1
|
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019; 1092:102-107. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is currently used as a biomarker protein for cancer early diagnosis and clinical treatment. Herein, we reported a robust and enzyme-free strategy based on aptamer recognition and proximity-induced entropy-driven circuits (AR-PEDC) for homogeneous and rapid detection of platelet-derived growth factor BB (PDGF-BB) without any washing steps or thermocycling. The proximity probes specifically recognize target protein to form the completed trigger (CT). Then, the CT reacts with three-strand complex to form intermediate, which subsequently binds to fuel strand to release reporter strand, assistant strand and the CT. The revised proximity probes exhibit significantly improved signal-to-background ratio and faster association rate. Moreover, target protein/proximity probes interaction can specifically initiate entropy-driven circuits, thus providing immense signal amplification for ultrasensitive detection of PDGF-BB with low detection limit of 9.6 pM. The practical ability of the developed strategy is demonstrated by detection of PDGF-BB in human serum with satisfactory results. In addition, this method is flexible and can be conveniently extended to a variety of targets by simply substituting the target specific sequence. Thus, this strategy presents a rapid, low background and versatile amplification mechanism for the detection of protein biomarkers and offers a promising alternative platform for clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjiao Chen
- Department of Laboratory Medicine, Fengjie Country Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Shijia Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
He SQ, Xu Q, Tiwari V, Yang F, Anderson M, Chen Z, Grenald SA, Raja SN, Dong X, Guan Y. Oligomerization of MrgC11 and μ-opioid receptors in sensory neurons enhances morphine analgesia. Sci Signal 2018; 11:eaao3134. [PMID: 29921657 PMCID: PMC6328051 DOI: 10.1126/scisignal.aao3134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The μ-opioid receptor (MOR) agonist morphine is commonly used for pain management, but it has severe adverse effects and produces analgesic tolerance. Thus, alternative ways of stimulating MOR activity are needed. We found that MrgC11, a sensory neuron-specific G protein-coupled receptor, may form heteromeric complexes with MOR. Peptide-mediated activation of MrgC11 enhanced MOR recycling by inducing coendocytosis and sorting of MOR for membrane reinsertion. MrgC11 activation also inhibited the coupling of MOR to β-arrestin-2 and enhanced the morphine-dependent inhibition of cAMP production. Intrathecal coadministration of a low dose of an MrgC agonist potentiated acute morphine analgesia and reduced chronic morphine tolerance in wild-type mice but not in Mrg-cluster knockout (Mrg KO) mice. BAM22, a bivalent agonist of MrgC and opioid receptors, enhanced the interaction between MrgC11 and MOR and produced stronger analgesia than did the individual monovalent agonists. Morphine-induced neuronal and pain inhibition was reduced in Mrg KO mice compared to that in wild-type mice. Our results uncover MrgC11-MOR interactions that lead to positive functional modulation of MOR. MrgC shares genetic homogeneity and functional similarity with human MrgX1. Thus, harnessing this positive modulation of MOR function by Mrg signaling may enhance morphine analgesia in a sensory neuron-specific fashion to limit central side effects.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qian Xu
- Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Anderson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaness A Grenald
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Jadwin JA, Curran TG, Lafontaine AT, White FM, Mayer BJ. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J Biol Chem 2017; 293:623-637. [PMID: 29162725 DOI: 10.1074/jbc.m117.794412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/17/2017] [Indexed: 02/03/2023] Open
Abstract
Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr-EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain-binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.
