1
|
Zhu LL, Li LD, Lin XY, Hu J, Wang C, Wang YJ, Zhou QG, Zhang J. Plasma-Derived Small Extracellular Vesicles miR- 182 - 5p Is a Potential Biomarker for Diagnosing Major Depressive Disorder. Mol Neurobiol 2025:10.1007/s12035-025-04948-9. [PMID: 40261603 DOI: 10.1007/s12035-025-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Depression, particularly major depressive disorder (MDD), is a debilitating neuropsychiatric condition characterized by high disability rates, primarily driven by chronic stress and genetic predispositions. Emerging evidence highlights the critical role of microRNAs (miRNAs) in the pathogenesis of depression, with plasma-derived small extracellular vesicles (sEVs) emerging as promising biomarkers. In this study, we collected peripheral blood plasma samples from patients diagnosed with MDD, as assessed by the Hamilton Depression Rating scale, alongside healthy individuals serving as controls. Plasma-derived sEVs were isolated via ultracentrifugation, followed by high-throughput sequencing of miRNAs encapsulated within sEVs, and finally image acquisition and differential expression analysis. Our results revealed a significant elevation of miR-182-5p in plasma-derived sEVs from MDD patients compared to healthy controls, a finding further validated in chronic mild stress (CMS) models. Further analysis suggested that miRNAs encapsulated within sEVs may influence depression onset and progression by modulating hypothalamic-pituitary-adrenal (HPA) axis activity. These findings underscore the potential of miRNAs and their target genes as novel biomarkers, offering improved diagnostic accuracy and therapeutic efficacy for MDD.
Collapse
Affiliation(s)
- Lin-Lin Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China
| | - Lian-Di Li
- Anhui Institute for Food and Drug Control, 262 North Zhongshan Road, Nanjing, 210009, Jiangsu, China
| | - Xuan-Yu Lin
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China
| | - Jian Hu
- The Second Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210009, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yi-Jun Wang
- The Second Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210009, Jiangsu, China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China.
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China.
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
2
|
de Sousa PI, Pinto VBP, Piancó EDS, Gomes ML, Monteiro SCM, Vidal FCB, Nascimento MDDSB, Pinho JD, Calixto JDRR, de Andrade MS. The role of microRNAs in non-invasive diagnosis of bladder cancer: a systematic review. EINSTEIN-SAO PAULO 2024; 22:eRW0611. [PMID: 39630752 PMCID: PMC11634350 DOI: 10.31744/einstein_journal/2024rw0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/04/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE MicroRNAs are small non-coding RNAs that are abundantly expressed in various biofluids, making them promising candidates for cancer biomarkers. This review aims to present current evidence on the use of miRNA as biomarkers for the non-invasive diagnosis of bladder cancer. METHODS A systematic literature review, using the Medline database, was performed in July 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. All articles were required to satisfy the risk-of-bias assessment using the Joanna Briggs Institute Critical Assessment Tools. Data were collected based on miRNA expression, sample type, expression profiles, and accuracy. RESULTS The initial search retrieved 437 studies, 21 of which were included in the final analysis. Most studies on miRNA expression in human fluids used urine samples for analysis. CONCLUSION There is a trend to cluster the expressed miRNAs to build diagnostic panels or use them in association with other diagnostic methods to achieve reasonable accuracy.Prospero database registration: (https://www.crd.york.ac.uk/prospero/) under ID CRD42022351686.
Collapse
Affiliation(s)
- Pedro Ivo de Sousa
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Vicktor Bruno Pereira Pinto
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Elaine dos Santos Piancó
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Malene Lima Gomes
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Sally Cristina Moutinho Monteiro
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| | - Flávia Castello Branco Vidal
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| | | | - Jaqueline Diniz Pinho
- Universidade Estadual do MaranhãoZé Doca Center for Higher StudiesZé DocaMABrazilZé Doca Center for Higher Studies, Universidade Estadual do Maranhão, Zé Doca, MA, Brazil.
| | - José de Ribamar Rodrigues Calixto
- Universidade Federal do MaranhãoHospital UniversitárioSão LuísBrazilHospital Universitário, Universidade Federal do Maranhão, São Luís, Brazil.
| | - Marcelo Souza de Andrade
- Universidade Federal do MaranhãoSão LuísMABrazilAdult Health Postgraduate Program, Universidade Federal do Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
3
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Long C, Shi H, Li J, Chen L, Lv M, Tai W, Wang H, Xu Y. The diagnostic accuracy of urine-derived exosomes for bladder cancer: a systematic review and meta-analysis. World J Surg Oncol 2024; 22:285. [PMID: 39472962 PMCID: PMC11520875 DOI: 10.1186/s12957-024-03569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Urine-derived exosomes could potentially be biomarkers for bladder cancer (BC) diagnosis. This study aimed to systematically evaluate the diagnostic worth of urine-derived exosomes in BC patients through a meta-analysis of diverse studies. METHODS A systematic search was carried out in PubMed, Web of Science, Embase, Cochrane, and CNKI databases to obtain the literature concerning the diagnosis of BC via urine-derived exosomes. A literature retrieval strategy was devised to pick articles and extract needed data from the literature. QUADS-2 was used to evaluate the quality of the included literatures, and the aggregated diagnostic effect was assessed by calculating the area under the aggregated SROC curve. All statistical analyses and plots were conducted with STATA 14.0 and RevMan5.3. RESULTS A total of 678 articles were retrieved by means of the search strategy of the online database. Through screening, 21 articles were obtained, involving 3348 participants and 77 studies. The meta-analysis of the results indicated that urinary exosomes had a combined sensitivity of 0.75, a specificity of 0.77, and a combined AUC of 0.83 for the diagnosis of BC, suggesting that urine-derived exosomes have a relatively satisfactory diagnostic effect in the detection of BC. Among the subgroups classified by biomarker, long non-coding RNAs (lncRNAs) had the highest comprehensive sensitivity (SEN = 0.78), and miRNAs had the highest comprehensive specificity (SPN = 0.81). In other subgroup analyses, the biomarker panel for multiple exosomes combined diagnosis demonstrated the best diagnostic efficacy, with a combined the area under the curve ( AUC) of 0.87. CONCLUSIONS As a novel biomarker, urine-derived exosomes have significant diagnostic prospects in the diagnosis of BC. Nevertheless, their application in clinical settings still demands a considerable number of clinical trials to confirm their clinical feasibility and practicability.
