with overall survival (OS). Although statistical significance was not reached in multivariate analysis, the trends strongly suggested that the overexpression of MCM6 and PRAME was correlated with decreased survival.
Collapse
Affiliation(s)
- Samuel Touioui
- Département de Biopathologie CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Emmanuel Desandes
- Registre National des cancers de l'Enfant, Registre National des Tumeurs Solides de l'Enfant, CHRU Nancy, Vandœuvre-lès-Nancy, France; Epidemiology of childhood and Adolescent cancers, CRESS, INSERM, UMR1153, Université Paris-Cité, Paris, France
| | - Leo Jannot
- INSERM, U1256, NGERE - University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Ludovic Mansuy
- Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Delphine Clabaut
- Département de Biopathologie CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France
| | - Michel Peuchmaur
- Service d'anatomie et cytologie pathologiques, Hôpital Robert Debré, Paris, France
| | | | - Pierre Khneisser
- Département de biologie de pathologies médicales, institut Gustave roussy, Villejuif, France
| | | | - Mathieu Gallo
- Service d'anatomie et cytologie pathologiques, CHU Montpellier, Montpellier, France
| | - Christophe Nemos
- INSERM, U1256, NGERE - University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France; Department of Translational Research, Institut Curie, Paris, France
| | - Pascal Chastagner
- Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France; Université de Lorraine, CNRS, CRAN, Nancy, France
| | - Herve Sartelet
- Département de Biopathologie CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France; INSERM, U1256, NGERE - University of Lorraine, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
5
|
Friedman D, Mehtani DP, Vidler JB, Patten PEM, Hoogeboom R. Proliferating CLL cells express high levels of CXCR4 and CD5. Hemasphere 2024; 8:e70064. [PMID: 39691453 PMCID: PMC11651208 DOI: 10.1002/hem3.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable progressive malignancy of CD5+ B cells with a birth rate between 0.1% and 1% of the entire clone per day. However, the phenotype and functional characteristics of proliferating CLL cells remain incompletely understood. Here, we stained peripheral blood CLL cells for ki67 and DNA content and found that CLL cells in G1-phase have a CXCR4loCD5hi phenotype, while CLL cells in S/G2/M-phase express high levels of both CXCR4 and CD5. Induction of proliferation in vitro using CD40L stimulation results in high ki67 levels in CXCR4loCD5hi cells with CXCR4 expression increasing as CLL cells progress through S and G2/M-phases, while CXCR4hiCD5lo CLL cells remained quiescent. Dye dilution experiments revealed an accumulation of Ki67hi-divided cells in the CXCR4hiCD5hi fraction. In Eµ-TCL1 transgenic mice, the CXCR4hiCD5hi fraction expressed high levels of ki67 and was expanded in enlarged spleens of diseased animals. Human peripheral blood CXCR4hiCD5hi CLL cells express increased levels of IgM and the chemokine receptors CCR7 and CXCR5 and migrate efficiently toward CCL21. We found higher levels of CXCR4 in patients with progressive disease and the CXCR4hiCD5hi fraction was expanded upon clinical relapse. Thus, this study defines the phenotype and functional characteristics of dividing CLL cells identifying a novel subclonal population that underlies CLL pathogenesis and may drive clinical outcomes.
