1
|
Mehri A, Toosi MB, Tavasoli AR, Saberi-Karimian M. The Latest Developments for the Treatment of Ataxia Telangiectasia: A Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2607-2615. [PMID: 39327359 DOI: 10.1007/s12311-024-01746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Ataxia telangiectasia (AT), Louis-Bar syndrome, is a rare neurodegenerative disorder caused by autosomal recessive biallelic mutations within the ataxia telangiectasia mutated (ATM) gene. Currently, there are no curative therapies available for this disorder. This review provides an overview of the latest advances in treatment methods including 1- Acetyl-DL-leucine, 2- Bone Marrow Transplantation, 3- Gene Therapy, 4- Dexamethasone, and finally 5- Red Blood Cells (RBCs) as a carrier for dexamethasone (encapsulation of dexamethasone sodium phosphate into autologous erythrocytes, known as EryDex). Most of the treatments under investigation are in the early stages, except for the EryDex System. It appears that the EryDex system and N-Acetyl-DL-Leucine may hold promise as potential treatment options.
Collapse
Affiliation(s)
- Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu ZJ, Wang YL, Xu Y. Two novel heterozygote mutations of ATM in a Chinese family with dystonia-dominant ataxia telangiectasia and literature review. Front Pediatr 2023; 11:975696. [PMID: 37009283 PMCID: PMC10050558 DOI: 10.3389/fped.2023.975696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Background Ataxia-telangiectasia (A-T) is an autosomal recessive disorder with high clinical heterogeneity. A-T may present in complicated variable forms, including classic A-T and milder form of AT. Contrary to the classic A-T, the milder form does not present the cardinal features of A-T such as ataxia and telangiectasia. A few ATM mutations have been reported in variant A-T cases manifesting isolated generalized or segmental dystonia without any signs of classical A-T. Methods An A-T pedigree with predominant dystonia was collected. Genetic testing was performed by targeted panel of genes involved in movement disorders. The candidate variants were further confirmed by Sanger sequencing. We then reviewed previously published literatures of genetically confirmed A-T cases with predominant dystonia and summarized the clinical characteristics of dystonia-dominant A-T. Results Two novel ATM mutations, p.I2683T and p.S2860P, were identified in the family. The proband presented isolated segmental dystonia without any signs of ataxia and telangiectasias. We reviewed the literatures and found that the patients with dystonia-dominant A-T tend to have a later-onset and slower progression of the disease. Conclusion To our knowledge, this is the first report of A-T patient with predominant dystonia in China. Dystonia may appear as one of the predominant manifestations or initial symptom of A-T. Early ATM genetic testing should be considered for those patients with predominant dystonia, despite without accompanying ataxia or telangiectasia.
Collapse
Affiliation(s)
- Zhi-Jun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Cirillo E, Polizzi A, Soresina A, Prencipe R, Giardino G, Cancrini C, Finocchi A, Rivalta B, Dellepiane RM, Baselli LA, Montin D, Trizzino A, Consolini R, Azzari C, Ricci S, Lodi L, Quinti I, Milito C, Leonardi L, Duse M, Carrabba M, Fabio G, Bertolini P, Coccia P, D'Alba I, Pession A, Conti F, Zecca M, Lunardi C, Bianco ML, Presti S, Sciuto L, Micheli R, Bruzzese D, Lougaris V, Badolato R, Plebani A, Chessa L, Pignata C. Progressive Depletion of B and T Lymphocytes in Patients with Ataxia Telangiectasia: Results of the Italian Primary Immunodeficiency Network. J Clin Immunol 2022; 42:783-797. [PMID: 35257272 PMCID: PMC9166859 DOI: 10.1007/s10875-022-01234-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia (AT) is a rare neurodegenerative genetic disorder due to bi-allelic mutations in the Ataxia Telangiectasia Mutated (ATM) gene. The aim of this paper is to better define the immunological profile over time, the clinical immune-related manifestations at diagnosis and during follow-up, and to attempt a genotype-phenotype correlation of an Italian cohort of AT patients. Retrospective data of 69 AT patients diagnosed between December 1984 and November 2019 were collected from the database of the Italian Primary Immunodeficiency Network. Patients were classified at diagnosis as lymphopenic (Group A) or non-lymphopenic (Group B). Fifty eight out of 69 AT patients (84%) were genetically characterized and distinguished according to the type of mutations in truncating/truncating (TT; 27 patients), non-truncating (NT)/T (28 patients), and NT/NT (5 patients). In 3 patients, only one mutation was detected. Data on age at onset and at diagnosis, cellular and humoral compartment at diagnosis and follow-up, infectious diseases, signs of immune dysregulation, cancer, and survival were analyzed and compared to the genotype. Lymphopenia at diagnosis was related per se to earlier age at onset. Progressive reduction of cellular compartment occurred during the follow-up with a gradual reduction of T and B cell number. Most patients of Group A carried bi-allelic truncating mutations, had a more severe B cell lymphopenia, and a reduced life expectancy. A trend to higher frequency of interstitial lung disease, immune dysregulation, and malignancy was noted in Group B patients. Lymphopenia at the onset and the T/T genotype are associated with a worst clinical course. Several mechanisms may underlie the premature and progressive immune decline in AT subjects.