1
|
Marolt Presen D, Goeschl V, Hanetseder D, Ogrin L, Stetco AL, Tansek A, Pozenel L, Bruszel B, Mitulovic G, Oesterreicher J, Zipperle J, Schaedl B, Holnthoner W, Grillari J, Redl H. Prolonged cultivation enhances the stimulatory activity of hiPSC mesenchymal progenitor-derived conditioned medium. Stem Cell Res Ther 2024; 15:434. [PMID: 39551765 PMCID: PMC11572509 DOI: 10.1186/s13287-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cells represent a scalable source of youthful tissue progenitors and secretomes for regenerative therapies. The aim of our study was to investigate the potential of conditioned medium (CM) from hiPSC-mesenchymal progenitors (hiPSC-MPs) to stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (MSCs). We also investigated whether prolonged cultivation or osteogenic pre-differentiation of hiPSC-MPs could enhance the stimulatory activity of CM. METHODS MSCs were isolated from 13 donors (age 20-90 years). CM derived from hiPSC-MPs was added to the MSC cultures and the effects on proliferation and osteogenic differentiation were examined after 14 days and 6 weeks. The stimulatory activity of hiPSC-MP-CM was compared with the activity of MSC-derived CM and with the activity of CM prepared from hiPSC-MPs pre-cultured in growth or osteogenic medium for 14 days. Comparative proteomic analysis of CM was performed to gain insight into the molecular components responsible for the stimulatory activity. RESULTS Primary bone marrow-derived MSC exhibited variability, with a tendency towards lower proliferation and tri-lineage differentiation in older donors. hiPSC-MP-CM increased the proliferation and alkaline phosphatase activity of MSC from several adult/aged donors after 14 days of continuous supplementation under osteogenic conditions. However, CM supplementation failed to improve the mineralization of MSC pellets after 6 weeks under osteogenic conditions. hiPSC-MP-CM showed greater enhancement of proliferation and ALP activity than CM derived from bone marrow-derived MSCs. Moreover, 14-day cultivation but not osteogenic pre-differentiation of hiPSC-MPs strongly enhanced CM stimulatory activity. Quantitative proteomic analysis of d14-CM revealed a distinct profile of components that formed a highly interconnected associations network with two clusters, one functionally associated with binding and organization of actin/cytoskeletal components and the other with structural constituents of the extracellular matrix, collagen, and growth factor binding. Several hub proteins were identified that were reported to have functions in cell-extracellular matrix interaction, osteogenic differentiation and development. CONCLUSIONS Our data show that hiPSC-MP-CM enhances early osteogenic differentiation of human bone marrow-derived MSCs and that prolonged cultivation of hiPSC-MPs enhances CM-stimulatory activity. Proteomic analysis of the upregulated protein components provides the basis for further optimization of hiPSC-MP-CM for bone regenerative therapies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria.
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria.
| | - Vanessa Goeschl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Laura Ogrin
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Alexandra-Larissa Stetco
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Anja Tansek
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Laura Pozenel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Bella Bruszel
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria
- Bruker Austria, Lemböckgasse 47b, Vienna, 1230, Austria
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
- University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna, 1090, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| |
Collapse
|
2
|
Weißenberger M, Wagenbrenner M, Nickel J, Ahlbrecht R, Blunk T, Steinert AF, Gilbert F. Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy. J Exp Orthop 2023; 10:29. [PMID: 36943593 PMCID: PMC10030724 DOI: 10.1186/s40634-023-00594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
PURPOSE Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. METHODS Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. RESULTS Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. CONCLUSIONS R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.
Collapse
Affiliation(s)
- Manuel Weißenberger
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany.
- Department of Orthopedic Surgery, University of Wuerzburg, König-Ludwig-Haus, Brettreichstraße 11, 97074, Würzburg, Germany.