Collapse
Affiliation(s)
- Daniel Friedman
- Department of Haemato‐OncologyComprehensive Cancer Centre, King's College LondonLondonUK
| | - Drshika P. Mehtani
- Department of Haemato‐OncologyComprehensive Cancer Centre, King's College LondonLondonUK
| | - Jennifer B. Vidler
- Department of Haemato‐OncologyComprehensive Cancer Centre, King's College LondonLondonUK
- Department of Haematological MedicineKing's College HospitalLondonUK
| | - Piers E. M. Patten
- Department of Haemato‐OncologyComprehensive Cancer Centre, King's College LondonLondonUK
- Department of Haematological MedicineKing's College HospitalLondonUK
| | - Robbert Hoogeboom
- Department of Haemato‐OncologyComprehensive Cancer Centre, King's College LondonLondonUK
| |
Collapse
|
6
|
Liu J, Feng G, Guo C, Li Z, Liu D, Liu G, Zou X, Sun B, Guo Y, Deng M, Li Y. Identification of functional circRNAs regulating ovarian follicle development in goats. BMC Genomics 2024; 25:893. [PMID: 39342142 PMCID: PMC11439210 DOI: 10.1186/s12864-024-10834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
BARKGROUND Circular RNAs (circRNAs) play important regulatory roles in a variety of biological processes in mammals. Multiple birth-traits in goats are affected by several factors, but the expression and function of circRNAs in follicular development of goats are not clear. In this study, we aimed to investigate the possible regulatory mechanisms of circRNA and collected five groups of large follicles (Follicle diameter > 6 mm) and small follicles (1 mm < Follicle diameter < 3 mm) from Leizhou goats in estrus for RNA sequencing. RESULTS RNA sequencing showed that 152 circRNAs were differentially expressed in small and large follicles. Among them, 101 circRNAs were up-regulated in large follicles and 51 circRNAs were up-regulated in small follicles. GO and KEGG enrichment analyses showed that parental genes of the differential circRNAs were significantly enriched in important pathways, such as ovarian steroidogenesis, GnRH signaling pathway, animal autophagy and oxytocin signalling pathway. BioSignal analysis revealed that 152 differentially expressed circRNAs could target 91 differential miRNAs including miR-101 family (chi-miR-101-3p, chi-miR-101-5p), miR-202 family (chi-miR-202-5p, chi-miR-202-3p),60 circRNAs with translation potential. Based on the predicted sequencing results, the ceRNA networks chicirc_008762/chi-miR-338-3p/ARHGAP18 and chicirc_040444/chi-miR-338-3p/STAR were constructed in this study. Importantly, the new gene circCFAP20DC was first discovered in goats. The EDU assay and flow cytometry results indicated that circCFAP20DC enhanced the proliferation of follicular granulosa cells(GCs). Real-time quantitative PCR and western blotting assays showed that circCFAP20DC activated the Retinoblastoma(RB) pathway and promoted the progression of granulosa cells from G1 to S phase. CONCLUSION Differential circRNAs in goat size follicles may have important biological functions for follicular development. The novel gene circCFAP20DC activates the RB pathway, promoting the progression of GCs from G1 to S phase. This, in turn, enhances the proliferation of follicular GCs in goats.
Collapse
Affiliation(s)
- Jie Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghang Feng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Conghui Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihan Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
McKenna SM, Florea BI, Zisterer DM, van Kasteren SI, McGouran JF. Probing the metalloproteome: an 8-mercaptoquinoline motif enriches minichromosome maintenance complex components as significant metalloprotein targets in live cells. RSC Chem Biol 2024; 5:776-786. [PMID: 39092446 PMCID: PMC11289876 DOI: 10.1039/d4cb00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Affinity-based probes are valuable tools for detecting binding interactions between small molecules and proteins in complex biological environments. Metalloproteins are a class of therapeutically significant biomolecules which bind metal ions as part of key structural or catalytic domains and are compelling targets for study. However, there is currently a limited range of chemical tools suitable for profiling the metalloproteome. Here, we describe the preparation and application of a novel, photoactivatable affinity-based probe for detection of a subset of previously challenging to engage metalloproteins. The probe, bearing an 8-mercaptoquinoline metal chelator, was anticipated to engage several zinc metalloproteins, including the 26S-proteasome subunit Rpn11. Upon translation of the labelling experiment to mammalian cell lysate and live cell experiments, proteomic analysis revealed that several metalloproteins were competitively enriched. The diazirine probe SMK-24 was found to effectively enrich multiple components of the minichromosome maintenance complex, a zinc metalloprotein assembly with helicase activity essential to DNA replication. Cell cycle analysis experiments revealed that HEK293 cells treated with SMK-24 experienced stalling in G0/G1 phase, consistent with inactivation of the DNA helicase complex. This work represents an important contribution to the library of cell-permeable chemical tools for studying a collection of metalloproteins for which no previous probe existed.