Collapse
Affiliation(s)
- Chunyue Long
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Jinyu Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Lijian Chen
- Department of Clinical Laboratory, Fuqing People's Hospital, Fuqing , Fujian, 350300, China
| | - Mei Lv
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Wenlin Tai
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China.
| | - Yiheng Xu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming , Yunnan, 650000, China.
| |
Collapse
|
5
|
Li Q, Tian J, Chen C, Liu H, Li B. Meta-analysis of the diagnostic value of exosomal microRNAs in renal cell carcinoma. Front Oncol 2024; 14:1441429. [PMID: 39558958 PMCID: PMC11571148 DOI: 10.3389/fonc.2024.1441429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024] Open
Abstract
Aim This meta-analysis aims to evaluate the potential of exosomal microRNAs(Exo-miRs) as diagnostic biomarkers for renal cell carcinoma(RCC). Methods Clinical studies reporting the use of Exo-miRs in the diagnosis of RCC were retrieved from PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang, VIP, and Chinese Biomedical Literature Database (SinoMed). After relevant data were screened and extracted, the quality of the included studies was assessed using the QUADAS-2 tool. The Meta-disc (version 1.4) software was used to analyze the heterogeneity of threshold/non-threshold effects in the included studies. The Stata MP (version 16.0) software was used to calculate sensitivity(Sen), specificity(Spe), positive likelihood ratio(+LR), negative likelihood ratio(-LR), area under the curve(AUC), diagnostic odds ratio(DOR), and publication bias. Results A total of 11 studies were included in this meta-analysis. Spearman correlation coefficient was 0.319 (P = 0.075; >0.05), indicating no threshold effects. The pooled Sen, Spe, +LR, -LR, DOR, and AUC were 0.73 (95% CI, 0.68-0.78), 0.81 (95% CI, 0.76-0.85), 3.80 (95% CI, 3.02-4.77), 0.33 (95% CI, 0.28-0.40), 11.48 (95% CI, 8.27-15.95), and 0.84 (95% CI, 0.80-0.87), respectively. No publication bias was detected among the included studies. Conclusion The expression of Exo-miRs plays an important role in the diagnosis of RCC. However, owing to the limited number of included studies and heterogeneity among them, further clinical research is necessary to verify the findings of this meta-analysis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023445956.
Collapse
Affiliation(s)
- Qingru Li
- Department of Nephrology, the Eighth Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
- Department of Nephrology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jing Tian
- Department of Cardiovascular, the First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cuiqing Chen
- Department of Nephrology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Hong Liu
- Department of Nephrology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Binyi Li
- Department of Oncology, Shenzhen Bao’an Authentic TCM Therapy
Hospital, Shenzhen, China
| |
Collapse
|
6
|
Ripoll-Viladomiu I, Prina-Mello A, Movia D, Marignol L. Extracellular vesicles and the "six Rs" in radiotherapy. Cancer Treat Rev 2024; 129:102799. [PMID: 38970839 DOI: 10.1016/j.ctrv.2024.102799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Over half of patients with cancer receive radiation therapy during the course of their disease. Decades of radiobiological research have identified 6 parameters affecting the biological response to radiation referred to as the 6 "Rs": Repair, Radiosensitivity, Repopulation, Redistribution, Reoxygenation, and Reactivation of the anti-tumour immune response. Extracellular Vesicles (EVs) are small membrane-bound particles whose multiple biological functions are increasingly documented. Here we discuss the evidence for a role of EVs in the orchestration of the response of cancer cells to radiotherapy. We highlight that EVs are involved in DNA repair mechanisms, modulation of cellular sensitivity to radiation, and facilitation of tumour repopulation. Moreover, EVs influence tumour reoxygenation dynamics, and play a pivotal role in fostering radioresistance. Last, we examine how EV-related strategies could be translated into novel strategies aimed at enhancing the efficacy of radiation therapy against cancer.
Collapse
Affiliation(s)
- Isabel Ripoll-Viladomiu
- Trinity St. James's Cancer Institute, Radiobiology and Molecular Oncology Research Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dania Movia
- Trinity St. James's Cancer Institute, Radiobiology and Molecular Oncology Research Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland; Department of Biology and Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Callan Building, Maynooth, Ireland
| | - Laure Marignol
- Trinity St. James's Cancer Institute, Radiobiology and Molecular Oncology Research Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland.
