1
|
Guo D, Zhao S, Chen J, Han S, Li Y, Chen Y, Hu S, Hu Y. Heterochromatin Protein Activates the Amylase Expression Pathway and Its Application to Recombinant Protein Expression in Penicillium oxalicum. Curr Microbiol 2025; 82:75. [PMID: 39786583 DOI: 10.1007/s00284-024-04058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements. Heterochromatin protein 1 (HP1) is considered a main factor responsible for heterochromatin maintenance; it binds DNA and thus forms a tight structure to repress gene expression in fungi. This study revealed that the overexpression of HepA (a homologue of HP1) increased amylase expression in Penicillium oxalicum. Furthermore, HepA was overexpressed in two engineered strains in which the endoglucanase TaEG and amylase Amy15B were recombinantly expressed under the control of the amylase promoter Pamy15A, resulting in increased production of these two enzymes. Therefore, HepA could be used as a novel facilitator to modify Penicillium chassis cells, in which the efficiency of expression motifs located in the amylase pathway can be further strengthened.
Collapse
Affiliation(s)
- Demin Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengfang Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuhui Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yangtao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Edema H, Ashraf MF, Samkumar A, Jaakola L, Karppinen K. Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose. Carbohydr Polym 2024; 343:122493. [PMID: 39174143 DOI: 10.1016/j.carbpol.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.
Collapse
Affiliation(s)
- Hilary Edema
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Muhammad Furqan Ashraf
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Amos Samkumar
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Plant Science, Norwegian University of Life Sciences, Ås 1430, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway.
| | - Katja Karppinen
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| |
Collapse
|
3
|
Ahmad W, Zafar M, Anwar Z. Heterologous expression and characterization of mutant cellulase from indigenous strain of Aspergillus niger. PLoS One 2024; 19:e0298716. [PMID: 38748703 PMCID: PMC11095671 DOI: 10.1371/journal.pone.0298716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
The purpose of current research work was to investigate the effect of mutagenesis on endoglucanase B activity of indigenous strain of Aspergillus niger and its heterologous expression studies in the pET28a+ vector. The physical and chemical mutagens were employed to incorporate mutations in A. niger. For determination of mutations, mRNA was isolated followed by cDNA synthesis and cellulase gene was amplified, purified and sequenced both from native and mutant A. niger. On comparison of gene sequences, it was observed that 5 nucleotide base pairs have been replaced in the mutant cellulase. The mutant recombinant enzyme showed 4.5 times higher activity (428.5 µmol/mL/min) as compared to activity of native enzyme (94 µmol/mL/min). The mutant gene was further investigated using Phyre2 and I-Tesser tools which exhibited 71% structural homology with Endoglucanase B of Thermoascus aurantiacus. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg) and hydrogen bonds analysis were carried at 35°C and 50°C to explore the integrity of structure of recombinant mutant endoglucanase B which corresponded to its optimal temperature. Hydrogen bonds analysis showed more stability of recombinant mutant endoglucanase B as compared to native enzyme. Both native and mutant endoglucanase B genes were expressed in pET 28a+ and purified with nickel affinity chromatography. Theoretical masses determined through ExPaSy Protparam were found 38.7 and 38.5 kDa for native and mutant enzymes, respectively. The optimal pH and temperature values for the mutant were 5.0 and 50°C while for native these were found 4.0 and 35°C, respectively. On reacting with carboxy methyl cellulose (CMC) as substrate, the mutant enzyme exhibited less Km (0.452 mg/mL) and more Vmax (50.25 µmol/ml/min) as compared to native having 0.534 mg/mL as Km and 38.76 µmol/ml/min as Vmax. Among metal ions, Mg2+ showed maximum inducing effect (200%) on cellulase activity at 50 mM concentration followed by Ca2+ (140%) at 100 mM concentration. Hence, expression of a recombinant mutant cellulase from A. niger significantly enhanced its cellulytic potential which could be employed for further industrial applications at pilot scale.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Zahid Anwar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
4
|
Waheed A, Chen Y, Rizwan HM, Adnan M, Ma X, Liu G. Genomic characterization and expression profiling of the lytic polysaccharide monooxygenases AA9 family in thermophilic fungi Thermothelomyces fergusii in response to carbon source media. Int J Biol Macromol 2024; 265:130740. [PMID: 38462117 DOI: 10.1016/j.ijbiomac.2024.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Enhancing enzyme activity and stability in biomass degradation can improve substrate saccharification and, increases biorefinery efficiency. For the first time, we identified 20 lytic polysaccharide monooxygenases (LPMOs) AA9 genes in the genome of Thermothelomyces fergusii. Our results showed that TfAA9 was categorized into LPMOs1, LPMOs2, and LPMOs3 subgroups based on protein diversity. Protein- 3D structure analysis showed strong interactions between Myceliophthora thermophila AA9 proteins and 17 TfAA9 proteins. Gene ontology analysis indicated a high enrichment of cellulase activity in TfAA9 genes. KEGG pathways analysis revealed the role of TfAA9 proteins in the endohydrolysis of 1,4-beta-D-glucosidic linkages in cellulose. Numerous TfAA9s gene transcripts were up-regulated on avicel, cellobiose, and glucose, with a higher proportion on avicel. Protein concentration, endoglucanase, and cellulase activity were also boosted on avicel. However, limited fungal biomass was observed on avicel, despite the abundance of AA9 LPMOs in the T. fergusii genome. These findings expand our understanding of fungal AA9 genes and their role in lignocellulolytic degradation. The disparity between biomass and enzymatic activity suggests screening TfAA9 genes for highly active enzymes and redundant genes via heterologous expression. In short, functional characterization of these genes could contribute to improving the saccharification process of industrial raw materials.
