1
|
Grassi L, Harris C, Zhu J, Hatton D, Dunn S. Next-generation sequencing: A powerful multi-purpose tool in cell line development for biologics production. Comput Struct Biotechnol J 2025; 27:1511-1517. [PMID: 40265158 PMCID: PMC12013335 DOI: 10.1016/j.csbj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Within the biopharmaceutical industry, the cell line development (CLD) process generates recombinant mammalian cell lines for the expression of therapeutic proteins. Analytical methods for the extensive characterisation of the protein product are well established; however, over recent years, next-generation sequencing (NGS) technologies have rapidly become an integral part of the CLD workflow. NGS can be used for different applications to characterise the genome, epigenome and transcriptome of cell lines. The resulting extensive datasets, especially when integrated with systems biology models, can give comprehensive insights that can be applied to optimize cell lines, media, and fermentation processes. NGS also provides comprehensive methods to monitor genetic variability during CLD. High coverage NGS experiments can indeed be used to ensure the integrity of plasmids, identify integration sites, and verify monoclonality of the cell lines. This review summarises the role of NGS in advancing biopharmaceutical production to ensure safety and efficacy of therapeutic proteins.
Collapse
Affiliation(s)
- Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jie Zhu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Dunn
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
2
|
Wang C, Guo X, Wang W, Li JX, Wang TY. From Cell Clones to Recombinant Protein Product Heterogeneity in Chinese Hamster Ovary Cell Systems. Int J Mol Sci 2025; 26:1324. [PMID: 39941092 PMCID: PMC11818180 DOI: 10.3390/ijms26031324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Chinese hamster ovary (CHO) cells are commonly used to produce recombinant therapeutic proteins (RTPs). The yield of RTPs in CHO cells has been greatly improved through cell editing and optimization of culture media, cell culture processes, and expression vectors. However, the heterogeneity of cell clones and product aggregation considerably affect the yield and quality of RTPs. Recently, novel technologies such as semi-targeted and site-specific transgene integration, endoplasmic reticulum-residents, and cell culture process optimization have been used to address these issues. In this review, novel developments in the field of CHO cell expression system heterogeneity are summarized. Moreover, the advantages and limitations of the new strategies are discussed, and important methods for the control of RTP quality are outlined.
Collapse
Affiliation(s)
- Chong Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China;
| | - Xiao Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Wen Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Jia-Xin Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
| | - Tian-Yun Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| |
Collapse
|
3
|
Sizer RE, Ingram RM, White RJ. Barriers Composed of tRNA Genes Can Complement the Benefits of a Ubiquitous Chromatin Opening Element to Enhance Transgene Expression. Biotechnol J 2025; 20:e202400455. [PMID: 39956936 PMCID: PMC11830863 DOI: 10.1002/biot.202400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/18/2025]
Abstract
Random integration of transgenes into host cell genomes often occurs in epigenetically unstable regions, leading to variable and unreliable transgene expression. To address this, biomanufacturing organizations frequently employ barrier elements, such as the widely-used ubiquitous chromatin opening element (UCOE). We have compared UCOE barrier activity against a barrier provided by tRNA genes. We demonstrate that the tRNA genes provide a more effective barrier than a UCOE in preventing transgene silencing in Chinese hamster ovary (CHO) cells. Nevertheless, the UCOE offers other benefits, increasing expression strongly, albeit transiently, and reducing production variability. Both the UCOE and tRNA genes counteract the repressive heterochromatin mark H3K9me3, but only the tRNA genes sustain euchromatic H3K27ac and recruitment of RNA polymerase II (Pol II) throughout long-term culture. A hybrid combining these distinct types of elements can provide benefits of both, enhancing expression in a more enduring manner. This synthetic hybrid offers potential for biomanufacturing applications.
Collapse
|
4
|
Butterfield SP, Sizer RE, Saunders FL, White RJ. Selective Recruitment of a Synthetic Histone Acetyltransferase Can Boost CHO Cell Productivity. Biotechnol J 2024; 19:e202400474. [PMID: 39655408 PMCID: PMC11629143 DOI: 10.1002/biot.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Industrial production of biologics typically involves the integration of transgenes into host cell genomes, most often Chinese hamster ovary (CHO) cells. Epigenetic control of transgene expression is a major determinant of production titers. Although the cytomegalovirus (CMV) promoter has long been used to drive industrial transgene expression, we found that its associated histones are suboptimally acetylated in CHO cells, providing an opportunity to enhance productivity through epigenetic manipulation. Expression of monoclonal antibody mRNAs increased up to 12-fold when a CRISPR-dCas9 system delivered the catalytic domain of a histone acetyltransferase to the CMV promoter. This effect was far stronger than when promoter DNA was selectively demethylated using dCas9 fused to a 5-methylcytosine dioxygenase. Mechanistically, acetylation-mediated transcriptional activation involved heightened phosphorylation and activity of RNA polymerase II, enabling it to escape promoter-proximal pausing at the transgene. This approach almost doubled the titer and specific productivity of antibody-producing CHO cells, demonstrating the potential for biomanufacturing.