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Beatrice Rivalta
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosa M Dellepiane
- Departments of Pediatrics, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia A Baselli
- Departments of Pediatrics, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Rita Consolini
- Section of Pediatrics Immunology and Rheumatology, Department of Pediatrics, University of Pisa, Pisa, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Lodi
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leonardi
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Bertolini
- Pediatric Hematology Oncology Unit, Azienda Ospedaliero Universitaria of Parma, Parma, Italy
| | - Paola Coccia
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona, Italy
| | - Irene D'Alba
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona, Italy
| | - Andrea Pession
- Unit of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Francesca Conti
- Unit of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Manuela Lo Bianco
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Santiago Presti
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Laura Sciuto
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Roberto Micheli
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Dario Bruzzese
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | | | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy.
| |
Collapse
|
4
|
Saberi‐Karimian M, Beyraghi‐Tousi M, Jamialahmadi T, Sahebkar A. The positive short-term effect of dexamethasone on ataxia symptoms in a patient with ataxia-telangiectasia: A case report. Clin Case Rep 2022; 10:e05895. [PMID: 35600021 PMCID: PMC9122799 DOI: 10.1002/ccr3.5895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
Oral dexamethasone was administered at a dose of 0.075 mg/kg/day for a boy with ataxia-telangiectasia. The SARA score was improved by 7.0 points after dexamethasone treatment over a period of 28 days. The body weight was increased by 1.4 kg after 4 weeks leading to dose titration to 0.05 mg/kg/day.
Collapse
Affiliation(s)
- Maryam Saberi‐Karimian
- Vascular and Endovascular Surgery Research CenterMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
- International UNESCO center for Health Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Mehran Beyraghi‐Tousi
- Department of Pediatric DiseasesFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- School of MedicineThe University of Western AustraliaPerthAustralia
- Department of BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
5
|
Pastorczak A, Attarbaschi A, Bomken S, Borkhardt A, van der Werff ten Bosch J, Elitzur S, Gennery AR, Hlavackova E, Kerekes A, Křenová Z, Mlynarski W, Szczepanski T, Wassenberg T, Loeffen J. Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers (Basel) 2022; 14:2000. [PMID: 35454905 PMCID: PMC9029535 DOI: 10.3390/cancers14082000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with double stranded DNA repair disorders (DNARDs) (Ataxia Telangiectasia (AT) and Nijmegen Breakage syndrome (NBS)) are at a very high risk for developing hematological malignancies in the first two decades of life. The most common neoplasms are T-cell lymphoblastic malignancies (T-cell ALL and T-cell LBL) and diffuse large B cell lymphoma (DLBCL). Treatment of these patients is challenging due to severe complications of the repair disorder itself (e.g., congenital defects, progressive movement disorders, immunological disturbances and progressive lung disease) and excessive toxicity resulting from chemotherapeutic treatment. Frequent complications during treatment for malignancies are deterioration of pre-existing lung disease, neurological complications, severe mucositis, life threating infections and feeding difficulties leading to significant malnutrition. These complications make modifications to commonly used treatment protocols necessary in almost all patients. Considering the rarity of DNARDs it is difficult for individual physicians to obtain sufficient experience in treating these vulnerable patients. Therefore, a team of experts assembled all available knowledge and translated this information into best available evidence-based treatment recommendations.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Andishe Attarbaschi