Collapse
Affiliation(s)
- Abdul Waheed
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuekun Ma
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Das S, T C, Selvasembian R, Prabhu AA. Mixed food waste valorization using a thermostable glucoamylase enzyme produced by a newly isolated filamentous fungus: A sustainable biorefinery approach. CHEMOSPHERE 2024; 352:141480. [PMID: 38401866 DOI: 10.1016/j.chemosphere.2024.141480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Food waste is a lucrative source of complex nutrients, which can be transformed into a multitude of bioproducts by the aid of microbial cell factories. The current study emphasizes isolating Glucoamylase enzyme (GA) producing strains that can effectively break down mixed food waste (MW), which serves as a substrate for biomanufacturing. The screening procedure relied heavily on the growth of isolated fungi on starch agar media, to specifically identify the microbes with the highest starch hydrolysis potential. A strain displayed the highest GA activity of 2.9 ± 0.14 U/ml which was selected and identified as Aspergillus fumigatus via molecular methods of identification. Exposure of the A. fumigatus with 200 mM Ethyl methanesulphonate (EMS) led to a 23.79% increase compared to the wild-type GA. The growth conditions like cultivation temperature or the number of spores in the inoculum were investigated. Further, maximum GA activity was exhibited at pH 5, 55 °C, and at 5 mM Ca2+ concentration. The GA showed thermostability, retaining activity even after long periods of exposure to temperatures as high as 95 °C. The improvement of hydrolysis of MW was achieved by Taguchi design where a maximum yield of 0.57 g g-1 glucose was obtained in the hydrolysate. This study puts forth the possibility that mixed food waste, despite containing spices and other microbial growth-inhibitory substances, can be efficiently hydrolyzed to release glucose units, by robust fungal cell factories. The glucose released can then be utilized as a carbon source for the production of value-added products.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chandukishore T
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
6
|
Yang J, Zhang X, Sun Q, Li R, Wang X, Zhao G, He X, Zheng F. Modulation of the catalytic activity and thermostability of a thermostable GH7 endoglucanase by engineering the key loop B3. Int J Biol Macromol 2023; 248:125945. [PMID: 37482151 DOI: 10.1016/j.ijbiomac.2023.125945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The loop B3 of glycoside hydrolase family 7 (GH7) endoglucanases is confined into long and short types. TtCel7 is a thermophilic GH7 endoglucanase from Thermothelomyces thermophilus ATCC 42464 with a long loop B3. TtCel7 was distinct for the excellent thermostability (>30 % residual activity after 1-h incubation at 90 °C). The catalytic efficiency was reduced by removing the disulfide bond in loop B3 (C220A) and truncated the loop B3 (B3cut). However, B3cut exhibited improved thermostability, the remaining enzyme activity increased by 39 %-171 % compared toTtCel7 when treated at 70-90 °C for 1-h. Based on the analysis of molecular dynamics simulation, both loops B1 and A3 of B3cut swing toward the catalytic center, which contributed to the reduced cleft-space and increased structure-rigidity. Conversely, the deletion of disulfide bond resulted in a reduction of structural rigidity in C220A. Through structure-directed enzyme modulation, this study has identified two structural elements that are related to the catalysis and thermostability of TtCel7. The loop B3 of TtCel7 possibly stretches the catalytic pocket, thereby increases the openness of the catalytic tunnel and enhancing flexibility for efficient catalysis. Additionally, the disulfide bond within loop B3 serves to enhance structural stability and maintain a heightened level of activity.
Collapse
Affiliation(s)
- Junzhao Yang
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Xinrui Zhang
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Qingyang Sun
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Ruilin Li
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guozhu Zhao
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Xiangwei He
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China
| | - Fei Zheng
- College of Biological Sciences, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
8
|
Xiang B, Zhao S, Chen J, Chen Y, Zhu C, Hu S, Hu Y. Engineering the filamentous fungus Penicillium oxalicum for rapid, low-background and efficient protein expression. Enzyme Microb Technol 2023; 162:110150. [DOI: 10.1016/j.enzmictec.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
|
9
|
Gomes M, Rondelez Y, Leibler L. Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes. Annu Rev Chem Biomol Eng 2022; 13:457-479. [PMID: 35378043 DOI: 10.1146/annurev-chembioeng-092120-091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Margarida Gomes
- Laboratoire Gulliver (UMR 7083), CNRS, ESPCI Paris, PSL Research University, Paris, France; ;
| | - Yannick Rondelez
- Laboratoire Gulliver (UMR 7083), CNRS, ESPCI Paris, PSL Research University, Paris, France; ;
| | - Ludwik Leibler
- Laboratoire Gulliver (UMR 7083), CNRS, ESPCI Paris, PSL Research University, Paris, France; ;
| |
Collapse
|
10
|
Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol Res 2022; 259:127011. [DOI: 10.1016/j.micres.2022.127011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