| |
Collapse
|
7
|
Bao H, Mao S, Hu X, Li L, Tao H, Zhou J, Xu L, Fang Y, Zhang Y, Chu L. Exosomal miR-486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/Akt pathway. Sci Rep 2024; 14:18086. [PMID: 39103424 PMCID: PMC11300871 DOI: 10.1038/s41598-024-69172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been shown to promote angiogenesis after ischemic stroke, in which microRNAs (miRs) are believed to play an important role in exosome-mediated therapeutic effects, though the mechanism is still not clear. In this study, a series of molecular biological and cellular assays, both in vitro and in vivo, were performed to elucidate the role of exosomal miR-486 in angiogenesis following cerebral ischemic and its molecular mechanisms. Our results revealed that BMSC-Exos significantly improved neurological function and increased microvessel density in ischemic stroke rats. In vitro assays showed that BMSC-Exos promoted the proliferation, migration, and tube formation ability of oxygen-glucose deprivation/reoxygenation (OGD/R) injured rat brain microvascular endothelial cells (RBMECs). Importantly, BMSC-Exos increased the expression of miR-486 and phosphorylated protein kinase B (p-Akt) and down-regulated the protein level of phosphatase and tensin homolog (PTEN) in vivo and in vitro. Mechanistic studies demonstrated that transfection with miR-486 mimic enhanced RBMECs angiogenesis and increased p-Akt expression, while inhibited PTEN expression. On the other hand, the miR-486 inhibitor induced an opposite effect, which could be blocked by PTEN siRNA. It was thus concluded that exosomal miR-486 from BMSCs may enhance the functional recovery by promoting angiogenesis following cerebral ischemic injury, which might be related to its regulation of the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Hangyang Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shihui Mao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaowei Hu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, 321017, China
| | - Jie Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lanxi Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Fang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yani Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lisheng Chu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Kural S, Jain G, Agarwal S, Das P, Kumar L. Urinary extracellular vesicles-encapsulated miRNA signatures: A new paradigm for urinary bladder cancer diagnosis and classification. Urol Oncol 2024; 42:179-190. [PMID: 38594151 DOI: 10.1016/j.urolonc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bladder cancer (BCa) stands as prevalent malignancy of the urinary system globally, especially among men. The clinical classification of BCa into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for prognosis and treatment decisions. However, challenges persist in current diagnostic methods like Urine cytopathology that shows poor sensitivity therefore compromising on accurately diagnosing and monitoring BCa. In recent years, research has emphasized the importance of identifying urine and blood-based specific biomarkers for BCa that can enable early and precise diagnosis, effective tumor classification, and monitoring. The convenient proximity of urine with the urinary bladder epithelium makes urine a good source of noninvasive biomarkers, in particular urinary EVs because of the packaged existence of tumor-associated molecules. Therefore, the review assesses the potential of urinary extracellular vesicles (uEVs) as noninvasive biomarkers for BCa. We have elaborately reviewed and discussed the research that delves into the role of urinary EVs in the context of BCa diagnosis and classification. Extensive research has been dedicated to investigating differential microRNA (miRNA) expressions, with the goal of establishing distinct, noninvasive biomarkers for BCa. The identification of such biomarkers has the potential to revolutionize early detection, risk stratification, therapeutic interventions, and ultimately, the long-term prognosis of BCa patients. Despite notable advancements, inconsistencies persist in the biomarkers identified, methodologies employed, and study populations. This review meticulously compiles reported miRNA biomarkers, critically assessing the variability and discrepancies observed in existing research. By synthesizing these findings, the article aims to direct future studies toward a more cohesive and dependable approach in BCa biomarker identification, fostering progress in patient care and management.
Collapse
Affiliation(s)
- Sukhad Kural
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sakshi Agarwal
- Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lalit Kumar
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
9
|
Yang FK, Tian C, Zhou LX, Guan TY, Chen GL, Zheng YY, Cao ZG. The value of urinary exosomal microRNA-21 in the early diagnosis and prognosis of bladder cancer. Kaohsiung J Med Sci 2024; 40:660-670. [PMID: 38801488 DOI: 10.1002/kjm2.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Bladder cancer (BC) poses high morbidity and mortality, with urinary exosomal microRNA (miR)-21 showing potential value in its diagnosis and prognosis, and we probed its specific role. We prospectively selected 116 BC patients and 116 healthy volunteers as the BC and control groups, respectively. BC urinary exosomal miR-146a-5p, miR-93-5p, miR-663b, miR-21, and miR-4454 relative expression levels were assessed. The correlations between clinical indexes and urinary exosomal miR-21, prognostic value of miR-21, and diagnostic value of the five candidate miRNAs, urine cytology, and miRNA joint diagnostic panel for BC and urinary exosomal miR-21, miR-4454, and urine cytology for Ta-T1 and T2-T4 stage BC were analyzed. Urinary exosomal miR-146a-5p, miR-93-5p, miR-663b, miR-21, and miR-4454 were highly expressed in BC patients. miR-146a-5p, miR-93-5p, miR-663b, miR-21, miR-4454, miRNA combined diagnostic panel, and urine cytology had certain diagnostic value for BC, with miR-21, miR-4454, and miRNA co-diagnostic panel showing the highest diagnostic value. Collectively, urinary exosomal miR-21 was closely related to Tumor-Node-Metastasis staging and grading in BC patients. Urinary exosomal miR-21 had high diagnostic value for BC and Ta-T1 and T2-T4 stage BC, and had high predictive value for BC poor prognosis, providing an effective indicator for the occurrence, development, and prognostic assessment of BC.
Collapse
Affiliation(s)
- Fu-Kan Yang
- Department of Urology, Guangdong Medical University, Zhanjiang, China
| | - Chao Tian
- Department of Urology, Yuebei people's hospital, Shaoguan, China
| | - Lin-Xiong Zhou
- Department of Urology, Yuebei people's hospital, Shaoguan, China
| | - Tian-Yu Guan
- Department of Urology, Yuebei people's hospital, Shaoguan, China
| | - Gui-Liu Chen
- Department of Urology, Yuebei people's hospital, Shaoguan, China
| | - Yi-Ying Zheng
- Department of Urology, Yuebei people's hospital, Shaoguan, China
| | - Zheng-Guo Cao
- Department of Urology, Dongguan People's Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
10
|
Liu J, Zhijin Z, Zhang W, Niraj M, Yang F, Changcheng G, Shen L, Xu T, Liu S, Junfeng Z, Mao S, Li W, Yao X. Urinary exosomes: Potential diagnostic markers and application in bladder cancer. Heliyon 2024; 10:e32621. [PMID: 38975179 PMCID: PMC11226776 DOI: 10.1016/j.heliyon.2024.e32621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background The exosome is a critical component of the intercellular communication., playing a vital role in regulating cell function. These small vesicles contain proteins, mRNAs, miRNAs, and lncRNAs, surrounded by lipid bilayer substances. Most cells in the human body can produce exosomes, released into various body fluids such as urine, blood, and cerebrospinal fluid. Bladder cancer is the most common tumor in the urinary system, with high recurrence and metastasis rates. Early diagnosis and treatment are crucial for improving patient outcomes. Methods This study employed the PubMed search engine to retrieve publicly accessible data pertaining to urinary exosomes. Results We summarize the origins and intricate biological characteristics of urinary exosomes, the introduction of research methodologies used in basic experiments to isolate and analyze these exosomes, the discussion of their applications and progress in the diagnosis and treatment of bladder cancer, and the exploration of the current limitations associated with using urinary exosomes as molecular biomarkers for diagnosing bladder cancer. Conclusion Exosomes isolated from urine may be used as molecular biomarkers for early detection of bladder cancer.