Collapse
Affiliation(s)
- Sean M McKenna
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Bogdan I Florea
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
| | - Sander I van Kasteren
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
8
|
Jiang Y, Xue Y, Yuan X, Ye S, Liu M, Shi Y, Zhou H. MCM6 Inhibits Decidualization via Cross-Talking with ERK Pathway in Human Endometrial Stromal Cells. Reprod Sci 2024; 31:1915-1923. [PMID: 38347378 DOI: 10.1007/s43032-024-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 07/03/2024]
Abstract
Decidualization plays an important role in the implantation of the embryo, but the molecular action implicated in this process is not completely known. Herein, we found that, compared with the proliferative endometrial tissues, the expression of minichromosome maintenance complex component 6 (MCM6) was markedly decreased in the secretory endometrial tissues. To verify the function of MCM6 in decidualization, in vitro decidualization model was constructed by treating human endometrial stromal cells (HESCs) with estrogen (E2) and progesterone (P4). Consistently, MCM6 level was downregulated in E2P4-treated HESCs. Administration of E2P4 accumulated HESCs in G1 cell cycle phase, leading to cell growth suppression. Ectopic expression of MCM6 promoted the transition of G1/S and restored the proliferation of HESCs that were inhibited by E2P4. MCM6 overexpression led to aberrant activation of extracellular signal-regulated kinase (ERK) and treatment with ERK agonist Ro 67-7476 restored MCM6 expression and cell proliferation inhibited by E2P4. Our data suggested that MCM6/ERK feedback loop plays a negative role in E2P4-induced decidualization and implies that MCM6 may be a promising target for meliorating uterine receptivity.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuan Xue
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Yuan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengqin Ye
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Shi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Kamal MM, Mia MS, Faruque MO, Rabby MG, Islam MN, Talukder MEK, Wani TA, Rahman MA, Hasan MM. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci Rep 2024; 14:11607. [PMID: 38773180 PMCID: PMC11109216 DOI: 10.1038/s41598-024-62299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Numan Islam
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | | | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - M Atikur Rahman
- Department of Biological Sciences, Alabama State University, 915 S Jackson St, Montgomery, AL, 36104, USA.
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
10
|
Sun E, Peng L, Liu Z, Yan Z, Chen M, Zheng J. Systematic analysis of expression and prognostic significance for MCM family in head and neck squamous cell carcinoma. Histol Histopathol 2024; 39:471-482. [PMID: 37526267 DOI: 10.14670/hh-18-652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor in the world and has a poor prognosis. The family of minichromosome maintenance proteins (MCM) improves the stability of genome replication by inhibiting the rate of DNA replication in eukaryotic cells, thus, small changes in physiological MCM levels would increase the instability of gene replication and increase the incidence of tumor formation, most of which are significantly elevated in multiple cancers. However, the expression of different MCM families in HNSC and their prognostic value remain unclear. METHODS ONCOMINE and GEPIA databases were used to analyze the expression of MCMs in HNSC. The Kaplan-Meier plotter database was used to identify molecules with prognostic values. We collected 77 HNSC tissues and 50 normal tissues to validate the results of the bioinformatics analysis by immunohistochemical staining. RESULTS The expression of MCM3, MCM5 and MCM6 in mRNA and protein levels were higher in HNSC. Moreover, the increased expression of MCM3, MCM5 and MCM6 in mRNA and protein levels predicted better prognosis of HNSC patients. Furthermore, multivariate analysis showed that high expressions of MCM3, MCM5 and MCM6 in protein level may be independent prognostic factors for HNSC patients. CONCLUSION The results of this study indicated that MCM3, MCM5 and MCM6 play an important role in occurrence and development in HNSC and might be risk factors for the survival of HNSC patients.