|
11
|
Zhang Z, Xiang B, Zhao S, Yang L, Chen Y, Hu Y, Hu S. Construction of a novel filamentous fungal protein expression system based on redesigning of regulatory elements. Appl Microbiol Biotechnol 2022; 106:647-661. [PMID: 35019997 DOI: 10.1007/s00253-022-11761-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Filamentous fungi are extensively used as an important expression host for the production of a variety of essential industrial proteins. They have significant promise as an expression system for protein synthesis due to their inherent superior secretory capabilities. The purpose of this study was to develop a novel expression system by utilizing a Penicillium oxalicum strain that possesses a high capacity for protein secretion. The expression of glycoside hydrolases in P. oxalicum was evaluated in a cleaner extracellular background where the formation of two major amylases was inhibited. Four glycoside hydrolases (CBHI, Amy15B, BGL1, and Cel12A) were expressed under the highly constitutive promoter PubiD. It was found that the proteins exhibited high purity in the culture supernatant after cultivation with starch. Two inducible promoters, Pamy15A and PempA, under the activation of the transcription factor AmyR were used as elements in the construction of versatile vectors. When using the cellobiohydrolase CBHI as the extracellular quantitative reporter, the empA promoter screened from the AmyR-overexpressing strain was shown to be superior to the amy15A promoter based on RNA-sequencing data. Therefore, we designed an expression system consisting of a cleaner background host strain and an adjustable promoter. This system enables rapid and high-throughput evaluation of glycoside hydrolases from filamentous fungi.Key points• A new protein expression system derived from Penicillium oxalicum has been developed.• The expression platform is capable of secreting recombinant proteins with high purity.• The adjustable promoter may allow for further optimization of recombinant protein synthesis.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Boyu Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengfang Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Le Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Green Synthesis of Stable Spherical Monodisperse Silver Nanoparticles Using a Cell-Free Extract of Trichoderma reesei. MATERIALS 2022; 15:ma15020481. [PMID: 35057198 PMCID: PMC8781021 DOI: 10.3390/ma15020481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023]
Abstract
In the current study, a green method for the preparation of silver nanoparticles (AgNPs) is presented as an alternative to conventional chemical and physical approaches. A biomass of Trichoderma reesei (T. reesei) fungus was used as a green and renewable source of reductase enzymes and metabolites, which are capable of transforming Ag+ ions into AgNPs with a small size (mainly 2-6 nm) and narrow size distribution (2-25 nm). Moreover, extracellular biosynthesis was carried out with a cell-free water extract (CFE) of T. reesei, which allows for facile monitoring of the bioreduction process using UV-Vis spectroscopy and investigation of the effect of experimental conditions on the transformation of Ag+ ions into AgNPs, as well as the simple isolation of as-prepared AgNPs for the study of their size, morphology and antibacterial properties. In continuation to our previous results about the influence of media on T. reesei cultivation, the amount of biomass used for CFE preparation and the concentration of Ag+ ion solution, herein, we present the impact of temperature (4, 20, 30 and 40 °C), agitation and time duration on the biosynthesis of AgNPs and their properties. A high stability of AgNPs in aqueous colloids was observed and attributed to the capping effect of the biomolecules as shown by the zeta potential (-49.0/-51.4 mV) and confirmed by the hydrodynamic size of 190.8/116.8 nm of AgNPs.
Collapse
|
13
|
Madhavan A, Arun KB, Sindhu R, Alphonsa Jose A, Pugazhendhi A, Binod P, Sirohi R, Reshmy R, Kumar Awasthi M. Engineering interventions in industrial filamentous fungal cell factories for biomass valorization. BIORESOURCE TECHNOLOGY 2022; 344:126209. [PMID: 34715339 DOI: 10.1016/j.biortech.2021.126209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 05/15/2023]
Abstract
Filamentous fungi possess versatile capabilities for synthesizing a variety of valuable bio compounds, including enzymes, organic acids and small molecule secondary metabolites. The advancements of genetic and metabolic engineering techniques and the availability of sequenced genomes discovered their potential as expression hosts for recombinant protein production. Remarkably, plant-biomass degrading filamentous fungi show the unique capability to decompose lignocellulose, an extremely recalcitrant biopolymer. The basic biochemical approaches have motivated several industrial processes for lignocellulose biomass valorisation into fermentable sugars and other biochemical for biofuels, biomolecules, and biomaterials. The review gives insight into current trends in engineering filamentous fungi for enzymes, fuels, and chemicals from lignocellulose biomass. This review describes the variety of enzymes and compounds that filamentous fungi produce, engineering of filamentous fungi for biomass valorisation with a special focus on lignocellulolytic enzymes and other bulk chemicals.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014, India.