Collapse
Affiliation(s)
- Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Zhang Zhijin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Maskey Niraj
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Guo Changcheng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Liliang Shen
- Department of Urology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo, 315040, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Shenghua Liu
- Shanghai Huashan Hospital, Shanghai, 200433, China
| | - Zhang Junfeng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| |
Collapse
|
11
|
Zhao L, Li J, Xue Z, Wang J. Exosomal noncoding RNAs as noninvasive biomarkers in bladder cancer: a diagnostic meta-analysis. Clin Transl Oncol 2024; 26:1497-1507. [PMID: 38227115 PMCID: PMC11108909 DOI: 10.1007/s12094-023-03374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND In view of discordance consisting in different reports, a meta-analysis was conducted to comprehensively evaluate the diagnostic efficacy of exosomal noncoding RNAs (ncRNAs) in blood and urine in the detection of bladder cancer. METHODS Eligible studies were acquired by systematic retrieval through PubMed, Cochrane Library, and Embase. The pooled diagnostic efficacy was appraised by reckoning the area under the summary receiver operating characteristic (SROC) curve. The latent sources of heterogeneity were probed by subgroup analyses and meta-regression. STATA 12.0, Meta-DiSc 1.4, and RevMan 5.3 were applied to carry out all statistical analyses and plots. RESULTS A total of 46 studies from 15 articles comprising 2622 controls and 3015 bladder cancer patients were included in our meta-analysis. Exosomal ncRNAs in blood and urine represented relatively satisfactory diagnostic efficacy in detecting bladder cancer, with a pooled sensitivity of 0.75, a specificity of 0.79, and an area under the SROC curve (AUC) of 0.84. Exosomal microRNAs (miRNAs) exhibited better diagnostic value with a pooled AUC of 0.91 than that of exosomal long noncoding RNAs (lncRNAs). To some extent, the heterogeneity among studies was induced by exosomal ncRNA types (miRNA or lncRNA), exosomal ncRNA profiling (single- or multiple-ncRNA), sample size, specimen types, and ethnicity. CONCLUSION Exosomal ncRNAs in blood and urine may play a vital role in diagnosing bladder cancer as prospective noninvasive biomarkers; nonetheless, their clinical performance needs to be confirmed by further massive proactive researches.
Collapse
Affiliation(s)
- Liming Zhao
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Jun Li
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Zhongguang Xue
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Jinfeng Wang
- Department of Nuclear Medicine, Linyi People's Hospital, Shandong University, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Wang P, Wei X, Qu X, Zhu Y. Potential clinical application of microRNAs in bladder cancer. J Biomed Res 2024; 38:289-306. [PMID: 38808545 PMCID: PMC11300522 DOI: 10.7555/jbr.37.20230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 05/30/2024] Open
Abstract
Bladder cancer (BC) is the tenth most prevalent malignancy globally, presenting significant clinical and societal challenges because of its high incidence, rapid progression, and frequent recurrence. Presently, cystoscopy and urine cytology serve as the established diagnostic methods for BC. However, their efficacy is limited by their invasive nature and low sensitivity. Therefore, the development of highly specific biomarkers and effective non-invasive detection strategies is imperative for achieving a precise and timely diagnosis of BC, as well as for facilitating an optimal tumor treatment and an improved prognosis. microRNAs (miRNAs), short noncoding RNA molecules spanning around 20-25 nucleotides, are implicated in the regulation of diverse carcinogenic pathways. Substantially altered miRNAs form robust functional regulatory networks that exert a notable influence on the tumorigenesis and progression of BC. Investigations into aberrant miRNAs derived from blood, urine, or extracellular vesicles indicate their potential roles as diagnostic biomarkers and prognostic indicators in BC, enabling miRNAs to monitor the progression and predict the recurrence of the disease. Simultaneously, the investigation centered on miRNA as a potential therapeutic agent presents a novel approach for the treatment of BC. This review comprehensively analyzes biological roles of miRNAs in tumorigenesis and progression, and systematically summarizes their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for BC. Additionally, we evaluate the progress made in laboratory techniques within this field and discuss the prospects.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
13
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
14
|
Muhuitijiang B, Zhou J, Zhou R, Zhang Z, Yan G, Zheng Z, Zeng X, Zhu Y, Wu H, Gao R, Zhu T, Shi X, Tan W. Development and experimental validation of an M2 macrophage and platelet-associated gene signature to predict prognosis and immunotherapy sensitivity in bladder cancer. Cancer Sci 2024; 115:1417-1432. [PMID: 38422408 PMCID: PMC11093213 DOI: 10.1111/cas.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.