Collapse
|
5
|
Zeh N, Schmidt M, Schulz P, Fischer S. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Biotechnol Adv 2024; 75:108402. [PMID: 38950872 DOI: 10.1016/j.biotechadv.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Cell line development represents a crucial step in the development process of a therapeutic glycoprotein. Chinese hamster ovary (CHO) cells are the most frequently employed mammalian host cell system for the industrial manufacturing of biologics. The predominant application of CHO cells for heterologous recombinant protein expression lies in the relative simplicity of stably introducing ectopic DNA into the CHO host cell genome. Since CHO cells were first used as expression host for the industrial production of biologics in the late 1980s, stable genomic transgene integration has been achieved almost exclusively by random integration. Since then, random transgene integration had become the gold standard for generating stable CHO production cell lines due to a lack of viable alternatives. However, it was eventually demonstrated that this approach poses significant challenges on the cell line development process such as an increased risk of inducing cell line instability. In recent years, significant discoveries of new and highly potent (semi)-targeted transgene integration systems have paved the way for a technological revolution in the cell line development sector. These advanced methodologies comprise the application of transposase-, recombinase- or Cas9 nuclease-mediated site-specific genomic integration techniques, which enable a scarless transfer of the transgene expression cassette into transcriptionally active loci within the host cell genome. This review summarizes recent advancements in the field of transgene integration technologies for CHO cell line development and compare them to the established random integration approach. Moreover, advantages and limitations of (semi)-targeted integration techniques are discussed, and benefits and opportunities for the biopharmaceutical industry are outlined.
Collapse
Affiliation(s)
- Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany.
| |
Collapse
|
6
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
7
|
Han MM, Wang HT, Zhang HJ, Lu JT, Guo JL, Qiu LL, Zhang X, Wang XY, Wang TY, Jia YL. A novel dual-epigenetic inhibitor enhances recombinant monoclonal antibody expression in CHO cells. Appl Microbiol Biotechnol 2024; 108:467. [PMID: 39292268 PMCID: PMC11411004 DOI: 10.1007/s00253-024-13302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Epigenetic regulation plays a central role in the regulation of a number of cellular processes such as proliferation, differentiation, cell cycle, and apoptosis. In particular, small molecule epigenetic modulators are key elements that can effectively influence gene expression by precisely regulating the epigenetic state of cells. To identify useful small-molecule regulators that enhance the expression of recombinant proteins in Chinese hamster ovary (CHO) cells, we examined a novel dual-HDAC/LSD1 inhibitor I-4 as a supplement for recombinant CHO cells. Treatment with 2 μM I-4 was most effective in increasing monoclonal antibody production. Despite cell cycle arrest at the G1/G0 phase, which inhibits cell growth, the addition of the inhibitor at 2 µM to monoclonal antibody-expressing CHO cell cultures resulted in a 1.94-fold increase in the maximal monoclonal antibody titer and a 2.43-fold increase in specific monoclonal antibody production. In addition, I-4 significantly increased the messenger RNA levels of the monoclonal antibody and histone H3 acetylation and methylation levels. We also investigated the effect on HDAC-related isoforms and found that interference with the HDAC5 gene increased the monoclonal antibody titer by 1.64-fold. The results of this work provide an effective method of using epigenetic regulatory strategies to enhance the expression of recombinant proteins in CHO cells. KEY POINTS: • HDAC/LSD1 dual-target small molecule inhibitor can increase the expression level of recombinant monoclonal antibodies in CHO cells. • By affecting the acetylation and methylation levels of histones in CHO cells and downregulating HDAC5, the production of recombinant monoclonal antibodies increased. • It provides an effective pathway for applying epigenetic regulation strategies to enhance the expression of recombinant proteins.