- Department of Pediatrics, Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Bomken
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Jutte van der Werff ten Bosch
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Brussels, 1090 Jette Brussels, Belgium;
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petach Tikvah 4920235, Israel;
| | - Andrew R. Gennery
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Arpád Kerekes
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Zdenka Křenová
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), 41-800 Zabrze, Poland;
| | - Tessa Wassenberg
- Department of Neurology and Child Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
6
|
Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One 2022; 17:e0264177. [PMID: 35290391 PMCID: PMC9049793 DOI: 10.1371/journal.pone.0264177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia is an autosomal recessive, multi-system, and life-shortening disease caused by mutations in the ataxia-telangiectasia mutated gene. Although widely reported, there are no studies that give a comprehensive picture of this intriguing condition. OBJECTIVES Understand the natural history of ataxia-telangiectasia (A-T), as reported in scientific literature. SEARCH METHODS 107 search terms were identified and divided into 17 searches. Each search was performed in PubMed, Ovid SP (MEDLINE) 1946-present, OVID EMBASE 1980 -present, Web of Science core collection, Elsevier Scopus, and Cochrane Library. SELECTION CRITERIA All human studies that report any aspect of A-T. DATA COLLECTION AND ANALYSIS Search results were de-duplicated, data extracted (including author, publication year, country of origin, study design, population, participant characteristics, and clinical features). Quality of case-control and cohort studies was assessed by the Newcastle-Ottawa tool. Findings are reported descriptively and where possible data collated to report median (interquartile range, range) of outcomes of interest. MAIN RESULTS 1314 cases reported 2134 presenting symptoms. The most common presenting symptom was abnormal gait (1160 cases; 188 studies) followed by recurrent infections in classical ataxia-telangiectasia and movement disorders in variant ataxia-telangiectasia. 687 cases reported 752 causes of death among which malignancy was the most frequently reported cause. Median (IQR, range) age of death (n = 294) was 14 years 0 months (10 years 0 months to 23 years 3 months, 1 year 3 months to 76 years 0 months). CONCLUSIONS This review demonstrates the multi-system involvement in A-T, confirms that neurological symptoms are the most frequent presenting features in classical A-T but variants have diverse manifestations. We found that most individuals with A-T have life limited to teenage or early adulthood. Predominance of case reports, and case series demonstrate the lack of robust evidence to determine the natural history of A-T. We recommend population-based studies to fill this evidence gap.
Collapse
Affiliation(s)
- Emily Petley
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Alexander Yule
- United Lincolnshire Hospitals NHS Trust, Lincoln, United
Kingdom
| | - Shaun Alexander
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Children’s Hospital, University Hospitals of Derby and Burton, NHS
Foundation Trust, Derby, United Kingdom
| | - William P. Whitehouse
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospital NHS Trust,
Nottingham, United Kingdom
| |
Collapse
|
7
|
Szczawińska-Popłonyk A, Tąpolska-Jóźwiak K, Schwartzmann E, Pietrucha B. Infections and immune dysregulation in ataxia-telangiectasia children with hyper-IgM and non-hyper-IgM phenotypes: A single-center experience. Front Pediatr 2022; 10:972952. [PMID: 36340711 PMCID: PMC9631935 DOI: 10.3389/fped.2022.972952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a severe syndromic neurodegenerative inborn error of immunity characterized by DNA reparation defect, chromosomal instability, and hypersensitivity to ionizing radiation, thereby predisposing affected individuals to malignant transformation. While the leading disease symptomatology is associated with progressively debilitating cerebellar ataxia accompanied by central and peripheral nervous system dysfunctions, A-T is a multisystemic disorder manifesting with the heterogeneity of phenotypic features. These include airway and interstitial lung disease, chronic liver disease, endocrine abnormalities, and cutaneous and deep-organ granulomatosis. The impaired thymic T cell production, defective B cell development and antibody production, as well as bone marrow failure, contribute to a combined immunodeficiency predisposing to infectious complications, immune dysregulation, and organ-specific immunopathology, with the A-T hyper-IgM (HIGM) phenotype determining the more severe disease course. This study aimed to clarify the immunodeficiency and associated immune dysregulation as well as organ-specific immunopathology in children with A-T. We also sought to determine whether the hyper-IgM and non-hyper-IgM phenotypes play a discriminatory role and have prognostic significance in anticipating the clinical course and outcome of the disease. We retrospectively reviewed the medical records of twelve A-T patients, aged from two to eighteen years. The patients' infectious history, organ-specific symptomatology, and immunological workup including serum alpha-fetoprotein, immunoglobulin isotypes, IgG subclasses, and lymphocyte compartments were examined. For further comparative analysis, all the subjects were divided into two groups, HIGM A-T and non-HIGM A-T. The clinical evaluation of the study group showed that recurrent respiratory tract infections due to viral and bacterial pathogens and a chronic obstructive airway disease along with impaired humoral immunity, in particular complete IgA deficiency, were noted in all the A-T patients, with both HIGM and non-HIGM phenotypes. The most important features with the discriminatory role between groups, were autoimmune disorders, observable four times more frequently in HIGM than in non-HIGM A-T. Two patients with the HIGM A-T phenotype were deceased due to liver failure and chronic Epstein-Barr virus (EBV) infection. It may therefore be assumed that the HIGM form of A-T is associated with more profound T cell dysfunction, defective immunoglobulin class switching, chronic EBV expansion, and poorer prognosis.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Tąpolska-Jóźwiak
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Eyal Schwartzmann
- Poznań University of Medical Sciences, Medical Student, Poznań, Poland
| | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
8
|
Zielen S, Duecker RP, Woelke S, Donath H, Bakhtiar S, Buecker A, Kreyenberg H, Huenecke S, Bader P, Mahlaoui N, Ehl S, El-Helou SM, Pietrucha B, Plebani A, van der Flier M, van Aerde K, Kilic SS, Reda SM, Kostyuchenko L, McDermott E, Galal N, Pignata C, Pérez JLS, Laws HJ, Niehues T, Kutukculer N, Seidel MG, Marques L, Ciznar P, Edgar JDM, Soler-Palacín P, von Bernuth H, Krueger R, Meyts I, Baumann U, Kanariou M, Grimbacher B, Hauck F, Graf D, Granado LIG, Prader S, Reisli I, Slatter M, Rodríguez-Gallego C, Arkwright PD, Bethune C, Deripapa E, Sharapova SO, Lehmberg K, Davies EG, Schuetz C, Kindle G, Schubert R. Simple Measurement of IgA Predicts Immunity and Mortality in Ataxia-Telangiectasia. J Clin Immunol 2021; 41:1878-1892. [PMID: 34477998 PMCID: PMC8604875 DOI: 10.1007/s10875-021-01090-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Patients with ataxia-telangiectasia (A-T) suffer from progressive cerebellar ataxia, immunodeficiency, respiratory failure, and cancer susceptibility. From a clinical point of view, A-T patients with IgA deficiency show more symptoms and may have a poorer prognosis. In this study, we analyzed mortality and immunity data of 659 A-T patients with regard to IgA deficiency collected from the European Society for Immunodeficiencies (ESID) registry and from 66 patients with classical A-T who attended at the Frankfurt Goethe-University between 2012 and 2018. We studied peripheral B- and T-cell subsets and T-cell repertoire of the Frankfurt cohort and survival rates of all A-T patients in the ESID registry. Patients with A-T have significant alterations in their lymphocyte phenotypes. All subsets (CD3, CD4, CD8, CD19, CD4/CD45RA, and CD8/CD45RA) were significantly diminished compared to standard values. Patients with IgA deficiency (n = 35) had significantly lower lymphocyte counts compared to A-T patients without IgA deficiency (n = 31) due to a further decrease of naïve CD4 T-cells, central memory CD4 cells, and regulatory T-cells. Although both patient groups showed affected TCR-ß repertoires compared to controls, no differences could be detected between patients with and without IgA deficiency. Overall survival of patients with IgA deficiency was significantly diminished. For the first time, our data show that patients with IgA deficiency have significantly lower lymphocyte counts and subsets, which are accompanied with reduced survival, compared to A-T patients without IgA deficiency. IgA, a simple surrogate marker, is indicating the poorest prognosis for classical A-T patients. Both non-interventional clinical trials were registered at clinicaltrials.gov 2012 (Susceptibility to infections in ataxia-telangiectasia; NCT02345135) and 2017 (Susceptibility to Infections, tumor risk and liver disease in patients with ataxia-telangiectasia; NCT03357978)
Collapse
Affiliation(s)
- Stefan Zielen
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ruth Pia Duecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany.