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | - Anju Alphonsa Jose
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy & Environmental Sustainability, Lucknow 226001. Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, PR China
| |
Collapse
|
14
|
Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. ENGINEERING MICROBIOLOGY 2021; 1:100005. [PMID: 39629162 PMCID: PMC11610957 DOI: 10.1016/j.engmic.2021.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2024]
Abstract
Bioconversion of lignocellulosic biomass to fuels and chemicals represents a new manufacturing paradigm that can help address society's energy, resource, and environmental problems. However, the low efficiency and high cost of lignocellulolytic enzymes currently used hinder their use in the industrial deconstruction of lignocellulose. To overcome these challenges, research efforts have focused on engineering the properties, synergy, and production of lignocellulolytic enzymes. First, lignocellulolytic enzymes' catalytic efficiency, stability, and tolerance to inhibitory compounds have been improved through enzyme mining and engineering. Second, synergistic actions between different enzyme components have been strengthened to construct customized enzyme cocktails for the degradation of specific lignocellulosic substrates. Third, biological processes for protein synthesis and cell morphogenesis in microorganisms have been engineered to achieve a high level and low-cost production of lignocellulolytic enzymes. In this review, the relevant progresses and challenges in these fields are summarized. Integrated engineering is proposed to be essential to achieve cost-effective enzymatic deconstruction of lignocellulose in the future.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
16
|
Banu JR, Kumar G, Chattopadhyay I. Management of microbial enzymes for biofuels and biogas production by using metagenomic and genome editing approaches. 3 Biotech 2021; 11:429. [PMID: 34603908 DOI: 10.1007/s13205-021-02962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced "omics" approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| | - Gopalakrishnan Kumar
- Faculty of Science and Technology, Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Forus, Box 8600, 4036 Stavanger, Norway
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| |
Collapse
|
17
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
18
|
Li WL, Head-Gordon T. Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. ACS CENTRAL SCIENCE 2021; 7:72-80. [PMID: 33532570 PMCID: PMC7844850 DOI: 10.1021/acscentsci.0c01556] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 05/19/2023]
Abstract
As biocatalysts, enzymes are characterized by their high catalytic efficiency and strong specificity but are relatively fragile by requiring narrow and specific reactive conditions for activity. Synthetic catalysts offer an opportunity for more chemical versatility operating over a wider range of conditions but currently do not reach the remarkable performance of natural enzymes. Here we consider some new design strategies based on the contributions of nonlocal electric fields and thermodynamic fluctuations to both improve the catalytic step and turnover for rate acceleration in arbitrary synthetic catalysts through bioinspired studies of natural enzymes. With a focus on the enzyme as a whole catalytic construct, we illustrate the translational impact of natural enzyme principles to synthetic enzymes, supramolecular capsules, and electrocatalytic surfaces.
Collapse
Affiliation(s)
- Wan-Lu Li
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Department of
Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Molecular engineering to improve lignocellulosic biomass based applications using filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:73-109. [PMID: 33934853 DOI: 10.1016/bs.aambs.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lignocellulosic biomass is an abundant and renewable resource, and its utilization has become the focus of research and biotechnology applications as a very promising raw material for the production of value-added compounds. Filamentous fungi play an important role in the production of various lignocellulolytic enzymes, while some of them have also been used for the production of important metabolites. However, wild type strains have limited efficiency in enzyme production or metabolic conversion, and therefore many efforts have been made to engineer improved strains. Examples of this are the manipulation of transcriptional regulators and/or promoters of enzyme-encoding genes to increase gene expression, and protein engineering to improve the biochemical characteristics of specific enzymes. This review provides and overview of the applications of filamentous fungi in lignocellulosic biomass based processes and the development and current status of various molecular engineering strategies to improve these processes.
Collapse
|
20
|
Dotsenko AS, Dotsenko GS, Rozhkova AM, Zorov IN, Sinitsyn AP. Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie 2020; 176:103-109. [DOI: 10.1016/j.biochi.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/17/2020] [Indexed: 01/21/2023]
|
21
|
Dadwal A, Sharma S, Satyanarayana T. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification. Front Microbiol 2020; 11:1387. [PMID: 32670240 PMCID: PMC7327088 DOI: 10.3389/fmicb.2020.01387] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is a renewable and sustainable energy source. Cellulases are the enzymes that cleave β-1, 4-glycosidic linkages in cellulose to liberate sugars that can be fermented to ethanol, butanol, and other products. Low enzyme activity and yield, and thermostability are, however, some of the limitations posing hurdles in saccharification of lignocellulosic residues. Recent advancements in synthetic and systems biology have generated immense interest in metabolic and genetic engineering that has led to the development of sustainable technology for saccharification of lignocellulosics in the last couple of decades. There have been several attempts in applying genetic engineering in the production of a repertoire of cellulases at a low cost with a high biomass saccharification. A diverse range of cellulases are produced by different microbes, some of which are being engineered to evolve robust cellulases. This review summarizes various successful genetic engineering strategies employed for improving cellulase kinetics and cellulolytic efficiency.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
22
|
Wilken SE, Seppälä S, Lankiewicz TS, Saxena M, Henske JK, Salamov AA, Grigoriev IV, O’Malley MA. Genomic and proteomic biases inform metabolic engineering strategies for anaerobic fungi. Metab Eng Commun 2020; 10:e00107. [PMID: 31799118 PMCID: PMC6883316 DOI: 10.1016/j.mec.2019.e00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Anaerobic fungi (Neocallimastigomycota) are emerging non-model hosts for biotechnology due to their wealth of biomass-degrading enzymes, yet tools to engineer these fungi have not yet been established. Here, we show that the anaerobic gut fungi have the most GC depleted genomes among 443 sequenced organisms in the fungal kingdom, which has ramifications for heterologous expression of genes as well as for emerging CRISPR-based genome engineering approaches. Comparative genomic analyses suggest that anaerobic fungi may contain cellular machinery to aid in sexual reproduction, yet a complete mating pathway was not identified. Predicted proteomes of the anaerobic fungi also contain an unusually large fraction of proteins with homopolymeric amino acid runs consisting of five or more identical consecutive amino acids. In particular, threonine runs are especially enriched in anaerobic fungal carbohydrate active enzymes (CAZymes) and this, together with a high abundance of predicted N-glycosylation motifs, suggests that gut fungal CAZymes are heavily glycosylated, which may impact heterologous production of these biotechnologically useful enzymes. Finally, we present a codon optimization strategy to aid in the development of genetic engineering tools tailored to these early-branching anaerobic fungi.