Collapse
Affiliation(s)
- Ming-Ming Han
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hai-Tong Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia-Liang Guo
- Junji College, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
8
|
Torres M, Betts Z, Scholey R, Elvin M, Place S, Hayes A, Dickson AJ. Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol Bioeng 2023; 120:2389-2402. [PMID: 37060548 DOI: 10.1002/bit.28399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Zeynep Betts
- Department of Biology, Kocaeli University, İzmit, Turkey
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Mark Elvin
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Svetlana Place
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Kaur R, Jain R, Budholiya N, Rathore AS. Long term culturing of CHO cells: phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol Lett 2023; 45:357-370. [PMID: 36707452 DOI: 10.1007/s10529-023-03346-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Establishing cell lines with enhanced protein production requires a deep understanding of the cellular dynamics and cell line stability. The aim of the study is to investigate the impact of long term culturing (LTC) on cell morphology and altered cellular functions possibly leading to phenotypic drift, impacting product yield and quality. Study highlights the orthogonal cellular and analytical assay toolbox to define cell line stability for optimal culture performance and product quality. METHODS We investigated recombinant monoclonal antibody (mAb) expressing CHO cells for 60 passages or 180 generations and assessed the cell growth characteristics and morphology by confocal and scanning electron microscopy. Quality attributes of expressed mAb is accessed by performing charge variants, glycan, and host cell protein analysis. RESULTS We observed a 1.65-fold increase in viable cell population and 1.3-fold increase in cell specific growth rate. A 2.5-fold decrease in antibody titer and abatement of actin filament indicate cellular phenotypic drift. Mitochondrial membrane potential (∆ΨM) signified cell health and metabolic activity during LTC. Host cell protein production is reduced by 1.8-fold. Charge heterogeneity was perturbed with 12.5% and 43% reduction in abundance of acidic and basic charge variants respectively. Glycan profile indicated a decline in fucosylation with 17% increase in galactosylated species as compared with early passaged cells. CONCLUSION LTC impinges on cellular phenotype as well as the quality of the expressed antibody, suggesting a defined subculturing limit to retain stable protein expression and cell morphology to achieve consistent product quality. Study signifies the changes in cellular and metabolic markers, suggesting cellular and analytical toolbox which could play a significant role in defining cell characteristics and ensured product quality.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Jain
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Niharika Budholiya
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
10
|
Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J 2022; 21:275-283. [PMID: 36582439 PMCID: PMC9764128 DOI: 10.1016/j.csbj.2022.11.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Amongst the most important outputs of the biopharmaceutical industry are recombinant proteins, many of which are produced by integrating transgenes into the genomes of mammalian cells. However, expression is highly variable and can be unstable during prolonged culture. This is often due to epigenetic mechanisms silencing the transgenes. To combat this problem, vectors have been engineered to include ubiquitous chromatin opening elements (UCOEs) that protect against silencing. Here, we recount the evidence that UCOEs can modify chromatin environments and benefit biomanufacturing.
Collapse
|
11
|
Spahn PN, Zhang X, Hu Q, Lu H, Hamaker NK, Hefzi H, Li S, Kuo CC, Huang Y, Lee JC, Davis AJ, Ly P, Lee KH, Lewis NE. Restoration of DNA repair mitigates genome instability and increases productivity of Chinese hamster ovary cells. Biotechnol Bioeng 2022; 119:963-982. [PMID: 34953085 PMCID: PMC8821244 DOI: 10.1002/bit.28016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/11/2022]
Abstract
Chinese hamster ovary (CHO) cells are the primary host for manufacturing of therapeutic proteins. However, productivity loss is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein expression. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide variants in DNA repair genes. Comparison with primary Chinese hamster cells confirmed DNA repair to be compromised in CHO. Correction of key DNA repair genes by single-nucleotide variant reversal or expression of intact complementary DNAs successfully improved DNA repair and mitigated karyotypic instability. Moreover, overexpression of intact copies of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show that correction of DNA repair genes yields improvements in genome stability in CHO, and provide new opportunities for cell line development for sustainable protein expression.
Collapse
Affiliation(s)
- Philipp N. Spahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, San Diego, La Jolla, CA 92093
| | - Xiaolin Zhang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Huiming Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nathaniel K. Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Yingxiang Huang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Jamie C. Lee
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Anthony J. Davis
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, These authors jointly supervised this work: Kelvin H. Lee, , 302-831-0344, Nathan E. Lewis, , 858-997-5844
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, San Diego, La Jolla, CA 92093, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, These authors jointly supervised this work: Kelvin H. Lee, , 302-831-0344, Nathan E. Lewis, , 858-997-5844
| |
Collapse
|
12
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
13
|
Chang M, Kumar A, Kumar S, Huhn S, Timp W, Betenbaugh M, Du Z. Epigenetic Comparison of CHO Hosts and Clones Reveals Divergent Methylation and Transcription Patterns Across Lineages. Biotechnol Bioeng 2022; 119:1062-1076. [PMID: 35028935 DOI: 10.1002/bit.28036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/26/2021] [Indexed: 11/11/2022]
Abstract
In this study, we examined DNA methylation and transcription profiles of recombinant clones derived from two different Chinese hamster ovary hosts. We found striking epigenetic differences between the clones, with global hypomethylation in the host 1 clones that produce bispecific antibody with higher productivity and complex assembly efficiency. Whereas the methylation patterns were found mostly inherited from the host, the host 1 clones exhibited continued demethylation reflected by the hypomethylation of newly emerged differential methylation regions (DMRs) even at the clone development stage. Several interconnected biological functions and pathways including cell adhesion, regulation of ion transport, and cholesterol biosynthesis were significantly altered between the clones at the RNA expression level and contained DMR in the promoter and/or gene-body of the transcripts, suggesting epigenetic regulation. Indeed, expression changes of epigenetic regulators were observed including writers (Dnmt1, Setdb1), readers (Mecp2), and erasers (Tet3, Kdm3a, Kdm1b/5c) involved in CpG methylation, histone methylation and heterochromatin maintenance. In addition, we identified putative transcription factors that may be readers or effectors of the epigenetic regulation in these clones. By combining transcriptomics with DNA methylation data, we identified potential processes and factors that may contribute to the variability in cell physiology between different production hosts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiping Chang