Collapse
Affiliation(s)
| | - Jiawei Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ranran Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiyong Zhang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guang Yan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaosong Zheng
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiangbo Zeng
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuanchao Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haowei Wu
- The First Clinical Medical College of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ruxi Gao
- The First Clinical Medical College of Southern Medical UniversityGuangzhouGuangdongChina
| | - Tianhang Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaojun Shi
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wanlong Tan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
15
|
Wang YL, Huang CCY, Zheng CM, Liu WC, Lee YH, Chiu HW. Polystyrene microplastic-induced extracellular vesicles cause kidney-related effects in the crosstalk between tubular cells and fibroblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116098. [PMID: 38368757 DOI: 10.1016/j.ecoenv.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases. In this article, we evaluated how PS-MPs affected tubular cells and fibroblasts. The results demonstrated that PS-MPs increased EV production in human tubular cells and caused endoplasmic reticulum (ER) stress-related proteins without inducing inflammation-related proteins in human tubular cells. The uptake of PS-MPs and incubation with the conditioned medium of PS-MPs induced reactive oxygen species (ROS) production and ER stress-related proteins in fibroblast cells. The fibroblast cells treated with the conditioned medium of PS-MPs also increased the expression of fibrosis-related proteins. Our findings suggested that the expression of EV-related markers increased in tubular cells via Beclin 1 after PS-MP treatment. In addition, PS-MPs induced ROS production in vitro and in vivo. We found that PS-MPs also altered the expression of EV markers in urine, and CD63 expression was also increased in vitro and in vivo after PS-MP treatment. In conclusion, PS-MP-induced EVs lead to ER stress-related proteins, ROS production and fibrosis-related proteins in tubular cells and fibroblasts.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cathy Chia-Yu Huang
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chih Liu
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
16
|
Chen Y, Shi K, Fu X, Guo H, Gao T, Yu H. Diagnostic and prognostic potential of exosome non-coding RNAs in bladder cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1336375. [PMID: 38500660 PMCID: PMC10944871 DOI: 10.3389/fonc.2024.1336375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background Bladder cancer stands as the predominant malignant tumor in the urological system, presenting a significant challenge to public health and garnering extensive attention. Recently, with the deepening research into tumor molecular mechanisms, non-coding RNAs (ncRNAs) have emerged as potential biomarkers offering guidance for the diagnosis and prognosis of bladder cancer. However, the definitive role of ncRNAs in bladder cancer remains unclear. Hence, this study aims to elucidate the relevance and significance of ncRNAs through a Meta-analysis. Methods A systematic meta-analysis was executed, including studies evaluating the diagnostic performance of ncRNAs and their associations with overall survival (OS) and disease-free survival (DFS). Key metrics such as hazard ratios, sensitivity, specificity, and diagnostic odds ratios were extracted and pooled from these studies. Potential publication bias was assessed using Deeks' funnel plot, and the robustness of the results was ascertained through a sensitivity analysis. Results Elevated ncRNA expression showed a positive correlation with improved OS, evidenced by a hazard ratio (HR) of 0.82 (95% CI: 0.66-0.96, P<0.001). Similarly, a significant association was observed between heightened ncRNA expression and DFS, with an HR of 0.86 (95% CI: 0.73-0.99, P<0.001). Diagnostic performance analysis across 17 articles yielded a pooled sensitivity of 0.76 and a specificity of 0.83. The diagnostic odds ratio was recorded at 2.71, with the area under the ROC curve (AUC) standing at 0.85. Conclusion Exosome ncRNAs appear to possess potential significance in the diagnostic and prognostic discussions of bladder cancer. Their relationship with survival outcomes and diagnostic measures suggests a possible clinical utility. Comprehensive investigations are needed to fully determine their role in the ever-evolving landscape of bladder cancer management, especially within the framework of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
17
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
18
|
Kumar S, Dhar R, Kumar LBSS, Shivji GG, Jayaraj R, Devi A. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol 2023; 40:321. [PMID: 37798480 DOI: 10.1007/s12032-023-02176-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Cancer is the most challenging global health crisis. In the recent times, studies on extracellular vesicles (EVs) are adding a new chapter to cancer research and reports on EVs explores cancer in a new dimension. Exosomes are a group of subpopulations of EVs. It originates from the endosomes and carries biologically active molecules to the neighboring cells which in turn transforms the recipient cell activity. In general, it plays a role in cellular communication. The correlation between exosomes and cancer is fascinating. Tumor-derived exosomes (TEXs) play a dynamic role in cancer progression and are associated with uncontrolled cell growth, angiogenesis, immune suppression, and metastasis. Its molecular cargo is an excellent source of cancer biomarkers. Several advanced molecular profiling approaches assist in exploring the TEXs in depth. This paves the way for a strong foundation for identifying and detecting more specific and efficient biomarkers. TEXs are also gaining importance in scientific society for its role in cancer therapy and several clinical trials based on TEXs is a proof of its significance. In this review, we have highlighted the role of TEXs in mediating immune cell reprogramming, cancer development, metastasis, EMT, organ-specific metastasis, and its clinical significance in cancer theranostics. TEXs profiling is an effective method to understand the complications associated with cancer leading to good health and well-being of the individual and society as a whole.
Collapse
Affiliation(s)
- Samruti Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Lokesh Babu Sirkali Suresh Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Gauresh Gurudas Shivji
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
19
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
20
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
21
|
Zhao J, Li J, Zhang R. Off the fog to find the optimal choice: Research advances in biomarkers for early diagnosis and recurrence monitoring of bladder cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188926. [PMID: 37230421 DOI: 10.1016/j.bbcan.2023.188926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Bladder cancer (BC) has high morbidity and mortality rates owing to challenges in clinical diagnosis and treatment. Advanced BC is prone to recurrence after surgery, necessitating early diagnosis and recurrence monitoring to improve the prognosis of patients. Traditional detection methods for BC include cystoscopy, cytology, and imaging; however, these methods have drawbacks such as invasiveness, lack of sensitivity, and high costs. Existing reviews on BC focus on treatment and management and lack a comprehensive assessment of biomarkers. Our article reviews various biomarkers for the early diagnosis and recurrence monitoring of BC and outlines the existing challenges associated with their application and possible solutions. Furthermore, this study highlights the potential application of urine biomarkers as a non-invasive, inexpensive adjunctive test for screening high-risk populations or evaluating patients with suspected BC symptoms, thereby alleviating the discomfort and financial burden associated with cystoscopy and improving patient survival.
Collapse
Affiliation(s)
- Jiaxin Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
22
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
23
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
24
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Teixeira-Marques A, Lourenço C, Oliveira MC, Henrique R, Jerónimo C. Extracellular Vesicles as Potential Bladder Cancer Biomarkers: Take It or Leave It? Int J Mol Sci 2023; 24:ijms24076757. [PMID: 37047731 PMCID: PMC10094914 DOI: 10.3390/ijms24076757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Bladder cancer (BC) is the 10th most frequently diagnosed cancer worldwide. Although urine cytology and cystoscopy are current standards for BC diagnosis, both have limited sensitivity to detect low-grade and small tumors. Moreover, effective prognostic biomarkers are lacking. Extracellular vesicles (EVs) are lipidic particles that contain nucleic acids, proteins, and metabolites, which are released by cells into the extracellular space, being crucial effectors in intercellular communication. These particles have emerged as potential tools carrying biomarkers for either diagnosis or prognosis in liquid biopsies namely urine, plasma, and serum. Herein, we review the potential of liquid biopsies EVs’ cargo as BC diagnosis and prognosis biomarkers. Additionally, we address the emerging advantages and downsides of using EVs within this framework.