| | - Sandra Woelke
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Helena Donath
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sharhzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Aileen Buecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine M El-Helou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Michiel van der Flier
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van Aerde
- Department of Pediatrics, Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sara S Kilic
- Department of Pediatric Immunology and Rheumatology, the School of Medicine, Uludag University, Bursa, Turkey
| | - Shereen M Reda
- Department of Pediatrics, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv, Ukraine
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Unit, Nottingham University Hospitals, Nottingham, UK
| | - Nermeen Galal
- Department of Pediatrics, Cairo University Specialized Pediatric Hospital, Cairo, Egypt
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Juan Luis Santos Pérez
- Infectious Diseases and Immunodeficiencies Unit, Service of Pediatrics, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Hans-Juergen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Duesseldorf, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Krefeld, Germany
| | - Necil Kutukculer
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Laura Marques
- Pediatric Department, Infectious Diseases and Immunodeficiencies Unit, Porto Hospital Center, Porto, Portugal
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Children University Hospital in Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall D'Hebron Research Institute, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Horst von Bernuth
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany
- Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Krueger
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, and the Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Centre for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dagmar Graf
- MVZ Dr. Reising-Ackermann Und Kollegen, Leipzig, Germany
| | - Luis Ignacio Gonzalez Granado
- Primary Immunodeficiencies Unit, Pediatrics, Hospital 12 Octubre, Complutense University School of Medicine, Madrid, Spain
| | - Seraina Prader
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ismail Reisli
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, UK
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Dr. Negrin University Hospital of Gran Canaria, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester and Royal Manchester Children's Hospital, Manchester, UK
| | | | - Elena Deripapa
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Minsk, Belarus
| | - Kai Lehmberg
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Graham Davies
- Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FREEZE Biobank, Center for Biobanking, Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Desimio MG, Finocchi A, Di Matteo G, Di Cesare S, Giancotta C, Conti F, Chessa L, Piane M, Montin D, Dellepiane M, Rossi P, Cancrini C, Doria M. Altered NK-cell compartment and dysfunctional NKG2D/NKG2D-ligand axis in patients with ataxia-telangiectasia. Clin Immunol 2021; 230:108802. [PMID: 34298181 DOI: 10.1016/j.clim.2021.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem disorder caused by biallelic pathogenic variants in the gene encoding A-T mutated (ATM) kinase, a master regulator of the DNA damage response (DDR) pathway. Most A-T patients show cellular and/or humoral immunodeficiency that has been associated with cancer risk and reduced survival, but NK cells have not been thoroughly studied. Here we investigated NK cells of A-T patients with a special focus on the NKG2D receptor that triggers cytotoxicity upon engagement by its ligands (NKG2DLs) commonly induced via the DDR pathway on infected, transformed, and variously stressed cells. Using flow cytometry, we examined the phenotype and function of NK cells in 6 A-T patients as compared with healthy individuals. NKG2D expression was evaluated also by western blotting and RT-qPCR; plasma soluble NKG2DLs (sMICA, sMICB, sULBP1, ULBP2) were measured by ELISA. Results showed that A-T NK cells were skewed towards the CD56neg anergic phenotype and displayed decreased expression of NKG2D and perforin. NKG2D was reduced at the protein but not at the mRNA level and resulted in impaired NKG2D-mediated cytotoxicity in 4/6 A-T patients. Moreover, in A-T plasma we found 24-fold and 2-fold increase of sMICA and sULBP1, respectively, both inversely correlated with NKG2D expression. Overall, NK cells are disturbed in A-T patients showing reduced NKG2D expression, possibly caused by persistent engagement of its ligands, that may contribute to susceptibility to cancer and infections and represent novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giancotta