Collapse
Affiliation(s)
- Ercan Sun
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Lu Peng
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Zhe Liu
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Zeng Yan
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Min Chen
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China. and
| | - Jun Zheng
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China. and
| |
Collapse
|
11
|
Wang J, Li X, Chen S, Cao J, Fan X, Wang H, Zhang X, Yang L. Identification of the role of MCM6 in bladder cancer prognosis, immunotherapy response, and in vitro experimental investigation using multi-omics analysis. Life Sci 2023; 335:122253. [PMID: 37951536 DOI: 10.1016/j.lfs.2023.122253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The tumor-promoting effects of MCM6 in numerous tumors have been widely revealed, yet its specific role in bladder cancer (BLCA) is still elusive. The objective of this research was to explore the underlying impact of MCM6 on BLCA. METHODS Integrating transcriptomic and proteomic data, MCM6 was identified to be strongly correlated with BLCA through weighted gene co-expression network analysis(WGCNA) and venn analyses. Then, the clinical value of MCM6 was validated with public database data. The different molecular/immune characteristics and the benefit of immunotherapy were also found in MCM6-defined subgroups. Additionally, single-cell RNA sequencing (scRNA-seq) data was choose for quantify MCM6 expression in the distinct BLCA cell types. The biological role of MCM6 were evaluated via in vitro functional experiments. RESULTS It was testified that the MCM6 could distinguish patients outcome in TCGA and GEO cohorts. Moreover, compared with the MCM6 low-expression group, the MCM6 high-expression group was related to more tumor-promoting related pathways, aggressive phenotypes, and benefit from immunotherapy. Analysis of scRNA-seq data resulted in MCM6 was mainly expressed in BLCA epithelial cells and the proportion of MCM6-expressing tumor epithelial cells is higher than the normal epithelial cells. Moreover, vitro experiments demonstrated that MCM6 knockdown repressed proliferation, cell cycle, migration, and invasion of BLCA cells. CONCLUSION This research indicated MCM6 is a promising marker for both prognosis and immunotherapy benefit and could promote the cells proliferation, invasion and migration in BLCA.
Collapse
Affiliation(s)
- Jirong Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiaoran Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Siyu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jinlong Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xinpeng Fan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Huabin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xingxing Zhang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
12
|
Zhang X, Bian S, Ni Y, Zhou L, Yang C, Zhang C, Sun X, Xu N, Xu S, Wang Y, Gu S, Zheng W. Minichromosome maintenance protein family member 6 mediates hepatocellular carcinoma progression by recruiting UBE3A to induce P53 ubiquitination. Int J Biol Macromol 2023; 248:125854. [PMID: 37460074 DOI: 10.1016/j.ijbiomac.2023.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
With limited therapeutic options for hepatocellular carcinoma (HCC), it is of great significance to investigate the underlying mechanisms and identifying tumor drivers. MCM6, a member of minichromosome maintenance proteins (MCMs), was significantly elevated in HCC progression and associated with poor prognosis. Knockdown of MCM6 significantly inhibited the proliferation and migration of HCC cells with the increased apoptosis ratio and cell cycle arrest, whereas overexpression of MCM6 induced adverse effects. Mechanistically, MCM6 could decrease the P53 activity by inducing the degradation of P53 protein. In addition, MCM6 enhanced the ubiquitination of P53 by recruiting UBE3A to form a triple complex. Furthermore, overexpression of UBE3A significantly rescued the P53 activation and suppression of malignant behaviors mediated by MCM6 inhibition. In conclusion, MCM6 facilitated aggressive phenotypes of HCC cells by UBE3A/P53 signaling, providing potential biomarkers and targets for HCC.
Collapse
Affiliation(s)
- Xue Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yao Ni
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Linlin Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chenyu Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chenfeng Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shiyu Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yilang Wang
- Department of Internal Medicine, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China.