Collapse
Affiliation(s)
- Ana Teixeira-Marques
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Catarina Lourenço
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Doctoral Programme in Biomedical Sciences, School Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Miguel Carlos Oliveira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOPorto), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Zeng Y, Wang A, Lv W, Wang Q, Jiang S, Pan X, Wang F, Yang H, Bolund L, Lin C, Han P, Luo Y. Recent development of urinary biomarkers for bladder cancer diagnosis and monitoring. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractUrine‐based liquid biopsy has emerged as a non‐invasive and effective tool for early screening and diagnosis of bladder cancer. This review provides a comprehensive overview of the current urine‐based biomarkers and methods for the detection and monitoring of bladder cancer. We focus on biomarkers including tumour DNAs, proteins, microbiome, tumour RNAs, long non‐coding RNAs, transfer RNA‐derived fragments, messenger RNAs, microRNAs, circular RNAs, exosomes and extrachromosomal circular DNA.
Collapse
Affiliation(s)
- Yuchen Zeng
- College of Life Sciences Tianjin University Tianjin China
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Anqi Wang
- Department of Biological Sciences Xi'an Jiaotong‐Liverpool University Suzhou China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Wei Lv
- College of Life Sciences University of Chinese Academy of Science Beijing China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Qingqing Wang
- College of Life Sciences University of Chinese Academy of Science Beijing China
| | - Shiqi Jiang
- College of Life Sciences Tianjin University Tianjin China
- Intelligent Diagnosis Center Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Huanming Yang
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Chunhua Lin
- Department of Urology The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Yonglun Luo
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
27
|
Yuan F, Yin XY, Huang Y, Cai XW, Jin L, Dai GC, Zang YC, Sun Y, Liu XL, Xue BX. Exosomal miR-93-5p as an important driver of bladder cancer progression. Transl Androl Urol 2023; 12:286-299. [PMID: 36915886 PMCID: PMC10006004 DOI: 10.21037/tau-22-872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
Background Tumor-derived exosomes are involved in the process of tumor metastasis and angiogenesis. MicroRNAs (miRNAs) are the most widely investigated factors in exosomes. Therefore, we hope to find a new therapeutic target in bladder cancer (BLCA), which has high incidence rate and mortality. Methods Exosomal microRNA(miR)-93-5p expression level, downstream target molecules, and biological functions were examined with bioinformatics technology. Exosomes were extracted by sequential differential centrifugation and verified by transmission electron microscopy. The exosomal miR-93-5p on cell proliferation, invasion, and angiogenesis abilities in 5637 and T24 cells was determined by Cell Counting Kit 8 (CCK-8), colony-forming assay, Transwell assay, and vascular ring formation assay. A mouse xenograft model with intratumor injection was adopted to evaluate the correlation between BLCA-derived exosomes and tumor growth in vivo. Results The results revealed that exosomes play an important role in the biological progression of BLCA, with miR-93-5p being a particularly important molecule. Compared to normal cells, more malignant cells release more exosomal miR-93-5p, and tumor-derived exosomal miR-93-5p could significantly promote cell proliferation, invasion, and angiogenesis in vitro and in vivo. We identified phosphatase and tensin homolog (PTEN) as the most significant target of miR-93-5p in BLCA and human umbilical vein endothelial cells. Conclusions Our study successfully revealed the biological role and mechanism of BLCA-derived exosomes in tumor progression. Target at tumor exosomes and exosomal miR-93-5p may be an effective treatment in BLCA.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Yu Yin
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Yu Huang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Xiao-Wei Cai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guang-Cheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya-Cheng Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Sun
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Xiao-Long Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo-Xin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
29
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Zamboni C, Zamarian V, Stefanello D, Ferrari R, Auletta L, Milanesi S, Mauri S, Grieco V, Ceciliani F, Lecchi C. Plasma small extracellular vesicles from dogs affected by cutaneous mast cell tumors deliver high levels of miR-21-5p. Front Vet Sci 2023; 9:1083174. [PMID: 36704706 PMCID: PMC9871458 DOI: 10.3389/fvets.2022.1083174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicles (sEV) are a class of extracellular vesicles (30-150 nm), delivering molecules including proteins, metabolites, and microRNAs (miRNAs), involved in physiological intercellular crosstalk and disease pathogenesis. The present pilot study aims are (I) to develop an easy and fast protocol for the isolation of sEV from plasma of mast cell tumor (MCT)-affected dogs; (II) to evaluate if miR-21-5p (sEV-miR-21-5p), a miRNA overexpressed by MCT, is associated with sEV. Seventeen dogs have been enrolled in the study: 4 healthy and 13 (6 with and 7 without nodal metastasis) MCT-affected dogs. sEV were isolated using size exclusion chromatography (SEC) (IZON column 35nm) and were characterized by Western blot, Nanoparticle tracking analysis, and transmission electron microscopy. sEV-miR-21-5p was quantified using digital PCR. sEV expressed the specific markers CD9 and TSG101, and a marker of mast cell tryptase. The sEV mean concentration and size were 2.68E + 10 particles/ml, and 99.6 nm, 2.89E + 10 particles/ml and 101.7 nm, and 3.21E + 10 particles/ml and 124 nm in non-metastatic, nodal metastatic, and healthy samples, respectively. The comparative analysis demonstrated that the level of sEV-miR-21-5p was significantly higher in dogs with nodal metastasis compared to healthy (P = 0.038) and without nodal metastasis samples (P = 0.007). In conclusion, the present work demonstrated that a pure population of sEV can be isolated from the plasma of MCT-affected dogs using the SEC approach and that the level of sEV-miR-21-5p is higher in nodal metastatic MCT-affected dogs compared with healthy and MCT-affected dogs without nodal involvement.