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Amit Kumar
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Steven Huhn
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Zhimei Du
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
14
|
Kim D, Yoon C, Lee GM. Small molecule epigenetic modulators for enhancing recombinant antibody production in CHO cell cultures. Biotechnol Bioeng 2021; 119:820-831. [PMID: 34961935 DOI: 10.1002/bit.28013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022]
Abstract
Small molecule epigenetic modulators that modify epigenetic states in cells are useful tools for regulating gene expression by inducing chromatin remodeling. To identify small molecule epigenetic modulators that enhance recombinant protein expression in CHO cells, we examined eight histone deacetylase inhibitors (iHDACs) and six DNA methyltransferase inhibitors as chemical additives in recombinant CHO (rCHO) cell cultures. Among these, a benzamide-based iHDAC, CI994, was the most effective in increasing monoclonal antibody (mAb) production. Despite suppressing cell growth, the addition of CI994 to mAb-expressing GSR cell cultures at 10 μM resulted in a 2.3-fold increase in maximum mAb concentration due to a 3.0-fold increase in specific mAb productivity (q mAb ). CI994 increased mAb mRNA levels and histone H3 acetylation in GSR cells, and ChIP-qPCR analysis revealed that CI994 significantly increased the histone H3 acetylation level at the CMV promoter driving mAb gene expression, indicating that chromatin remodeling in the promoter region results in enhanced mAb gene transcription and q mAb . Similar beneficial effects of CI994 on mAb production were observed in mAb-expressing CS13-1.00 cells. Collectively, our findings indicate that CI994 increases mAb production in rCHO cell cultures by chromatin remodeling resulting from acetylation of histones in the mAb gene promoter. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dongil Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chansik Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
15
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
16
|
Chitwood DG, Wang Q, Elliott K, Bullock A, Jordana D, Li Z, Wu C, Harcum SW, Saski CA. Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnol 2021; 21:4. [PMID: 33419422 PMCID: PMC7791692 DOI: 10.1186/s12896-020-00667-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As bioprocess intensification has increased over the last 30 years, yields from mammalian cell processes have increased from 10's of milligrams to over 10's of grams per liter. Most of these gains in productivity can be attributed to increasing cell densities within bioreactors. As such, strategies have been developed to minimize accumulation of metabolic wastes, such as lactate and ammonia. Unfortunately, neither cell growth nor biopharmaceutical production can occur without some waste metabolite accumulation. Inevitably, metabolic waste accumulation leads to decline and termination of the culture. While it is understood that the accumulation of these unwanted compounds imparts a suboptimal culture environment, little is known about the genotoxic properties of these compounds that may lead to global genome instability. In this study, we examined the effects of high and moderate extracellular ammonia on the physiology and genomic integrity of Chinese hamster ovary (CHO) cells. RESULTS Through whole genome sequencing, we discovered 2394 variant sites within functional genes comprised of both single nucleotide polymorphisms and insertion/deletion mutations as a result of ammonia stress with high or moderate impact on functional genes. Furthermore, several of these de novo mutations were found in genes whose functions are to maintain genome stability, such as Tp53, Tnfsf11, Brca1, as well as Nfkb1. Furthermore, we characterized microsatellite content of the cultures using the CriGri-PICR Chinese hamster genome assembly and discovered an abundance of microsatellite loci that are not replicated faithfully in the ammonia-stressed cultures. Unfaithful replication of these loci is a signature of microsatellite instability. With rigorous filtering, we found 124 candidate microsatellite loci that may be suitable for further investigation to determine whether these loci may be reliable biomarkers to predict genome instability in CHO cultures. CONCLUSION This study advances our knowledge with regards to the effects of ammonia accumulation on CHO cell culture performance by identifying ammonia-sensitive genes linked to genome stability and lays the foundation for the development of a new diagnostic tool for assessing genome stability.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Qinghua Wang
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Kathryn Elliott
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Aiyana Bullock
- Department of Biological Sciences, College of Agriculture, Science & Technology, Delaware State University, Dover, DE, 19901, USA
| | - Dwon Jordana
- Department of Biological Sciences, Grambling State University, Grambling, LA, 71245, USA
| | - Zhigang Li
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Cathy Wu
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Sarah W Harcum
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
17
|
Effects of Radiofrequency Radiation on Gene Expression: A Study of Gene Expressions of Human Keratinocytes From Different Origins. Bioelectromagnetics 2020; 41:552-557. [DOI: 10.1002/bem.22287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
|
18
|
Hilliard W, MacDonald ML, Lee KH. Chromosome-scale scaffolds for the Chinese hamster reference genome assembly to facilitate the study of the CHO epigenome. Biotechnol Bioeng 2020; 117:2331-2339. [PMID: 32410221 DOI: 10.1002/bit.27432] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023]
Abstract
The Chinese hamster genome serves as a reference genome for the study of Chinese hamster ovary (CHO) cells, the preferred host system for biopharmaceutical production. Recent re-sequencing of the Chinese hamster genome resulted in the RefSeq PICR meta-assembly, a set of highly accurate scaffolds that filled over 95% of the gaps in previous assembly versions. However, these scaffolds did not reach chromosome-scale due to the absence of long-range scaffolding information during the meta-assembly process. Here, long-range scaffolding of the PICR Chinese hamster genome assembly was performed using high-throughput chromosome conformation capture (Hi-C). This process resulted in a new "PICRH" genome, where 97% of the genome is contained in 11 mega-scaffolds corresponding to the Chinese hamster chromosomes (2n = 22) and the total number of scaffolds is reduced by three-fold from 1,830 scaffolds in PICR to 647 in PICRH. Continuity was improved while preserving accuracy, leading to quality scores higher than recent builds of mouse chromosomes and comparable to human chromosomes. The PICRH genome assembly will be an indispensable tool for designing advanced genetic engineering strategies in CHO cells and enabling systematic examination of genomic and epigenomic instability through comparative analysis of CHO cell lines on a common set of chromosomal coordinates.