| | - Mike Wagenbrenner
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| | - Rasmus Ahlbrecht
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany
- Department of Trauma-, Hand-, Plastic- and Reconstructive Surgery, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma-, Hand-, Plastic- and Reconstructive Surgery, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany
- Current address:, Department of Orthopaedic, Trauma, Shoulder and Arthroplasty Surgery, Rhön-Klinikum, Campus Bad Neustadt, Bad Neustadt, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Trauma-, Hand-, Plastic- and Reconstructive Surgery, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| |
Collapse
|
3
|
Ajabnoor RM, Quinzi DA, Carmody E, Boyce BF. Intraligamentous synovial osteochondroma of the ligamentum teres: a series of 14 cases. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:282-288. [PMID: 35949810 PMCID: PMC9360587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The ligamentum teres (LT) is covered by synovium. It acts as a stabilizer of the hip and as such it has been compared to the ACL of the knee joint. Pathologic changes occur in the LT with aging and osteoarthritis (OA), including degeneration, occasional chondroid metaplasia, and synovial chondromatosis are well-recognized in the literature. However, there are no reports of intraligamentous synovial osteochondroma occuring in the LT. METHODS We reviewed the pathology reports of 542 osteoarthritic femoral arthroplasty specimens between January 2016 and December 2018. The LT was examined histologically in 55 cases because it was abnormal on gross examination. RESULTS A single synovial osteochondroma, ranging in size from 0.4-1.7 cm in diameter, was present in the body of the LT in 14 cases (9 males; 5 females, aged 34 to 81 years), representing 2.6% of 542 arthroplasty cases. Ten of the osteochondromas had bone marrow fat without hematopoietic elements, 1 had hematopoietic elements, and 3 had no marrow among the bony trabeculae. Radiographically, all cases had moderate to severe osteoarthritis with no mention of an abnormality of LT. CONCLUSION To our knowledge, this is the first report of intraligamentous synovial osteochondroma in the LT in osteoarthritis patients undergoing hip arthroplasty. It provides further support for microscopic examination of arthroplasty specimens for histologic abnormalities. Further prospective study is needed to determine if this lesion contributes adversely to the development or progression of osteoarthritis and if it is a reactive or neoplastic process.
Collapse
Affiliation(s)
- Rana M Ajabnoor
- Department of Pathology, King Abdulaziz UniversityJeddah 21589, Saudi Arabia
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center601 Elmwood Ave, Rochester, NY 14642, USA
| | - David A Quinzi
- Department of Orthopedics and Rehabilitation Medicine, University of Rochester Medical Center601 Elmwood Ave, Rochester, NY 14642, USA
| | - Emily Carmody
- Department of Orthopedics and Rehabilitation Medicine, University of Rochester Medical Center601 Elmwood Ave, Rochester, NY 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Orthopedics and Rehabilitation Medicine, University of Rochester Medical Center601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Mesenchymal Stromal Cells (MSCs) Isolated from Various Tissues of the Human Arthritic Knee Joint Possess Similar Multipotent Differentiation Potential. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(1) Background: The mesenchymal stromal cells (MSCs) of different tissue origins are applied in cell-based chondrogenic regeneration. However, there is a lack of comparability determining the most suitable cell source for the tissue engineering (TE) of cartilage. The purpose of this study was to compare the in vitro chondrogenic potential of MSC-like cells from different tissue sources (bone marrow, meniscus, anterior cruciate ligament, synovial membrane, and the infrapatellar fat pad removed during total knee arthroplasty (TKA)) and define which cell source is best suited for cartilage regeneration. (2) Methods: MSC-like cells were isolated from five donors and expanded using adherent monolayer cultures. Differentiation was induced by culture media containing specific growth factors. Transforming growth factor (TGF)-ß1 was used as the growth factor for chondrogenic differentiation. Osteogenesis and adipogenesis were induced in monolayer cultures for 27 days, while pellet cell cultures were used for chondrogenesis for 21 days. Control cultures were maintained under the same conditions. After, the differentiation period samples were analyzed, using histological and immunohistochemical staining, as well as molecularbiological analysis by RT-PCR, to assess the expression of specific marker genes. (3) Results: Plastic-adherent growth and in vitro trilineage differentiation capacity of all isolated cells were proven. Flow cytometry revealed the clear co-expression of surface markers CD44, CD73, CD90, and CD105 on all isolated cells. Adipogenesis was validated through the formation of lipid droplets, while osteogenesis was proven by the formation of calcium deposits within differentiated cell cultures. The formation of proteoglycans was observed during chondrogenesis in pellet cultures, with immunohistochemical staining revealing an increased relative gene expression of collagen type II. RT-PCR proved an elevated expression of specific marker genes after successful differentiation, with no significant differences regarding different cell source of native tissue. (4) Conclusions: Irrespective of the cell source of native tissue, all MSC-like cells showed multipotent differentiation potential in vitro. The multipotent differentiation capacity did not differ significantly, and chondrogenic differentiation was proven in all pellet cultures. Therefore, cell suitability for cell-based cartilage therapies and tissue engineering is given for various tissue origins that are routinely removed during total knee arthroplasty (TKA). This study might provide essential information for the clinical tool of cell harvesting, leading to more flexibility in cell availability.