Collapse
Affiliation(s)
- Clarissa Zamboni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zamarian
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy,Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Damiano Stefanello
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Roberta Ferrari
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Luigi Auletta
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Samantha Milanesi
- Leukocytes Biology Group, IRCCS Humanitas Clinical and Research Center, Milan, Italy,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Samuele Mauri
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Valeria Grieco
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milan, Italy,*Correspondence: Cristina Lecchi ✉
| |
Collapse
|
31
|
Huang ZM, Wang H, Ji ZG. Bladder cancer tissue-derived exosomes suppress ferroptosis of T24 bladder cancer cells by transporting miR-217. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:39-49. [PMID: 36461670 DOI: 10.1002/em.22520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
It has been reported that miR-217 can inhibit the oncogenic activity and progression of bladder cancer (BCa) cells, but it has not been explored whether miR-217 is involved in the regulation of ferroptosis. In the present study, RNA transfection, real-time PCR, flow cytometry, Western blotting assays, immunofluorescence and ELISA were performed to explore the effects and mechanisms of miR-217 in BCa tissue-derived exosomes. We found that extracellular fluid from bladder cancer tissue promoted the growth and miR-217 expression of T24 cells and inhibited ferroptosis. MiR-217 was confirmed to inhibit ferroptosis in bladder cancer cells by RNA interference and functional assays. By cell membrane fluorescence probe (CM-Dil) labeling, inhibiting exosome secretion by GW4689 and exosome extraction, we determined that BCa tissue-derived exosomes transport miR-217 into T24 cells. Culture of T24 cells with extracellular fluid after RNA interference showed that exosomes carrying miR-217 derived from BCa tissues inhibited ferroptosis of T24 cells. We conclude that bladder cancer tissue-derived exosomes inhibit ferroptosis of T24 bladder cancer cells by transporting miR-217. The results of our study provide a new insight into the progression of bladder cancer.
Collapse
Affiliation(s)
- Zhong-Ming Huang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhi-Gang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Diagnostic performance of urine and blood microRNAs for bladder cancer: a meta-analysis. Expert Rev Anticancer Ther 2022; 22:1357-1369. [PMID: 36374119 DOI: 10.1080/14737140.2022.2147511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To compare and assess the diagnostic value of urine and blood microRNAs(miRNAs) in discriminating bladder cancer (BCa). METHODS A total of 45 articles were selected, which included 4050 BCa cases and 3490 controls. Summary receiver operating characteristic (SROC) curve analyses were performed, an area under curve (AUC) was calculated and pooled accuracy was analyzed using Stata 16.0 software. RESULTS The AUC, sensitivity, and specificity for urinary miRNAs were 0.88, 0.82, and 0.81, respectively, those for blood miRNAs were 0.91, 0.86, and 0.82. For miR-143, the AUC was 0.88, with 0.79 sensitivity and 0.87 specificity. The results of subgroup analyses and meta-regression suggested the publication year, ethnicity, sample size, miRNAs type, and specimen type were possible sources of heterogeneity. The Deeks funnel plot indicated there was no significant publication bias. CONCLUSION Urine and blood-based miRNAs may potentially be promising biomarkers for noninvasive early detection of bladder tumor. The diagnostic accuracy of blood-based miRNAs would be better than those of urine-based ones, and multiple miRNA panels yielded more accurate results than single-miRNA assay. Besides, miR-143 is a promising candidate biomarker for diagnosing BCa. More prospective and standardized studies are required to confirm the future findings.
Collapse
|
33
|
Grimaldi AM, Lapucci C, Salvatore M, Incoronato M, Ferrari M. Urinary miRNAs as a Diagnostic Tool for Bladder Cancer: A Systematic Review. Biomedicines 2022; 10:2766. [PMID: 36359288 PMCID: PMC9687402 DOI: 10.3390/biomedicines10112766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2023] Open
Abstract
Bladder cancer is the 10th most common cancer type worldwide. Cystoscopy represents the gold standard for bladder cancer diagnosis, but this procedure is invasive and painful, hence the need to identify new biomarkers through noninvasive procedures. microRNAs (miRNAs) are considered to be promising diagnostic molecules, because they are very stable in biological fluids (including urine) and easily detectable. This systematic review analyses the power of urine miRNAs as bladder cancer diagnostic markers. We conducted this systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 293 records related to miRNAs and their diagnostic significance in BC were retrieved from the PubMed and Embase databases. A systematic search of the literature was performed, and a total of 25 articles (N = 4054 participants) were identified and reviewed. Although many of the selected studies were of high scientific quality, the results proved to be quite heterogeneous, because we did not identify a univocal consensus for a specific miRNA signature but only isolated the signatures. We did not identify a univocal consensus for a specific diagnostic miRNA signature but only isolated the signatures, some of them with better diagnostic power compared to the others.
Collapse
|
34
|
Li H, Fang Y, Li X, Chen J, Xiong Y, Shi Y, Li S, Ye L, Wang S, Zhou J. Potential Roles of miRNAs in Acute Rejection for Vascularized Composite Allotransplantation. J Inflamm Res 2022; 15:6021-6030. [PMID: 36330168 PMCID: PMC9624150 DOI: 10.2147/jir.s383628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Aim The development of microsurgery has greatly advanced vascularized composite allotransplantation (VCA). However, like organ transplantation, VCA is also limited by acute rejection, and concerns regarding long-term survival and function of the transplanted graft. Therefore, it is necessary to elucidate the molecular mechanisms underlying acute rejection caused by VCA, in order to improve patient survival. Methods Firstly, we used Brown Norway rats and Lewis rats to construct animal model of VCA. Regularly record the appearance changes of all subjects. Specimens were collected for histological examination, microRNAs (miRNAs) sequencing and RT-qPCR verification when acute immune rejection occurred. Then, bioinformatics analysis was employed to predict miRNA related molecules and pathway information. Finally, differentially expressed miRNAs were tested and verified. Results MiRNAs are small non coding RNA transcripts that regulate gene expression at the post-transcriptional level. Studies have shown that miRNAs are involved in immune regulation and several miRNAs have been identified that are potential diagnostic and prognostic biomarkers of acute rejection. In this study, we found that the expression levels of rno-miR-21-5p, rno-miR-340-5p, rno-miR-1-3p and rno-miR-195-5p are significantly associated with acute rejection following VCA. Conclusion This miRNA signature can potentially an auxiliary diagnostic indicator of rejection, which can help clinicians adjust the immunosuppressive program in time during acute rejection.