Collapse
Affiliation(s)
- William Hilliard
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Madolyn L MacDonald
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
19
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
20
|
Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol 2019; 60:128-137. [DOI: 10.1016/j.copbio.2019.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
|
21
|
Zhang JH, Zhang JH, Wang XY, Xu DH, Wang TY. Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells. Biotechnol Lett 2019; 42:187-196. [PMID: 31776751 DOI: 10.1007/s10529-019-02775-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Previously, we have found that the matrix attachment region (MAR) may confer a 'distance effect' on transgene expression. This work aims to systematically explore the increased transgene expression in transfected Chinese hamster ovary (CHO) cells due to the characteristics of MAR and its mechanism. RESULTS Compared with the control vector, 500 and 1000 bp DNA distances between MAR and the cytomegalovirus promoter can increase transgene expression by 1.77- and 1.56-fold, respectively. Meanwhile, transgene expression was not affected when 2000 and 2500 bp spacer DNAs were inserted, but a declining trend was observed when a 1500 bp spacer DNA was inserted. The vector containing a 500 bp DNA distance significantly increased the expression of the enhanced green fluorescent protein, and this increase was not related to transgene copy numbers. CONCLUSIONS A short DNA distance-containing MAR confers high transgene expression level in transfected CHO cells, but a distance threshold does not exist in the vector system.
Collapse
Affiliation(s)
- Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ji-Hong Zhang
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
22
|
An efficient protein production system via gene amplification on a human artificial chromosome and the chromosome transfer to CHO cells. Sci Rep 2019; 9:16954. [PMID: 31740706 PMCID: PMC6861226 DOI: 10.1038/s41598-019-53116-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
Gene amplification methods play a crucial role in establishment of cells that produce high levels of recombinant protein. However, the stability of such cell lines and the level of recombinant protein produced continue to be suboptimal. Here, we used a combination of a human artificial chromosome (HAC) vector and initiation region (IR)/matrix attachment region (MAR) gene amplification method to establish stable cells that produce high levels of recombinant protein. Amplification of Enhanced green fluorescent protein (EGFP) was induced on a HAC carrying EGFP gene and IR/MAR sequences (EGFP MAR-HAC) in CHO DG44 cells. The expression level of EGFP increased approximately 6-fold compared to the original HAC without IR/MAR sequences. Additionally, anti-vascular endothelial growth factor (VEGF) antibody on a HAC (VEGF MAR-HAC) was also amplified by utilization of this IR/MAR-HAC system, and anti-VEGF antibody levels were approximately 2-fold higher compared with levels in control cells without IR/MAR. Furthermore, the expression of anti-VEGF antibody with VEGF MAR-HAC in CHO-K1 cells increased 2.3-fold compared with that of CHO DG44 cells. Taken together, the IR/MAR-HAC system facilitated amplification of a gene of interest on the HAC vector, and could be used to establish a novel cell line that stably produced protein from mammalian cells.
Collapse
|
23
|
Dahodwala H, Kaushik P, Tejwani V, Kuo CC, Menard P, Henry M, Voldborg BG, Lewis NE, Meleady P, Sharfstein ST. Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. CURRENT RESEARCH IN BIOTECHNOLOGY 2019; 1:49-57. [PMID: 32577618 PMCID: PMC7311070 DOI: 10.1016/j.crbiot.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most therapeutic monoclonal antibodies in biopharmaceutical processes are produced in Chinese hamster ovary (CHO) cells. Technological advances have rendered the selection procedure for higher producers a robust protocol. However, information on molecular mechanisms that impart the property of hyper-productivity in the final selected clones is currently lacking. In this study, an IgG-producing industrial cell line and its methotrexate (MTX)-amplified progeny cell line were analyzed using transcriptomic, proteomic, phosphoproteomic, and chromatin immunoprecipitation (ChIP) techniques. Computational prediction of transcription factor binding to the transgene cytomegalovirus (CMV) promoter by the Transcription Element Search System and upstream regulator analysis of the differential transcriptomic data suggested increased in vivo CMV promoter-cAMP response element binding protein (CREB1) interaction in the higher producing cell line. Differential nuclear proteomic analysis detected 1.3-fold less CREB1 in the nucleus of the high productivity cell line compared with the parental cell line. However, the differential abundance of multiple CREB1 phosphopeptides suggested an increase in CREB1 activity in the higher producing cell line, which was confirmed by increased association of the CMV promotor with CREB1 in the high producer cell line. Thus, we show here that the nuclear proteome and phosphoproteome have an important role in regulating final productivity of recombinant proteins from CHO cells, and that CREB1 may play a role in transcriptional enhancement. Moreover, CREB1 phosphosites may be potential targets for cell engineering for increased productivity.