Collapse
Affiliation(s)
- St. Elmo Wilken
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
- Department of Evolution Ecology and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Mohan Saxena
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - John K. Henske
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Asaf A. Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
23
|
Contreras F, Pramanik S, M. Rozhkova A, N. Zorov I, Korotkova O, P. Sinitsyn A, Schwaneberg U, D. Davari M. Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails. Int J Mol Sci 2020; 21:E1589. [PMID: 32111065 PMCID: PMC7084875 DOI: 10.3390/ijms21051589] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Lignocellulosic biomass is a most promising feedstock in the production of second-generation biofuels. Efficient degradation of lignocellulosic biomass requires a synergistic action of several cellulases and hemicellulases. Cellulases depolymerize cellulose, the main polymer of the lignocellulosic biomass, to its building blocks. The production of cellulase cocktails has been widely explored, however, there are still some main challenges that enzymes need to overcome in order to develop a sustainable production of bioethanol. The main challenges include low activity, product inhibition, and the need to perform fine-tuning of a cellulase cocktail for each type of biomass. Protein engineering and directed evolution are powerful technologies to improve enzyme properties such as increased activity, decreased product inhibition, increased thermal stability, improved performance in non-conventional media, and pH stability, which will lead to a production of more efficient cocktails. In this review, we focus on recent advances in cellulase cocktail production, its current challenges, protein engineering as an efficient strategy to engineer cellulases, and our view on future prospects in the generation of tailored cellulases for biofuel production.
Collapse
Affiliation(s)
- Francisca Contreras
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Aleksandra M. Rozhkova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan N. Zorov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Korotkova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arkady P. Sinitsyn
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
24
|
Ribeiro LF, Amarelle V, Alves LDF, Viana de Siqueira GM, Lovate GL, Borelli TC, Guazzaroni ME. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts. Molecules 2019; 24:molecules24162879. [PMID: 31398877 PMCID: PMC6719137 DOI: 10.3390/molecules24162879] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.
Collapse
Affiliation(s)
- Lucas Ferreira Ribeiro
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| | - Vanesa Amarelle
- Department of Microbial Biochemistry and Genomics, Biological Research Institute Clemente Estable, Montevideo, PC 11600, Uruguay
| | - Luana de Fátima Alves
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Gabriel Lencioni Lovate
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
25
|
Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res 2019; 219:1-11. [DOI: 10.1016/j.micres.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
|
26
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
27
|
|
28
|
Bilal T, Malik B, Hakeem KR. Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. J Microbiol Methods 2018; 155:65-69. [PMID: 30452938 DOI: 10.1016/j.mimet.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
Although second generation biofuel technology is a sustainable route for bioethanol production it is not currently a robust technology because of certain hindrances viz., unavailability of potential enzyme resources, low efficiency of enzymes and restricted availability of potent enzymes that work under harsh conditions in industrial processes. Therefore, bioprospecting of extremophilic microorganisms using metagenomics is a promising alternative to discover novel microbes and enzymes with efficient tolerance to unfavourable conditions and thus could revolutionize the energy sector. Metagenomics a recent field in "omics" technology enables the genomic study of uncultured microorganisms with the goal of better understanding microbial dynamics. Metagenomics in conjunction with NextGen Sequencing technology facilitates the sequencing of microbial DNA directly from environmental samples and has expanded, and transformed our knowledge of the microbial world. However, filtering the meaningful information from the millions of genomic sequences offers a serious challenge to bioinformaticians. The current review holds the opinion tool 'know- how' to unravel the secrets of nature while expediting the bio-industrial world. We also discuss the novel biocatalytic agents discovered through metagenomics and how bioengineering plays a pivotal role to enhance their efficiency.
Collapse
Affiliation(s)
- Tanveer Bilal
- Department of Bioresources, University of Kashmir, Srinagar 190006, India; Department of Bioresources, Amar Singh College, Cluster University of Kashmir, Srinagar 190001, India
| | - Bisma Malik
- Department of Bioresources, University of Kashmir, Srinagar 190006, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
29
|
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Functional characterization of GH7 endo-1,4-β-glucanase from Aspergillus fumigatus and its potential industrial application. Protein Expr Purif 2018; 150:1-11. [DOI: 10.1016/j.pep.2018.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/23/2022]
|
31
|
Marjamaa K, Kruus K. Enzyme biotechnology in degradation and modification of plant cell wall polymers. PHYSIOLOGIA PLANTARUM 2018; 164:106-118. [PMID: 29987848 DOI: 10.1111/ppl.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Lignocelluloses are abundant raw materials for production of fuels, chemicals and materials. The purpose of this paper is to review the enzyme-types and enzyme-technologies studied and applied in the processing of the lignocelluloses into different products. The enzymes here are mostly glycoside hydrolases, esterases and different redox enzymes. Enzymatic hydrolysis of lignocellulosic polysaccharides to platform sugars has been widely studied leading to development of advanced commercial products for this purpose. Restricted hydrolysis or oxidation of cellulosic fibers have been applied in processing of pulps to paper products, nanocelluloses and textile fibers. Oxidation, transglycosylation and derivatization have been utilized in functionalization of fibers, cellulosic surfaces and polysaccharides. Enzymatic polymerization, depolymerization and grafting methods are being developed for lignin valorization.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, Espoo, 02044, Finland
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, Espoo, 02044, Finland
| |
Collapse
|
32
|
Paramjeet S, Manasa P, Korrapati N. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Druzhinina IS, Kubicek CP. Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 2017; 10:1485-1499. [PMID: 28557371 PMCID: PMC5658622 DOI: 10.1111/1751-7915.12726] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022] Open
Abstract
Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress.