| | - Shudong Gu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
13
|
Mehdizadeh R, Madjid Ansari A, Forouzesh F, Shahriari F, Shariatpanahi SP, Salaritabar A, Javidi MA. P53 status, and G2/M cell cycle arrest, are determining factors in cell-death induction mediated by ELF-EMF in glioblastoma. Sci Rep 2023; 13:10845. [PMID: 37407632 DOI: 10.1038/s41598-023-38021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
The average survival of patients with glioblastoma is 12-15 months. Therefore, finding a new treatment method is important, especially in cases that show resistance to treatment. Extremely low-frequency electromagnetic fields (ELF-EMF) have characteristics and capabilities that can be proposed as a new cancer treatment method with low side effects. This research examines the antitumor effect of ELF-EMF on U87 and U251 glioblastoma cell lines. Flowcytometry determined the viability/apoptosis and distribution of cells in different phases of the cell cycle. The size of cells was assessed by TEM. Important cell cycle regulation genes mRNA expression levels were investigated by real-time PCR. ELF-EMF induced apoptosis in U87cells much more than U251 (15% against 2.43%) and increased G2/M cell population in U87 (2.56%, p value < 0.05), and S phase in U251 (2.4%) (data are normalized to their sham exposure). The size of U87 cells increased significantly after ELF-EMF exposure (overexpressing P53 in U251 cells increased the apoptosis induction by ELF-EMF). The expression level of P53, P21, and MDM2 increased and CCNB1 decreased in U87. Among the studied genes, MCM6 expression decreased in U251. Increasing expression of P53, P21 and decreasing CCNB1, induction of cell G2/M cycle arrest, and consequently increase in the cell size can be suggested as one of the main mechanisms of apoptosis induction by ELF-EMF; furthermore, our results demonstrate the possible footprint of P53 in the apoptosis induction by ELF-EMF, as U87 carry the wild type of P53 and U251 has the mutated form of this gene.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Salaritabar
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
Smits DJ, Schot R, Popescu CA, Dias KR, Ades L, Briere LC, Sweetser DA, Kushima I, Aleksic B, Khan S, Karageorgou V, Ordonez N, Sleutels FJGT, van der Kaay DCM, Van Mol C, Van Esch H, Bertoli-Avella AM, Roscioli T, Mancini GMS. De novo MCM6 variants in neurodevelopmental disorders: a recognizable phenotype related to zinc binding residues. Hum Genet 2023:10.1007/s00439-023-02569-7. [PMID: 37198333 DOI: 10.1007/s00439-023-02569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristiana A Popescu
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
| | - Lesley Ades
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Itaru Kushima
- Medical Genomics Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | - Frank J G T Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Daniëlle C M van der Kaay
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Benvitimod inhibits MCM6-meditated proliferation of keratinocytes by regulating the JAK/STAT3 pathway. J Dermatol Sci 2023; 109:71-79. [PMID: 36774328 DOI: 10.1016/j.jdermsci.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Benvitimod (Tapinarof), as a small-molecule topical therapeutical aryl hydrocarbon receptor (AHR)-modulating agent, is in clinical development for treating psoriasis and atopic dermatitis. Benvitimod reduces proinflammatory cytokines in psoriasis by specifically binding and activation of AHR. However, whether benvitimod can inhibit keratinocyte proliferation remains unclear. Minichromosome maintenance protein 6 (MCM6) is a key element of the prereplication complex (pre-RC) assembly which is one of the essential steps in the initiation of DNA replication for cell proliferation. OBJECTIVES This study aimed to determine whether benvitimod could reduce the excessive proliferation of psoriatic keratinocytes by inhibiting MCM6. METHODS We examined the inhibitory effect of benvitimod on MCM6-mediated proliferation of keratinocytes by HaCaT cells in vitro and an IMQ-induced psoriatic model of mice in vivo. RESULTS Epidermal MCM6 expression was enhanced in the skin lesions of psoriatic patients. The experiments further revealed that MCM6 was required for the proliferation of keratinocytes and governed by the IL-22/STAT3 pathway. In addition, the antiproliferation effect of benvitimod is achieved by the inhibition of p-JAK1 and p-JAK2, which further restrained the activation of STAT3 in keratinocytes. Lastly, benvitimod could repressed imiquimod-induced skin lesions and the expression of epidermal MCM6 and p-STAT3 in mice. Moreover, knockdown of AHR in keratinocytes enhanced the activation of JAK1 and JAK2. CONCLUSION The findings reveal that benvitimod could decrease MCM6-mediated proliferation of keratinocytes by affecting the JAK/STAT3 pathway, thereby serving as a new treatment modality for psoriasis.