Collapse
Affiliation(s)
- Hussain Dahodwala
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Prashant Kaushik
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Vijay Tejwani
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrice Menard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Bjorn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| |
Collapse
|
24
|
Mitigating Clonal Variation in Recombinant Mammalian Cell Lines. Trends Biotechnol 2019; 37:931-942. [DOI: 10.1016/j.tibtech.2019.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
|
25
|
Krebs LE, Bowden DM, Bray CM, Shaw MM, Frye CC. Effective and efficient characterization of Chinese hamster ovary production cell lines using automated intracellular staining and statistical modeling. Biotechnol Prog 2019; 34:570-583. [PMID: 29882242 DOI: 10.1002/btpr.2667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Indexed: 11/05/2022]
Abstract
Mammalian cell line development is critical to bioproduct manufacturing. Success requires selecting a line with desirable performance characteristics, including consistent expression throughout the proposed manufacturing window. Given the genetic and phenotypic flux inherent to immortalized lines such as Chinese hamster ovary cells, clonally-derived cell line characterization is vital. We describe here the development and implementation of a novel addition to our characterization approach to ensure production cell line suitability: automated intracellular staining with statistical modeling. Case studies are presented which highlight this method's sensitivity to epigenetic expression effects, closing a gap left by our historically-leveraged genetic suitability characterization. Additionally, we demonstrate how an orthogonal, complimentary assay can help identify opportunities for improvement in even a well-established methodology such as our genetic suitability assessment. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:570-583, 2018.
Collapse
|
26
|
Bertrand V, Karst DJ, Bachmann A, Cantalupo K, Soos M, Morbidelli M. Transcriptome and proteome analysis of steady-state in a perfusion CHO cell culture process. Biotechnol Bioeng 2019; 116:1959-1972. [PMID: 30997936 DOI: 10.1002/bit.26996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 01/05/2023]
Abstract
Long-term continuous protein production can be reached by perfusion operation. Through the continuous removal of waste metabolites and supply of nutrients, steady-state (SS) conditions are achieved after a certain transient period, where the conditions inside the reactor are not only uniform in space but also constant in time. Such stable conditions may have beneficial influences on the reduction of product heterogeneities. In this study, we investigated the impact of perfusion cultivation on the intracellular physiological state of a CHO cell line producing a monoclonal antibody (mAb) by global transcriptomics and proteomics. Despite stable viable cell density was maintained right from the beginning of the cultivation time, productivity decrease, and a transition phase for metabolites and product quality was observed before reaching SS conditions. These were traced back to three sources of transient behaviors being hydrodynamic flow rates, intracellular dynamics of gene expression as well as metabolism and cell line instability, superimposing each other. However, 99.4% of all transcripts and proteins reached SS during the first week or were at SS from the beginning. These results demonstrate that the stable extracellular conditions of perfusion lead to SS also of the cellular level.
Collapse
Affiliation(s)
- Vania Bertrand
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Daniel J Karst
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Alessia Bachmann
- RBM S.p.A. Istituto di Ricerche Biomediche A.Marxer, Merck, Rome, Italy
| | - Katia Cantalupo
- RBM S.p.A. Istituto di Ricerche Biomediche A.Marxer, Merck, Rome, Italy
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Jia YL, Guo X, Wang XC, Wang TY. Human genome-derived TOP1 matrix attachment region enhances transgene expression in the transfected CHO cells. Biotechnol Lett 2019; 41:701-709. [DOI: 10.1007/s10529-019-02673-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/02/2019] [Indexed: 01/08/2023]
|
28
|
Bandyopadhyay AA, O’Brien SA, Zhao L, Fu HY, Vishwanathan N, Hu WS. Recurring genomic structural variation leads to clonal instability and loss of productivity. Biotechnol Bioeng 2019; 116:41-53. [PMID: 30144379 PMCID: PMC7058117 DOI: 10.1002/bit.26823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
Chinese hamster ovary cells, commonly used in the production of therapeutic proteins, are aneuploid. Their chromosomes bear structural abnormality and undergo changes in structure and number during cell proliferation. Some production cell lines are unstable and lose their productivity over time in the manufacturing process and during the product's life cycle. To better understand the link between genomic structural changes and productivity stability, an immunoglobulin G producing cell line was successively single-cell cloned to obtain subclones that retained or lost productivity, and their genomic features were compared. Although each subclone started with a single karyotype, the progeny quickly diversified to a population with a distribution of chromosome numbers that is not distinctive from the parent and among subclones. The comparative genomic hybridization (CGH) analysis showed that the extent of copy variation of gene coding regions among different subclones stayed at levels of a few percent. Genome regions that were prone to loss of copies, including one with a product transgene integration site, were identified in CGH. The loss of the transgene copy was accompanied by loss of transgene transcript level. Sequence analysis of the host cell and parental producing cell showed prominent structural variations within the regions prone to loss of copies. Taken together, we demonstrated the transient nature of clonal homogeneity in cell line development and the retention of a population distribution of chromosome numbers; we further demonstrated that structural variation in the transgene integration region caused cell line instability. Future cell line development may target the transgene into structurally stable regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132 USA