Collapse
Affiliation(s)
- Irina S. Druzhinina
- Microbiology GroupResearch Area Biochemical TechnologyInstitute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria
| | - Christian P. Kubicek
- Microbiology GroupResearch Area Biochemical TechnologyInstitute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria
- Present address:
Steinschötelgasse 7Wien1100Austria
| |
Collapse
|
34
|
Tiwari R, Nain L, Labrou NE, Shukla P. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit Rev Microbiol 2017; 44:244-257. [DOI: 10.1080/1040841x.2017.1337713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rameshwar Tiwari
- Department of Microbiology, Laboratory of Enzyme Technology and Protein Bioinformatics, Maharshi Dayanand University, Rohtak, India
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Nikolaos E. Labrou
- Department of Biotechnology, School of Food, Biotechnology and Development, Laboratory of Enzyme Technology, Agricultural University of Athens, Athens, Greece
| | - Pratyoosh Shukla
- Department of Microbiology, Laboratory of Enzyme Technology and Protein Bioinformatics, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
35
|
Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. BIORESOURCE TECHNOLOGY 2017; 233:67-73. [PMID: 28258998 DOI: 10.1016/j.biortech.2017.01.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Rice straw was evaluated as a carbon source for the fungi, Trichoderma reesei and Humicola insolens, to produce enzymes for rice straw hydrolysis. The enzyme activity of T. reesei and H. insolens cultivated in medium containing non-treated rice straw were almost equivalent to the enzyme of T. reesei cultivated in Avicel medium, a form of refined cellulose. The enzyme activity of T. reesei cultivated in medium containing NH4OH-treated rice straw was 4-fold higher than enzyme from cultures grown in Avicel medium. In contrast, H. insolens enzyme from cultures grown in NH4OH-treated rice straw had significantly lower activity compared with non-treated rice straw or Avicel. The combined use of T. reesei and H. insolens enzymes resulted in a significant synergistic enhancement in enzymatic activity. Our data suggest that rice straw is a promising low-cost carbon source for fungal enzyme production for rice straw hydrolysis.
Collapse
Affiliation(s)
- Takashi Kogo
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuki Yoshida
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Keisuke Koganei
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hitoshi Matsumoto
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Taisuke Watanabe
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Jun Ogihara
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takafumi Kasumi
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
36
|
Aich S, Singh RK, Kundu P, Pandey SP, Datta S. Genome-wide characterization of cellulases from the hemi-biotrophic plant pathogen, Bipolaris sorokiniana, reveals the presence of a highly stable GH7 endoglucanase. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:135. [PMID: 28559926 PMCID: PMC5445349 DOI: 10.1186/s13068-017-0822-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bipolaris sorokiniana is a filamentous fungus that causes spot blotch disease in cereals like wheat and has severe economic consequences. However, information on the identities and role of the cell wall-degrading enzymes (CWDE) in B. sorokiniana is very limited. Several fungi produce CWDE like glycosyl hydrolases (GHs) that help in host cell invasion. To understand the role of these CWDE in B. sorokiniana, the first step is to identify and annotate all possible genes of the GH families like GH3, GH6, GH7, GH45 and AA9 and then characterize them biochemically. RESULTS We confirmed and annotated the homologs of GH3, GH6, GH7, GH45 and AA9 enzymes in the B. sorokiniana genome using the sequence and domain features of these families. Quantitative real-time PCR analyses of these homologs revealed that the transcripts of the BsGH7-3 (3rd homolog of the GH 7 family in B. sorokiniana) were most abundant. BsGH7-3, the gene of BsGH7-3, was thus cloned into pPICZαC Pichia pastoris vector and expressed in X33 P. pastoris host to be characterized. BsGH7-3 enzyme showed a temperature optimum of 60 °C and a pHopt of 8.1. BsGH7-3 was identified to be an endoglucanase based on its broad substrate specificity and structural comparisons with other such endoglucanases. BsGH7-3 has a very long half-life and retains 100% activity even in the presence of 4 M NaCl, 4 M KCl and 20% (v/v) ionic liquids. The enzyme activity is stimulated up to fivefold in the presence of Mn+2 and Fe+2 without any deleterious effects on enzyme thermostability. CONCLUSIONS Here we reanalysed the B. sorokiniana genome and selected one GH7 enzyme for further characterization. The present work demonstrates that BsGH7-3 is an endoglucanase with a long half-life and no loss in activity in the presence of denaturants like salt and ionic liquids, and lays the foundation towards exploring the Bipolaris genome for other cell wall-degrading enzymes.