Collapse
Affiliation(s)
- Haibo Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yuan Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xu Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jingting Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yao Xiong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yongzhou Shi
- Department of Neurosurgery, Neihuang Chinese Medicine Hospital, Anyang, People’s Republic of China
| | - Shengli Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Shoubao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Shoubao Wang; Jianda Zhou, Email ;
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
35
|
Martin-Way D, Puche-Sanz I, Cozar JM, Zafra-Gomez A, Gomez-Regalado MDC, Morales-Alvarez CM, Hernandez AF, Martinez-Gonzalez LJ, Alvarez-Cubero MJ. Genetic variants of antioxidant enzymes and environmental exposures as molecular biomarkers associated with the risk and aggressiveness of bladder cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156965. [PMID: 35764155 DOI: 10.1016/j.scitotenv.2022.156965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bladder cancer (BC) is one of the top 10 most common tumours worldwide; however, no molecular markers are currently available for tumour management and follow-up. BC could benefit from molecular biomarkers in environmental disease, which provide mechanistic understanding of individual susceptibility to exposure-related cancers and allow characterizing genetic alterations in the molecular pathway for malignancy. This case-control study performed a molecular analysis in 99 BC and 125 controls. Buccal swabs were collected to assess SNPs in eleven genes coding for xenobiotic detoxification enzymes, cellular antioxidant defences, and hormone synthesis and signalling (NAT2 (rs1801280), GPX1 (rs1050450 and rs17650792), TXNRD1 (rs7310505), PRDX3 (rs3740562), PON1 (rs662), SOD1 (rs10432782), SOD2 (rs4880), CAT (rs1001179), CYP17A1 (rs743572) and ESR1 (rs746432)). A structured questionnaire was administered to study participants to assess environmental and dietary chemical exposures. Several miRNAs associated with BC and detoxification/antioxidant pathways were analysed in a subsample of the study population, including miR-93-5p, miR-221-3p, miR-126, miR-27a-3p, miR-193b, and miR-193a-5p. Levels of selected environmental pollutants (polycyclic aromatic hydrocarbons and endocrine disrupting chemicals) were determined in urine from a subsample of BC cases and controls. We found that CYP17A1, CAT, SOD1, ESR1, PON1, and GPX1 (rs17650792) were associated with BC risk. Furthermore, exposure to smoke and/or dust, and alcohol intake were identified as risk factors for BC. Increased urinary levels of benzo[a]pyrene and bisphenol A were observed in BC patients relative to controls, along with an increased expression of miR-193b, miR-27a and miR-93-5p in BC. Nevertheless, further studies with a larger sample size are warranted to confirm these exploratory results. This study also shows that the combination of genetic markers (PON1 and CYP17A1) and miRNA (miR-221-3p and miR-93-5p) open a new scenario in the use of non-invasive biomarkers in the stratification of BC to guide personalized medicine, which is extremely urged in the current clinical setting.
Collapse
Affiliation(s)
- D Martin-Way
- Urology Department, University Hospital Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - I Puche-Sanz
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - J M Cozar
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - A Zafra-Gomez
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - M D C Gomez-Regalado
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - C M Morales-Alvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - A F Hernandez
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - L J Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
| | - M J Alvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| |
Collapse
|
36
|
K S, T D, M P. Small extracellular vesicles as a multicomponent biomarker platform in urinary tract carcinomas. Front Mol Biosci 2022; 9:916666. [PMID: 36237572 PMCID: PMC9551577 DOI: 10.3389/fmolb.2022.916666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles are a large group of nano-sized vesicles released by all cells. The variety of possible cargo (mRNAs, miRNAs, lncRNAs, proteins, and lipids) and the presence of surface proteins, signaling molecules, and receptor ligands make them a rich source of biomarkers for malignancy diagnosis. One of the groups gathering the most interest in cancer diagnostic applications is small extracellular vesicles (sEVs), with ≤200 nm diameter, mainly composed of exosomes. Many studies were conducted recently, evaluating the diagnostic potential of sEVs in urinary tract carcinomas (UTCs), discovering and clinically evaluating various classes of biomarkers. The amount of research concerning different types of UTCs understandably reflects their incidence. sEV cargos getting the most interest are non-coding RNAs (miRNA and lncRNA). However, implementation of other approaches such as metabolomic and proteomic analysis is also evaluated. The results of many studies indicate that sEVs have an essential role in the cancer process and possess many possible diagnostic and prognostic applications for UTC. The relative ease of obtaining biofluids rich in sEVs (urine and blood) confirms that sEVs are essential for UTC detection in the liquid biopsy approach. A noticeable rise in research quality is observed as more researchers are aware of the research standardization necessity, which is essential for considering the clinical application of their findings.
Collapse
|
37
|
Matuszczak M, Kiljańczyk A, Salagierski M. A Liquid Biopsy in Bladder Cancer—The Current Landscape in Urinary Biomarkers. Int J Mol Sci 2022; 23:ijms23158597. [PMID: 35955727 PMCID: PMC9369188 DOI: 10.3390/ijms23158597] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023] Open
Abstract
The non-muscle invasive bladder cancer tends to recur and progress. Therefore, it requires frequent follow-ups, generating costs and making it one of the most expensive neoplasms. Considering the expensive and invasive character of the current gold-standard diagnostic procedure, white-light cystoscopy, efforts to find an alternative method are ongoing. Although the last decade has seen significant advancements in urinary biomarker tests (UBTs) for bladder cancer, international guidelines have not recommended them. Currently, the paramount urgency is to find and validate the test with the best specificity and sensitivity, which would allow for the optimizing of diagnosis, prognosis, and a treatment plan. This review aims to summarise the up-to-date state of knowledge relating to UBTs and new developments in the detection, prognosis, and surveillance of bladder cancer and their potential applications in clinical practice.
Collapse
|