| |
Collapse
|
29
|
Wang W, Guo X, Li YM, Wang XY, Yang XJ, Wang YF, Wang TY. Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur J Pharm Sci 2018; 123:539-545. [DOI: 10.1016/j.ejps.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
|
30
|
O’Brien SA, Lee K, Fu HY, Lee Z, Le TS, Stach CS, McCann MG, Zhang AQ, Smanski MJ, Somia NV, Hu WS. Single Copy Transgene Integration in a Transcriptionally Active Site for Recombinant Protein Synthesis. Biotechnol J 2018; 13:e1800226. [PMID: 30024101 PMCID: PMC7058118 DOI: 10.1002/biot.201800226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Indexed: 12/21/2022]
Abstract
For the biomanufacturing of protein biologics, establishing stable cell lines with high transgene transcription is critical for high productivity. Modern genome engineering tools can direct transgene insertion to a specified genomic locus and can potentially become a valuable tool for cell line generation. In this study, the authors survey transgene integration sites and their transcriptional activity to identify characteristics of desirable regions. A lentivirus containing destabilized Green Fluorescent Protein (dGFP) is used to infect Chinese hamster ovary cells at a low multiplicity of infection, and cells with high or low GFP fluorescence are isolated. RNA sequencing and Assay for Transposase Accessible Chromatin using sequencing data shows integration sites with high GFP expression are in larger regions of high transcriptional activity and accessibility, but not necessarily within highly transcribed genes. This method is used to obtain high Immunoglobulin G (IgG) expressing cell lines with a single copy of the transgene integrated into transcriptionally active and accessible genomic regions. Dual recombinase-mediated cassette exchange is then employed to swap the IgG transgene for erythropoietin or tumor necrosis factor receptor-Fc. This work thus highlights a strategy to identify desirable sites for transgene integration and to streamline the development of new product producing cell lines.
Collapse
Affiliation(s)
- Sofie A. O’Brien
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Kyoungho Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Tung S. Le
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Christopher S. Stach
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Meghan G. McCann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Alicia Q. Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Nikunj V. Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| |
Collapse
|
31
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
32
|
Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HR. Antibody expression stability in CHO clonally derived cell lines and their subclones: Role of methylation in phenotypic and epigenetic heterogeneity. Biotechnol Prog 2018; 34:635-649. [DOI: 10.1002/btpr.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Neha A. Patel
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | | | | - Ray C. Davis
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | - Laura D. Pack
- Dept. of CMC Statistics; Seattle Genetics; Bothell WA 98021
| | - Swapnil Bhargava
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | |
Collapse
|
33
|
Popp O, Moser S, Zielonka J, Rüger P, Hansen S, Plöttner O. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. MAbs 2017; 10:290-303. [PMID: 29173063 PMCID: PMC5825202 DOI: 10.1080/19420862.2017.1405203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Novel biotherapeutic glycoproteins, like recombinant monoclonal antibodies (mAbs) are widely used for the treatment of numerous diseases. The N-glycans attached to the constant region of an antibody have been demonstrated to be crucial for the biological efficacy. Even minor modifications of the N-glycan structure can dictate the potency of IgG effector functions such as the antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Here, we present the development of a glycoengineered CHO-K1 host cell line (HCL), stably expressing β1,4-N-Acetylglucoseaminyltransferase III (GnT-III) and α-mannosidase II (Man-II), for the expression of a-fucosylated antibodies with enhanced Fc-mediated effector function. Glycoengineered HCLs were generated in a two-step strategy, starting with generating parental HCLs by stable transfection of CHO-K1 cells with GnT-III and Man-II. In a second step, parental HCLs were stably transfected a second time with these two transgenes to increase their copy number in the genetic background. Generated glycoengineered CHO-K1 cell lines expressing two different mAbs deliver antibody products with a content of more than 60% a-fucosylated glycans. In-depth analysis of the N-glycan structure revealed that the majority of the Fc-attached glycans of the obtained mAbs were of complex bisected type. Furthermore, we showed the efficient use of FcγRIIIa affinity chromatography as a novel method for the fast assessment of the mAbs a-fucosylation level. By testing different cultivation conditions for the pre-glycoengineered recombinant CHO-K1 clones, we identified key components essential for the production of a-fucosylated mAbs. The prevalent effect could be attributed to the trace element manganese, which leads to a strong increase of a-fucosylated complex- and hybrid-type glycans. In conclusion, the novel pre-glycoengineered CHO-K1 HCL can be used for the production of antibodies with high ratios of a-fucosylated Fc-attached N-glycans. Application of our newly developed FcγRIIIa affinity chromatography method during cell line development and use of optimized cultivation conditions can ultimately support the efficient development of a-fucosylated mAbs.