Collapse
Affiliation(s)
- Shritama Aich
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Ravi K. Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India
| | - Pritha Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India
| | - Shree P. Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
37
|
Guo ZP, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, O’Donohue MJ. Conferring cellulose-degrading ability to Yarrowia lipolytica to facilitate a consolidated bioprocessing approach. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:132. [PMID: 28533816 PMCID: PMC5438512 DOI: 10.1186/s13068-017-0819-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/13/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Yarrowia lipolytica, one of the most widely studied "nonconventional" oleaginous yeast species, is unable to grow on cellulose. Recently, we identified and overexpressed two endogenous β-glucosidases in Y. lipolytica, thus enabling this yeast to use cello-oligosaccharides as a carbon source for growth. Using this engineered yeast platform, we have now gone further toward building a fully cellulolytic Y. lipolytica for use in consolidated bioprocessing of cellulose. RESULTS Initially, different essential enzyme components of a cellulase cocktail (i.e,. cellobiohydrolases and endoglucanases) were individually expressed in Y. lipolytica in order to ascertain the viability of the strategy. Accordingly, the Trichoderma reesei endoglucanase I (TrEG I) and II (TrEG II) were secreted as active proteins in Y. lipolytica, with the secretion yield of EG II being twice that of EG I. Characterization of the purified His-tagged recombinant EG proteins (rhTrEGs) revealed that rhTrEG I displayed higher specific activity than rhTrEG II on both cellotriose and insoluble cellulosic substrates, such as Avicel, β-1, 3 glucan, β-1, 4 glucan, and PASC. Similarly, cellobiohydrolases, such as T. reesei CBH I and II (TrCBH I and II), and the CBH I from Neurospora crassa (NcCBH I) were successfully expressed in Y. lipolytica. However, the yield of the expressed TrCBH I was low, so work on this was not pursued. Contrastingly, rhNcCBH I was not only well expressed, but also highly active on PASC and more active on Avicel (0.11 U/mg) than wild-type TrCBH I (0.065 U/mg). Therefore, work was pursued using a combination of NcCBH I and TrCBH II. The quantification of enzyme levels in culture supernatants revealed that the use of a hybrid promoter instead of the primarily used TEF promoter procured four and eight times more NcCBH I and TrCBH II expressions, respectively. Finally, the coexpression of the previously described Y. lipolytica β-glucosidases, the CBH II, and EG I and II from T. reesei, and the N. crassa CBH I procured an engineered Y. lipolytica strain that was able to grow both on model cellulose substrates, such as highly crystalline Avicel, and on industrial cellulose pulp, such as that obtained using an organosolv process. CONCLUSIONS A Y. lipolytica strain coexpressing six cellulolytic enzyme components has been successfully developed. In addition, the results presented show how the recombinant strain can be optimized, for example, using artificial promoters to tailor expression levels. Most significantly, this study has provided a demonstration of how the strain can grow on a sample of industrial cellulose as sole carbon source, thus revealing the feasibility of Yarrowia-based consolidated bioprocess for the production of fuel and chemical precursors. Further, enzyme and strain optimization, coupled to appropriate process design, will undoubtedly lead to much better performances in the future.
Collapse
Affiliation(s)
- Zhong-peng Guo
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Duquesne
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Bozonnet
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Gianluca Cioci
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alain Marty
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Michael Joseph O’Donohue
- Biocatalysis Group, INSA/INRA UMR 792, CNRS, LISBP, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
38
|
Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes. mBio 2017; 8:mBio.02231-16. [PMID: 28096492 PMCID: PMC5241404 DOI: 10.1128/mbio.02231-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We demonstrate that the modification is important for the structural stability and aminopeptidase resistance of CBH-1 and GH5-1, two important cellulase enzymes utilized in industrial plant cell wall deconstruction. Many additional fungal proteins predicted in the genome of N. crassa and other filamentous fungi are predicted to carry an N-terminal pyroglutamate modification. Pyroglutamate addition may also be a useful way to stabilize secreted proteins and peptides, which can be easily produced in fungal production systems.
Collapse
|
39
|
Wang X, Rong L, Wang M, Pan Y, Zhao Y, Tao F. Improving the activity of endoglucanase I (EGI) from Saccharomyces cerevisiae by DNA shuffling. RSC Adv 2017. [DOI: 10.1039/c6ra26508a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To enhance the endo-β-1,4-glucanase activity of three mixedTrichodermasp. (Trichoderma reesei, Trichoderma longibrachiatum, andTrichoderma pseudokoningii), we optimized the efficiency of the encoding gene using DNA shuffling andSaccharomyces cerevisiaeINVSc1 as a host.