Collapse
|
16
|
A High MCM6 Proliferative Index in Atypical Meningioma Is Associated with Shorter Progression Free and Overall Survivals. Cancers (Basel) 2023; 15:cancers15020535. [PMID: 36672484 PMCID: PMC9857276 DOI: 10.3390/cancers15020535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to evaluate the prognostic value of MCM6, in comparison with Ki-67, in two series of grade 1 and 2 meningiomas, and to evaluate its correlation with methylation classes. The first cohort included 100 benign (grade 1, World Health Organization 2021) meningiomas, and the second 69 atypical meningiomas (grade 2). Immunohistochemical Ki-67 and MCM6 labeling indices (LI) were evaluated independently by two observers. Among the atypical meningiomas, 33 cases were also studied by genome-wide DNA methylation. In grade 2 meningiomas, but not grade 1, both Ki-67 and MCM6 LIs were correlated with PFS (p = 0.004 and p = 0.005, respectively; Cox univariate analyses). Additionally, MCM6 was correlated with overall survival only in univariate analysis. In a multivariate model, including mitotic index, Ki-67, MCM6, age, sex, and the quality of surgical resection, only MCM6 was correlated with PFS (p = 0.046). Additionally, we found a significant correlation between PTEN loss and high MCM6 or Ki-67 LIs. Although no correlation was found with the methylation classes and subtypes returned by the meningioma algorithm MNGv2.4., MCM6 LI was significantly correlated with the methylation of 2 MCM6 gene body loci. In conclusion, MCM6 is a relevant prognostic marker in atypical meningiomas. This reproducible and easy-to-use marker allows the identification of a highly aggressive subtype of proliferative meningiomas, characterized notably by frequent PTEN losses, which was previously reported to be sensitive to histone deacetylase inhibitors.
Collapse
|
17
|
Wang J, Dai W, Zhang M. GATA3 positively regulates PAR1 to facilitate in vitro disease progression and decrease cisplatin sensitivity in neuroblastoma via inhibiting the hippo pathway. Anticancer Drugs 2023; 34:57-72. [PMID: 35946556 DOI: 10.1097/cad.0000000000001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GATA binding protein 3 (GATA3) is reported to critically involved in the pathogenesis of neuroblastoma (NB). This study investigated the specific role and mechanism of GATA3 in NB progression. JASPAR was utilized to predict GATA3's downstream targets, whose binding relation with GATA3 was inspected by a dual-luciferase reporter assay. NB cell lines underwent transfection of GATA3/protease-activated receptor 1 (PAR1) overexpression plasmids or shGATA3, followed by cisplatin treatment. NB cell sensitivity to cisplatin, viability, migration, invasion, cell cycle progression and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, wound healing assay, transwell assay and flow cytometry, respectively. Expressions of GATA3, PAR1, epithelial-mesenchymal transition-related molecules (N-Cadherin and Vimentin), hippo pathway-related molecules (mammalian Ste20-like kinase (Mst)1, Mst2, Mps one binding (Mob) 1, phosphorylated (p)-Mob1, Yes-associated protein (YAP) and p-YAP) in NB tissues and cell lines were assessed by western blot or qRT-PCR. GATA3 expression was increased in NB tissues and cells. GATA3 overexpression increased NB cell viability, promoted migration, invasion, and cell cycle progression, increased the expressions of N-Cadherin, Vimentin and YAP, decreased the expressions of Mst1, Mst2, Mob1, p-Mob1, p-YAP and the ratio of p-YAP to YAP, and attenuated cisplatin-induce cell apoptosis, which GATA3 knockdown induced the opposite effect. GATA3 directly targeted PAR1, whose overexpression increased NB cell viability, inhibited the hippo pathway, and attenuated cisplatin-induce cell apoptosis, and reversed GATA3 knockdown-induced effect on these aspects. GATA3 positively regulates PAR1 to facilitate in-vitro disease progression and decrease cisplatin sensitivity in NB via inhibiting the hippo pathway.