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Davide Montin
- Pediatric Immunology and Rheumatology, Regina Margherita Children's Hospital, Turin, Italy
| | - Marta Dellepiane
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paolo Rossi
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
10
|
The Role of Respiratory Viruses in Children with Ataxia-Telangiectasia. Viruses 2021; 13:v13050867. [PMID: 34065066 PMCID: PMC8150715 DOI: 10.3390/v13050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The impact of respiratory virus infection in patients diagnosed with ataxia-telangiectasia (A-T) has not been well studied. Methods: A prospective case control study was performed at a National Reference Unit for Primary Immunodeficiency in Spain (from November 2018 to July 2019), including patients younger than 20 years. Symptom questionnaires and nasopharyngeal swabs from multiple respiratory viruses’ polymerase chain reaction were collected monthly, and between visits in case of symptoms. Results: Twenty-two individuals were included (11 patients; 11 controls); 164 samples were obtained (81 patients; 84 controls). Patients presented respiratory symptoms more frequently compared with controls (26.5% vs. 3.5%; p < 0.01). Viral detection was observed in 23 (27.3%) episodes in patients and in 15 (17.8%) episodes in controls (p = 0.1). Rhinovirus was the most frequent virus in patients and controls (60% and 53.3%, respectively). Episodes with positive viral detection had associated symptoms in 54% of patients and 18% of controls (p = 0.07). However, patients with A-T presented a similar rate of symptoms during episodes with positive and negative viral detection (26% vs. 27%). The median points given for each questionnaire during symptomatic episodes with negative viral detection were 13/23 points, and during symptomatic positive detection, 7.5/23 points (p = 0.1). In the control group, all but two were asymptomatic during positive viral episodes (score: 2/23 and 3/23 points). Symptomatic episodes, with either positive or negative viral detection, were associated with lower IgA and higher IgM titers and higher CD8+ counts (p < 0.05), particularly when these episodes were moderate/severe. Conclusions: Patients with A-T more frequently present symptomatic viral infections than controls, especially those with lower IgA and higher IgM titers and higher CD8+ counts.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Szczawińska-Popłonyk A, Ossowska L, Jończyk-Potoczna K. Granulomatous Liver Disease in Ataxia-Telangiectasia With the Hyper-IgM Phenotype: A Case Report. Front Pediatr 2020; 8:570330. [PMID: 33330270 PMCID: PMC7711070 DOI: 10.3389/fped.2020.570330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, combined immunodeficiency, and oculocutaneous telangiectasia. The hyper-IgM phenotype of A-T, correlating with a class-switch recombination defect, IgG and IgA deficiency, T helper and B cell lymphopenia, immune dysregulation, proinflammatory immune response, autoimmune disease, and a high risk of lymphomagenesis. Progressive liver disease is a hallmark of classical A-T with the hyper-IgM phenotype and manifests as non-alcoholic hepatic steatosis and fibrosis. We report a case of a 17-year-old male A-T patient, in whom a progressive granulomatous liver disease with portal hypertension, has led to massive splenomegaly and hypersplenism, metabolic liver insufficiency, bleeding from esophageal varices and pancytopenia. In this patient, an unusual severe disease course with a highly variable constellation of A-T symptomatology includes granulomatous skin, visceral, and internal organs disease with liver involvement. The liver disease is associated with the hyper-IgM immunophenotype and escalating neurodegeneration, creating a vicious circle of immune deficiency, permanent systemic inflammatory response, and organ-specific immunopathology.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Karol Jonscher University Hospital, Poznan, Poland
| | - Lidia Ossowska
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Karol Jonscher University Hospital, Poznan, Poland
| | - Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Poznan University of Medical Sciences, Karol Jonscher University Hospital, Poznan, Poland
| |
Collapse
|
13
|