Collapse
|
5
|
Ebert R, Weissenberger M, Braun C, Wagenbrenner M, Herrmann M, Müller-Deubert S, Krug M, Jakob F, Rudert M. Impaired regenerative capacity and senescence-associated secretory phenotype in mesenchymal stromal cells from samples of patients with aseptic joint arthroplasty loosening. J Orthop Res 2022; 40:513-523. [PMID: 33749912 DOI: 10.1002/jor.25041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of total hip and knee joint replacements is the most common indication for revision surgery after primary hip and knee arthroplasty. Research suggests that exposure and uptake of wear by mesenchymal stromal cells (MSC) and macrophages results in the secretion of proinflammatory cytokines and local osteolysis, but also impaired cell viability and regenerative capacity of MSC. Therefore, this in vitro study compared the regenerative and differentiation capacity of MSC derived from patients undergoing primary total hip arthroplasty (MSCprim) to MSC derived from patients undergoing revision surgery after aseptic loosening of total hip and knee joint implants (MSCrev). Regenerative capacity was examined by measuring the cumulative population doubling (CPD) in addition to the number of passages until cells stopped proliferating. Osteogenesis and adipogenesis in monolayer cultures were assessed using histological stainings. Furthermore, RT-PCR was performed to evaluate the relative expression of osteogenic and adipogenic marker genes as well as the expression of markers for a senescence-associated secretory phenotype (SASP). MSCrev possessed a limited regenerative capacity in comparison to MSCprim. Interestingly, MSCrev also showed an impaired osteogenic and adipogenic differentiation capacity compared to MSCprim and displayed a SASP early after isolation. Whether this is the cause or the consequence of the aseptic loosening of total joint implants remains unclear. Future research should focus on the identification of specific cell markers on MSCprim, which may influence complication rates such as aseptic loosening of total joint arthroplasty to further individualize and optimize total joint arthroplasty.
Collapse
Affiliation(s)
- Regina Ebert
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Manuel Weissenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Clemens Braun
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Mike Wagenbrenner
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Marietta Herrmann
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany.,IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
| | - Sigrid Müller-Deubert
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany.,Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13:14. [PMID: 35012666 PMCID: PMC8751117 DOI: 10.1186/s13287-021-02689-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-Yi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Rehabilitation Medicine Centre, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Ramírez-Rodríguez GB, Pereira AR, Herrmann M, Hansmann J, Delgado-López JM, Sprio S, Tampieri A, Sandri M. Biomimetic Mineralization Promotes Viability and Differentiation of Human Mesenchymal Stem Cells in a Perfusion Bioreactor. Int J Mol Sci 2021; 22:1447. [PMID: 33535576 PMCID: PMC7867135 DOI: 10.3390/ijms22031447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.
Collapse
Affiliation(s)
| | - Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.H.); (J.H.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.H.); (J.H.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Jan Hansmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.H.); (J.H.)
| | | | - Simone Sprio
- Institute of Science and Technology for Ceramics (ISTEC-CNR), 48018 Faenza, Italy; (S.S.); (A.T.); (M.S.)
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics (ISTEC-CNR), 48018 Faenza, Italy; (S.S.); (A.T.); (M.S.)
| | - Monica Sandri
- Institute of Science and Technology for Ceramics (ISTEC-CNR), 48018 Faenza, Italy; (S.S.); (A.T.); (M.S.)
| |
Collapse
|
8
|
Impact of Tranexamic Acid on Chondrocytes and Osteogenically Differentiated Human Mesenchymal Stromal Cells (hMSCs) In Vitro. J Clin Med 2020; 9:jcm9123880. [PMID: 33260331 PMCID: PMC7760070 DOI: 10.3390/jcm9123880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The topical application of tranexamic acid (TXA) helps to prevent post-operative blood loss in total joint replacements. Despite these findings, the effects on articular and periarticular tissues remain unclear. Therefore, this in vitro study examined the effects of varying exposure times and concentrations of TXA on proliferation rates, gene expression and differentiation capacity of chondrocytes and human mesenchymal stromal cells (hMSCs), which underwent osteogenic differentiation. Chondrocytes and hMSCs were isolated and multiplied in monolayer cell cultures. Osteogenic differentiation of hMSCs was induced for 21 days using a differentiation medium containing specific growth factors. Cell proliferation was analyzed using ATP assays. Effects of TXA on cell morphology were examined via light microscopy and histological staining, while expression levels of tissue-specific genes were measured using semiquantitative RT-PCR. After treatment with 50 mg/mL of TXA, a decrease in cell proliferation rates was observed. Furthermore, treatment with concentrations of 20 mg/mL of TXA for at least 48 h led to a visible detachment of chondrocytes. TXA treatment with 50 mg/mL for at least 24 h led to a decrease in the expression of specific marker genes in chondrocytes and osteogenically differentiated hMSCs. No significant effects were observed for concentrations beyond 20 mg/mL of TXA combined with exposure times of less than 24 h. This might therefore represent a safe limit for topical application in vivo. Further research regarding in vivo conditions and effects on hMSC functionality are necessary to fully determine the effects of TXA on articular and periarticular tissues.
Collapse
|