Collapse
Affiliation(s)
- Xu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- School of Life Sciences
| | - Liang Rong
- USC School of Pharmacy
- University of Southern California
- Los Angeles
- USA
| | - Mingfu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Yingjie Pan
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Yong Zhao
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Fang Tao
- School of Life Sciences
- Anhui Agricultural University
- China
| |
Collapse
|
40
|
Guo ZP, Duquesne S, Bozonnet S, Nicaud JM, Marty A, O’Donohue MJ. Expressing accessory proteins in cellulolytic Yarrowia lipolytica to improve the conversion yield of recalcitrant cellulose. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:298. [PMID: 29238402 PMCID: PMC5724336 DOI: 10.1186/s13068-017-0990-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/04/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND A recently constructed cellulolytic Yarrowia lipolytica is able to grow efficiently on an industrial organosolv cellulose pulp, but shows limited ability to degrade crystalline cellulose. In this work, we have further engineered this strain, adding accessory proteins xylanase II (XYNII), lytic polysaccharide monooxygenase (LPMO), and swollenin (SWO) from Trichoderma reesei in order to enhance the degradation of recalcitrant substrate. RESULTS The production of EG I was enhanced using a promoter engineering strategy. This provided a new cellulolytic Y. lipolytica strain, which compared to the parent strain, exhibited higher hydrolytic activity on different cellulosic substrates. Furthermore, three accessory proteins, TrXYNII, TrLPMOA and TrSWO, were individually expressed in cellulolytic and non-cellulolytic Y. lipolytica. The amount of rhTrXYNII and rhTrLPMOA secreted by non-cellulolytic Y. lipolytica in YTD medium during batch cultivation in flasks was approximately 62 and 52 mg/L, respectively. The purified rhTrXYNII showed a specific activity of 532 U/mg-protein on beechwood xylan, while rhTrLPMOA exhibited a specific activity of 14.4 U/g-protein when using the Amplex Red/horseradish peroxidase assay. Characterization of rhTrLPMOA revealed that this protein displays broad specificity against β-(1,4)-linked glucans, but is inactive on xylan. Further studies showed that the presence of TrLPMOA synergistically enhanced enzymatic hydrolysis of cellulose by cellulases, while TrSWO1 boosted cellulose hydrolysis only when it was applied before the action of cellulases. The presence of rTrXYNII enhanced enzymatic hydrolysis of an industrial cellulose pulp and of wheat straw. Co-expressing TrXYNII and TrLPMOA in cellulolytic Y. lipolytica with enhanced EG I production procured a novel engineered Y. lipolytica strain that displayed enhanced ability to degrade both amorphous (CIMV-cellulose) and recalcitrant crystalline cellulose in complex biomass (wheat straw) by 16 and 90%, respectively. CONCLUSIONS This study has provided a potent cellulose-degrading Y. lipolytica strain that co-expresses a core set of cellulolytic enzymes and some accessory proteins. Results reveal that the tuning of cellulase production and the production of accessory proteins leads to optimized performance. Accordingly, the beneficial effect of accessory proteins for cellulase-mediated degradation of cellulose is underlined, especially when crystalline cellulose and complex biomass are used as substrates. Findings specifically underline the benefits and specific properties of swollenin. Although in our study swollenin clearly promoted cellulase action, its use requires process redesign to accommodate its specific mode of action.
Collapse
Affiliation(s)
- Zhong-peng Guo
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- LISBP-Biocatalysis Group, INSA/INRA UMR 792, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Duquesne
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alain Marty
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- LISBP-Biocatalysis Group, INSA/INRA UMR 792, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Michael Joseph O’Donohue
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- LISBP-Biocatalysis Group, INSA/INRA UMR 792, 135, Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
41
|
Duwe A, Tippkötter N, Ulber R. Lignocellulose-Biorefinery: Ethanol-Focused. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:177-215. [PMID: 29071401 DOI: 10.1007/10_2016_72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.
Collapse
Affiliation(s)
- A Duwe
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - N Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
42
|
Sørensen TH, Windahl MS, McBrayer B, Kari J, Olsen JP, Borch K, Westh P. Loop variants of the thermophileRasamsonia emersoniiCel7A with improved activity against cellulose. Biotechnol Bioeng 2016; 114:53-62. [DOI: 10.1002/bit.26050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Trine Holst Sørensen
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| | | | | | - Jeppe Kari
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| | - Johan Pelck Olsen
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| | | | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| |
Collapse
|
43
|
Fang H, Zhao C, Chen S. Single cell oil production by Mortierella isabellina from steam exploded corn stover degraded by three-stage enzymatic hydrolysis in the context of on-site enzyme production. BIORESOURCE TECHNOLOGY 2016; 216:988-95. [PMID: 27343451 DOI: 10.1016/j.biortech.2016.06.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Single cell oil (SCO), promising as alternative oil source, was produced from steam exploded corn stover (SECS) by Mortierella isabellina. Different bioprocesses from SECS to SCO were compared and the bioprocess C using the three-stage enzymatic hydrolysis was found to be the most efficient one. The bioprocess C used the lowest enzyme input 20FPIU cellulase/g glucan and the shortest time 222h, but produced 44.94g dry cell biomass and 25.77g lipid from 327.63g dry SECS. It had the highest lipid content 57.34%, and its productivities and yields were much higher than those of the bioprocess B and comparable to the bioprocess A, indicating that the three-stage enzymatic hydrolysis could greatly improve the efficiency of the bioprocess from high solid loading SECS to SCO by Mortierella isabellina. This work testified the application value of three-stage enzymatic hydrolysis in lignocellulose-based bioprocesses.
Collapse
Affiliation(s)
- Hao Fang
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 2015; 33:1912-22. [DOI: 10.1016/j.biotechadv.2015.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
|
45
|
Pfeiffer KA, Sorek H, Roche CM, Strobel KL, Blanch HW, Clark DS. Evaluating endoglucanase Cel7B-lignin interaction mechanisms and kinetics using quartz crystal microgravimetry. Biotechnol Bioeng 2015; 112:2256-66. [DOI: 10.1002/bit.25657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Katherine A. Pfeiffer
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California 94720
- Energy Biosciences Institute; University of California; Berkeley California 94720
| | - Hagit Sorek
- Energy Biosciences Institute; University of California; Berkeley California 94720
| | - Christine M. Roche
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California 94720
- Energy Biosciences Institute; University of California; Berkeley California 94720
| | - Kathryn L. Strobel
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California 94720
- Energy Biosciences Institute; University of California; Berkeley California 94720
| | - Harvey W. Blanch
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California 94720
- Energy Biosciences Institute; University of California; Berkeley California 94720
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering; University of California; Berkeley California 94720
- Energy Biosciences Institute; University of California; Berkeley California 94720
| |
Collapse
|