1
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
2
|
Hejazi S, Restaino OF, Sabbah M, Zannini D, Di Girolamo R, Marotta A, D’Ambrosio S, Krauss IR, Giosafatto CVL, Santagata G, Schiraldi C, Porta R. Physicochemical Characterization of Chitosan/Poly-γ-Glutamic Acid Glass-like Materials. Int J Mol Sci 2023; 24:12495. [PMID: 37569870 PMCID: PMC10419765 DOI: 10.3390/ijms241512495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
This paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency. However, after dehydration, they became exceedingly hard, glass-like materials completely insoluble in water and organic solvents. The native biopolymers and their blends underwent comprehensive structural, physicochemical, and thermal analyses. The study confirmed strong physical interactions between polysaccharide and polyamide chains, facilitated by electrostatic attraction and hydrogen bonding. The materials exhibited both crystalline and amorphous structures and demonstrated good thermal stability and degradability. Described as thermoplastic and saloplastic, these bio-composites offer vast opportunities in the realm of polyelectrolyte complexes (PECs). This unique combination of properties allowed the bio-composites to function as glass-like materials, making them highly versatile for potential applications in various fields. They hold potential for use in regenerative medicine, biomedical devices, food packaging, and 3D printing. Their environmentally friendly properties make them attractive candidates for sustainable material development in various industries.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Mohammed Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P400, Palestine;
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples “Federico II”, 80126 Naples, Italy;
| | - Sergio D’Ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Florence, Italy
| | - C. Valeria L. Giosafatto
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Gabriella Santagata
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| |
Collapse
|
3
|
Chen J, Guo Z, Xin Y, Gu Z, Zhang L, Guo X. Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161510. [PMID: 36632903 DOI: 10.1016/j.scitotenv.2023.161510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Organophosphorus compounds (OPs) have been widely used in agriculture for decades because of their high insecticidal efficiency, which maintains and increases crop yields worldwide. More importantly, OPs, as typical chemical warfare agents, are a serious concern and significant danger for military and civilian personnel. The widespread use of OPs, superfluous and unreasonable use, has caused great harm to the environment and food chain. Developing efficient and environmentally friendly solutions for the decontamination of OPs is a long-term challenge. Microbial enzymes show potential application as natural and green biocatalysts. Thus, utilizing OP-degrading enzymes for environmental decontamination presents significant advantages, as these enzymes can rapidly hydrolyze OPs; are environmentally friendly, nonflammable, and noncorrosive; and can be discarded safely and easily. Here, the properties, structure and catalytic mechanism of various typical OP-degrading enzymes are reviewed. The methods and effects utilized to improve the expression level, catalytic performance and stability of OP-degrading enzymes were systematically summarized. In addition, the immobilization of OP-degrading enzymes was explicated emphatically, and the latest progress of cascade reactions based on immobilized enzymes was discussed. Finally, the latest applications of OP-degrading enzymes were summarized, including biosensors, nanozyme mimics and medical detoxification. This review provides guidance for the future development of OP-degrading enzymes and promotes their application in the field of environmental bioremediation and medicine.
Collapse
Affiliation(s)
- Jianxiong Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
4
|
De Luca V, Mandrich L, Manco G. Development of a Qualitative Test to Detect the Presence of Organophosphate Pesticides on Fruits and Vegetables. Life (Basel) 2023; 13:life13020490. [PMID: 36836850 PMCID: PMC9958579 DOI: 10.3390/life13020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND In recent decades, the use of pesticides in agriculture has increased at a fast pace, highlighting safety problems for the environment and human health, which in turn has made it necessary to develop new detection and decontamination systems for pesticides. METHODS A new qualitative test capable of detecting the presence of pesticides on fruits and vegetables by using thermostable enzymes was discovered, and the test was carried out on apples and aubergines. The contaminating pesticides were extracted from fruits with acetonitrile and analyzed with a biosensor system based on the thermostable esterase EST2 immobilized on a nitrocellulose filter. This enzyme is irreversibly inhibited mainly in the presence of organophosphates pesticides. Therefore, by observing esterase activity inhibition, we revealed the presence of residual pesticides on the fruits and vegetables. RESULTS By analyzing the rate of esterase activity inhibition, we predicted that residual pesticides are present on the surface of the fruits. When we cleaned the fruits by washing them in the presence of the phosphotriesterase SsoPox before the detection of the esterase activity on filters, we observed a full recovery of the activity for apples and 30% for aubergines, indicating that the enzymatic decontamination of organophosphates pesticides took place. CONCLUSIONS The reported method permitted us to assess the pesticides present on the vegetables and their decontamination.
Collapse
Affiliation(s)
- Valentina De Luca
- Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (L.M.); (G.M.)