van Os NJH, van Deuren M, Weemaes CMR, van Gaalen J, Hijdra H, Taylor AMR, van de Warrenburg BPC, Willemsen MAAP. Classic ataxia-telangiectasia: the phenotype of long-term survivors. J Neurol 2019; 267:830-837. [PMID: 31776720 PMCID: PMC7035236 DOI: 10.1007/s00415-019-09641-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Objective Patients with classic ataxia–telangiectasia (A–T) generally die in the second or third decade of life. Clinical descriptions of A–T tend to focus on the symptoms at presentation. However, during the course of the disease, other symptoms and complications emerge. As long-term survivors with classic A–T develop a complex multisystem disorder with a largely unknown extent and severity, we aimed to comprehensively assess their full clinical picture. Methods Data from Dutch patients with classic A–T above the age of 30 years were retrospectively collected. In addition, we searched the literature for descriptions of classic A–T patients who survived beyond the age of 30 years. Results In the Dutch cohort, seven classic A–T patients survived beyond 30 years of age. Fourteen additional patients were retrieved by the literature search. Common problems in older patients with classic A–T were linked to ageing. Most patients had pulmonary, endocrine, cardiovascular, and gastro-intestinal problems. All patients had a tetraparesis with contractures. This led to immobilization and frequent hospital admissions. Most patients expressed the wish to no longer undergo intensive medical treatments, and waived follow-up programs. Conclusions Paucity of descriptions in the literature, and withdrawal from medical care complicate the acquisition of follow-up data on the natural history of long-term survivors. Irrespective of these limitations, we have obtained impression of the many problems that these patients face when surviving beyond 30 years of age. Awareness of these problems is needed to guide follow-up, counselling, and (palliative) care; decisions about life-prolonging treatments should be well considered. Electronic supplementary material The online version of this article (10.1007/s00415-019-09641-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Pediatric Neurology, Radboudumc Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Pediatric Infectious Disease and Immunology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helma Hijdra
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Radboudumc Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Ye F, Chai W, Yang M, Xie M, Yang L. Ataxia-telangiectasia with a novel ATM gene mutation and Burkitt leukemia: A case report. Mol Clin Oncol 2018; 9:493-498. [PMID: 30402232 PMCID: PMC6200993 DOI: 10.3892/mco.2018.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is an infrequent autosomal recessive disorder that involves multiple systems and is characterized by progressive cerebellar ataxia, oculocutaneous telangiectasias, radiosensitivity, immune deficiency with recurrent respiratory infections, and a tendency to develop lymphoid malignancies. A-T is caused by mutations in the ATM gene, with >1,000 mutations reported to date and gradually increasing in number. Patients with A-T have an increased incidence of cancers. The aim of the present study was to retrospectively review the case of a patient who presented at the age of 5 years with cerebellar ataxia without telangiectasia, and was diagnosed with Burkitt leukemia by bone marrow biopsy and molecular testing at the age of 7 years at the Xiangya Hospital of Central South University (Changsha, China). The patient received chemotherapy with the pediatric CCCG-BNHL-2015 regimen (R4 group) and achieved a complete remission after 2 courses. However, recurrent respiratory infections and thrombosis occurred during chemotherapy. The diagnosis of A-T was confirmed by uncovering two variants of the ATM gene, including c.742C>T (p.R248X; rs730881336) in exon 7 and c.6067-c.6068 ins GAGGGAAGAT in exon 41 by whole-exome sequencing. Unfortunately, the patient's parents refused follow-up treatment and he succumbed to recurrent severe infections 4 months after the diagnosis of Burkitt leukemia. The diagnosis of A-T may be challenging, as its phenotype can be incomplete early in the course of the disease. Detailed medical history, characteristic clinical manifestations and increasingly developed exome sequencing techniques may be helpful in diagnosing this rare disease. Management should be based on multidisciplinary guidance and other treatment options must be investigated in the future.
Collapse
Affiliation(s)
- Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|