Collapse
Affiliation(s)
- Jing Wang
- Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, China
| | | | | |
Collapse
|
18
|
Shkrigunov T, Kisrieva Y, Samenkova N, Larina O, Zgoda V, Rusanov A, Romashin D, Luzgina N, Karuzina I, Lisitsa A, Petushkova N. Comparative proteoinformatics revealed the essentials of SDS impact on HaCaT keratinocytes. Sci Rep 2022; 12:21437. [PMID: 36509991 PMCID: PMC9744838 DOI: 10.1038/s41598-022-25934-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
There is no direct evidence supporting that SDS is a carcinogen, so to investigate this fact, we used HaCaT keratinocytes as a model of human epidermal cells. To reveal the candidate proteins and/or pathways characterizing the SDS impact on HaCaT, we proposed comparative proteoinformatics pipeline. For protein extraction, the performance of two sample preparation protocols was assessed: 0.2% SDS-based solubilization combined with the 1DE-gel concentration (Protocol 1) and osmotic shock (Protocol 2). As a result, in SDS-exposed HaCaT cells, Protocol 1 revealed 54 differentially expressed proteins (DEPs) involved in the disease of cellular proliferation (DOID:14566), whereas Protocol 2 found 45 DEPs of the same disease ID. The 'skin cancer' term was a single significant COSMIC term for Protocol 1 DEPs, including those involved in double-strand break repair pathway (BIR, GO:0000727). Considerable upregulation of BIR-associated proteins MCM3, MCM6, and MCM7 was detected. The eightfold increase in MCM6 level was verified by reverse transcription qPCR. Thus, Protocol 1 demonstrated high effectiveness in terms of the total number and sensitivity of MS identifications in HaCaT cell line proteomic analysis. The utility of Protocol 1 was confirmed by the revealed upregulation of cancer-associated MCM6 in HaCaT keratinocytes induced by non-toxic concentration of SDS. Data are available via ProteomeXchange with identifier PXD035202.
Collapse
Affiliation(s)
- Timur Shkrigunov
- grid.418846.70000 0000 8607 342XCenter of Scientific and Practical Education, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Yulia Kisrieva
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Natalia Samenkova
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Olesya Larina
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Victor Zgoda
- grid.418846.70000 0000 8607 342XLaboratory of Systems Biology, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Alexander Rusanov
- grid.418846.70000 0000 8607 342XLaboratory of Precision BioSystems, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Daniil Romashin
- grid.418846.70000 0000 8607 342XLaboratory of Precision BioSystems, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Natalia Luzgina
- grid.418846.70000 0000 8607 342XLaboratory of Precision BioSystems, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Irina Karuzina
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Andrey Lisitsa
- grid.418846.70000 0000 8607 342XCenter of Scientific and Practical Education, Institute of Biomedical Chemistry, Moscow, Russia 119121
| | - Natalia Petushkova
- grid.418846.70000 0000 8607 342XLaboratory of Microsomal Oxidation, Institute of Biomedical Chemistry, Moscow, Russia 119121
| |
Collapse
|
19
|
Liu Y, Gao J, Wang N, Li X, Fang N, Zhuang X. Diffusible signal factor enhances the saline-alkaline resistance and rhizosphere colonization of Stenotrophomonas rhizophila by coordinating optimal metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155403. [PMID: 35469877 DOI: 10.1016/j.scitotenv.2022.155403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Quorum sensing (QS) regulates various physiological processes in a cell density-dependent mode via cell-cell communication. Stenotrophomonas rhizophila DSM14405T having the diffusible signal factor (DSF)-QS system, is a plant growth-promoting rhizobacteria (PGPR) that enables host plants to tolerate saline-alkaline stress. However, the regulatory mechanism of DSF-QS in S. rhizophila is not fully understood. In this study, we used S. rhizophila DSM14405T wild-type (WT) and an incompetent DSF production rpfF-knockout mutant to explore the regulatory role of QS in S. rhizophila growth, stress responses, biofilm formation, and colonization under saline-alkaline stress. We found that a lack of DSF-QS reduces the tolerance of S. rhizosphere ΔrpfF to saline-alkaline stress, with a nearly 25-fold reduction in the ΔrpfF population compared with WT at 24 h under stress. Transcriptome analysis revealed that QS helps S. rhizophila WT respond to saline-alkaline stress by enhancing metabolism associated with the cell wall and membrane, oxidative stress response, cell adhesion, secretion systems, efflux pumps, and TonB systems. These metabolic systems enhance penetration defense, Na+ efflux, iron uptake, and reactive oxygen species scavenging. Additionally, the absence of DSF-QS causes overexpression of biofilm-associated genes under the regulation of sigma 54 and other transcriptional regulators. However, greater biofilm formation capacity confers no advantage on S. rhizosphere ΔrpfF in rhizosphere colonization. Altogether, our results show the importance of QS in PGPR growth and colonization; QS gives PGPR a collective adaptive advantage in harsh natural environments.
Collapse
Affiliation(s)
- Ying Liu
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Gao
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Wang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Fang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of International Rivers and Eco-security, Yunan University, Kunming 650500, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|