Collapse
Affiliation(s)
- Joshua A Jadwin
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Timothy G Curran
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Adam T Lafontaine
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Forest M White
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bruce J Mayer
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| |
Collapse
|
4
|
Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. Current Approaches Toward Quantitative Mapping of the Interactome. Front Genet 2016; 7:74. [PMID: 27200083 PMCID: PMC4854875 DOI: 10.3389/fgene.2016.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes. Disease is often caused by perturbation of PPIs, as recently indicated by studies of missense mutations. To understand the associations of proteins and to unravel the global picture of PPIs in the cell, different experimental detection techniques for PPIs have been established. Genetic and biochemical methods such as the yeast two-hybrid system or affinity purification-based approaches are well suited to high-throughput, proteome-wide screening and are mainly used to obtain qualitative results. However, they have been criticized for not reflecting the cellular situation or the dynamic nature of PPIs. In this review, we provide an overview of various genetic methods that go beyond qualitative detection and allow quantitative measuring of PPIs in mammalian cells, such as dual luminescence-based co-immunoprecipitation, Förster resonance energy transfer or luminescence-based mammalian interactome mapping with bait control. We discuss the strengths and weaknesses of different techniques and their potential applications in biomedical research.
Collapse
Affiliation(s)
| | - Philipp Trepte
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| | | | | | - Erich E Wanker
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| |
Collapse
|
5
|
Jadwin JA, Oh D, Curran TG, Ogiue-Ikeda M, Jia L, White FM, Machida K, Yu J, Mayer BJ. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. eLife 2016; 5:e11835. [PMID: 27071344 PMCID: PMC4841779 DOI: 10.7554/elife.11835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
While the affinities and specificities of SH2 domain-phosphotyrosine interactions have been well characterized, spatio-temporal changes in phosphosite availability in response to signals, and their impact on recruitment of SH2-containing proteins in vivo, are not well understood. To address this issue, we used three complementary experimental approaches to monitor phosphorylation and SH2 binding in human A431 cells stimulated with epidermal growth factor (EGF): 1) phospho-specific mass spectrometry; 2) far-Western blotting; and 3) live cell single-molecule imaging of SH2 membrane recruitment. Far-Western and MS analyses identified both well-established and previously undocumented EGF-dependent tyrosine phosphorylation and binding events, as well as dynamic changes in binding patterns over time. In comparing SH2 binding site phosphorylation with SH2 domain membrane recruitment in living cells, we found in vivo binding to be much slower. Delayed SH2 domain recruitment correlated with clustering of SH2 domain binding sites on the membrane, consistent with membrane retention via SH2 rebinding. DOI:http://dx.doi.org/10.7554/eLife.11835.001 Individual cells in a multicellular organism must receive signals from the environment and from other cells, and adjust their behavior accordingly. Such signals may cause a cell to grow and multiply, move, or even die. Often these signals are received by receptor proteins, which span the cell membrane and thus provide a way for signals from outside the cell to cause changes inside the cell. The tyrosine kinases are one such group of membrane receptors. When a signal binds to a tyrosine kinase, the receptor is activated and it can add chemical tags called phosphates to the part of itself, or a neighboring protein, that is inside the cell. These phosphates provide binding sites for other types of proteins, many of which contain a section called a SH2 domain. This transmits the signal and leads to further changes in the cell. However, there are over a hundred different SH2 domain-containing proteins in human cells and we do not have a clear picture of what exactly happens when receptor tyrosine kinases are activated. Jadwin, Oh et al. have now looked at how the number of SH2 domain binding sites changes over time after a signal is received. The experiments used three different experimental approaches to study a tyrosine kinase called the Epidermal Growth Factor (EGF) receptor, which is often over-active in human cancers. Jadwin, Oh et al. found that the timing of the changes in the number of SH2 domain binding sites on EGF varied widely. The different methods provided different perspectives on exactly when the changes happen, for example, directly observing the binding of SH2 domains to the membrane of living cells under the microscope showed that binding was much slower than expected from other methods that used purified proteins in solutions. This might be due to the receptors taking a relatively long time to form clusters at the membrane after they receive a signal. Further experiments suggested that what happens when EGF is activated may depend not only on the number of SH2 domain binding sites made, but also the timing and the physical arrangement of those sites. A long-term goal for further studies is to understand how various types of signals can lead to different outcomes in the cell. DOI:http://dx.doi.org/10.7554/eLife.11835.002
Collapse
Affiliation(s)
- Joshua A Jadwin
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Dongmyung Oh
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
| | - Timothy G Curran
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Lin Jia
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Ji Yu
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
| | - Bruce J Mayer
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States.,Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
| |
Collapse
|