Collapse
Affiliation(s)
- Oliver Popp
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| | - Samuel Moser
- b Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Zurich , Wagistrasse 18, Schlieren , Switzerland
| | - Jörg Zielonka
- b Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Zurich , Wagistrasse 18, Schlieren , Switzerland
| | - Petra Rüger
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| | - Silke Hansen
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| | - Oliver Plöttner
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| |
Collapse
|
34
|
Stolfa G, Smonskey MT, Boniface R, Hachmann AB, Gulde P, Joshi AD, Pierce AP, Jacobia SJ, Campbell A. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction. Biotechnol J 2017; 13:e1700227. [PMID: 29072373 DOI: 10.1002/biot.201700227] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
CHO cells are the most prevalent platform for modern bio-therapeutic production. Currently, there are several CHO cell lines used in bioproduction with distinct characteristics and unique genotypes and phenotypes. These differences limit advances in productivity and quality that can be achieved by the most common approaches to bioprocess optimization and cell line engineering. Incorporating omics-based approaches into current bioproduction processes will complement traditional methodologies to maximize gains from CHO engineering and bioprocess improvements. In order to highlight the utility of omics technologies in CHO bioproduction, the authors discuss current applications as well as limitations of genomics, transcriptomics, proteomics, metabolomics, lipidomics, fluxomics, glycomics, and multi-omics approaches and the potential they hold for the future of bioproduction. Multiple omics approaches are currently being used to improve CHO bioprocesses; however, the application of these technologies is still limited. As more CHO-omic datasets become available and integrated into systems models, the authors expect significant gains in product yield and quality. While individual omics technologies provide incremental improvements in bioproduction, the authors will likely see the most significant gains by applying multi-omics and systems biology approaches to individual CHO cell lines.
Collapse
Affiliation(s)
- Gino Stolfa
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | | | - Ryan Boniface
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | | | - Paul Gulde
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Atul D Joshi
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Anson P Pierce
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Scott J Jacobia
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Andrew Campbell
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| |
Collapse
|
35
|
Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Sci Rep 2017; 7:10416. [PMID: 28874794 PMCID: PMC5585415 DOI: 10.1038/s41598-017-10966-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
In the present study, six commonly used promoters, including cytomegalovirus major immediate-early (CMV), the CMV enhancer fused to the chicken beta-actin promoter (CAG), human elongation factor-1α (HEF-1α), mouse cytomegalovirus (mouse CMV), Chinese hamster elongation factor-1α (CHEF-1α), and phosphoglycerate kinase (PGK), a CMV promoter mutant and a CAG enhancer, were evaluated to determine their effects on transgene expression and stability in transfected CHO cells. The promoters and enhancer were cloned or synthesized, and mutation at C-404 in the CMV promoter was generated; then all elements were transfected into CHO cells. Stably transfected CHO cells were identified via screening under the selection pressure of G418. Flow cytometry, qPCR, and qRT-PCR were used to explore eGFP expression levels, gene copy number, and mRNA expression levels, respectively. Furthermore, the erythropoietin (EPO) gene was used to test the selected strong promoter. Of the six promoters, the CHEF-1α promoter yielded the highest transgene expression levels, whereas the CMV promoter maintained transgene expression more stably during long-term culture of cells. We conclude that CHEF-1α promoter conferred higher level of EPO expression in CHO cells, but the CMV promoter with its high levels of stability performs best in this vector system.
Collapse
|
36
|
Wippermann A, Noll T. DNA methylation in CHO cells. J Biotechnol 2017; 258:206-210. [DOI: 10.1016/j.jbiotec.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
37
|
Label-free protein quantification of sodium butyrate treated CHO cells by ESI-UHR-TOF-MS. J Biotechnol 2017; 257:87-98. [DOI: 10.1016/j.jbiotec.2017.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
|
38
|
Soo BPC, Tay J, Ng S, Ho SCL, Yang Y, Chao SH. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter. Mol Biotechnol 2017; 59:315-322. [DOI: 10.1007/s12033-017-0019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol 2016; 257:150-161. [PMID: 27890772 DOI: 10.1016/j.jbiotec.2016.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023]
Abstract
The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.
Collapse
Affiliation(s)
- Anna Wippermann
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Karina Brinkrolf
- Department of Biorescources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Raimund Hoffrogge
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
40
|
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Comput Struct Biotechnol J 2016; 14:404-410. [PMID: 27872686 PMCID: PMC5107644 DOI: 10.1016/j.csbj.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Area of Neuroscience, SISSA, Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
41
|
Tsuruta LR, Lopes dos Santos M, Yeda FP, Okamoto OK, Moro AM. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol 2016; 100:10031-10041. [DOI: 10.1007/s00253-016-7841-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 11/27/2022]
|
42
|
Ritter A, Nuciforo S, Schulze A, Oertli M, Rauschert T, Voedisch B, Geisse S, Jostock T, Laux H. Fam60A
plays a role for production stabilities of recombinant CHO cell lines. Biotechnol Bioeng 2016; 114:701-704. [DOI: 10.1002/bit.26181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Anett Ritter
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Sandro Nuciforo
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Axel Schulze
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Mevion Oertli
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | | | - Bernd Voedisch
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Sabine Geisse
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Thomas Jostock
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Holger Laux
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| |
Collapse
|