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (L.M.); (G.M.)
| |
Collapse
|
5
|
Restaino OF, Scognamiglio M, Mirpoor SF, Cammarota M, Ventriglia R, Giosafatto CVL, Fiorentino A, Porta R, Schiraldi C. Enhanced Streptomyces roseochromogenes melanin production by using the marine renewable source Posidonia oceanica egagropili. Appl Microbiol Biotechnol 2022; 106:7265-7283. [PMID: 36198867 DOI: 10.1007/s00253-022-12191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022]
Abstract
Since the possibility to biotechnologically produce melanin by Streptomycetes using plant biomass has been so far poorly investigated, Posidonia oceanica egagropili, a marine waste accumulating along the Mediterranean Sea coasts, was explored as a renewable source to enhance extracellular melanin production by Streptomyces roseochromogenes ATCC 13400. Therefore, different amounts of egagropili powder were added to a culture medium containing glucose, malt extract, and yeast extract, and their effect on the melanin biosynthesis was evaluated. A 2.5 g·L-1 supplementation in 120-h shake flask growths at 26 °C, at pH 6.0 and 250 rpm, was found to enhance the melanin production up to 3.94 ± 0.12 g·L-1, a value 7.4-fold higher than the control. Moreover, 2-L batches allowed to reach a concentration of 9.20 ± 0.12 g·L-1 in 96 h with a productivity of 0.098 g·L-1·h-1. Further studies also demonstrated that the melanin production enhancement was due to the synergistic effect of both the lignin carbohydrate complex and the holocellulose components of the egagropili. Finally, the pigment was purified from the broth supernatant by acidic precipitation and reversed-phase chromatography, characterized by UV absorbance and one- and two-dimensional NMR, and also tested for its chemical, antioxidant, and photo-protective properties. KEY POINTS: • S. roseochromogenes ATCC 13400 produces extracellular soluble melanin. • Egagropili added to the growth medium enhances melanin production and productivity. • Both the lignin carbohydrate complex and the holocellulose egagropili components influence the melanin biosynthesis.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy. .,Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy.
| | - Monica Scognamiglio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - S Fatemeh Mirpoor
- Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Riccardo Ventriglia
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - C Valeria L Giosafatto
- Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Raffaele Porta
- Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
6
|
Ehinger FJ, Neff A, Kosciow K, Netzband L, Hövels M. Rapid, real-time sucrase characterization: Showcasing the feasibility of a one-pot activity assay. J Biotechnol 2022; 354:21-33. [PMID: 35716887 DOI: 10.1016/j.jbiotec.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Sucrases can modify numerous carbohydrates, and short-chain oligosaccharides produced by the unique transfructosylation activity of levansucrases are promising candidates for the growing sugar substitute market. These compounds could counteract the increasing number of diseases associated with the consumption of high-calorie sugars. Thus, there is great interest in the characterization of novel levansucrases. The commonly used method for sucrase activity determination is to quantify d-glucose released in the sucrose-splitting reaction. This is usually done in a discontinuous mode, i.e., several samples taken from the sucrase reaction are applied to a separately performed d-glucose determination (e.g., GOPOD assay). Employing the newly isolated levansucrase LevSKK21 from Pseudomonas sp. KK21, the feasibility of a one-pot sucrase characterization was investigated by combining sucrase reaction and GOPOD-based d-glucose determination into a single, continuous assay (Real-time GOPOD). The enzyme was characterized with respect to kinetic parameters, ion dependency, pH value, and reaction temperature in a comparative approach employing Real-time GOPOD and HPLC. High data consistency for all investigated enzyme parameters demonstrated that current processes for sucrase characterization can be considerably accelerated by the continuous assay while maintaining data validity. However, the assay was not applicable at acidic pH, as decolorization of the quinoneimine dye formed during the GOPOD reaction was observed. Overall, the study presents valuable data on the potentials of real-time sucrase activity assessment for an accelerated discovery and characterization of interesting enzymes such as the hereby introduced levansucrase LevSKK21. Progress in sucrase discovery will finally foster the development of health-promoting sucrose substitutes.
Collapse
Affiliation(s)
| | - André Neff
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany
| | - Konrad Kosciow
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany
| | - Lars Netzband
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Restaino OF, Hejazi S, Zannini D, Giosafatto CVL, Di Pierro P, Cassese E, D’ambrosio S, Santagata G, Schiraldi C, Porta R. Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration. Polymers (Basel) 2022; 14:polym14061190. [PMID: 35335520 PMCID: PMC8949788 DOI: 10.3390/polym14061190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Since the potentialities of applications of low molecular weight poly-γ-glutamic acid (γ-PGA) chains have been so far only partially explored, the separation of diverse molecular families of them, as well as their characterization for potential bioactivity and ability to form films, were investigated. Two different approaches based on organic solvent precipitation or on ultra- and nano-filtration membrane-based purification of inexpensive commercial material were employed to obtain size-specific γ-PGA fractions, further characterized by size exclusion chromatography equipped with a triple detector array and by ultra-high-performance liquid chromatography to assess their average molecular weight and their concentration. The γ-PGA low molecular weight fractions, purified by ultra-filtration, have been shown both to counteract the desiccation and the oxidative stress of keratinocyte monolayers. In addition, they were exploited to prepare novel hydrocolloid films by both solvent casting and thermal compression, in the presence of different concentrations of glycerol used as plasticizer. These biomaterials were characterized for their hydrophilicity, thermal and mechanical properties. The hot compression led to the attainment of less resistant but more extensible films. However, in all cases, an increase in elongation at break as a function of the glycerol content was observed. Besides, the thermal analyses of hot compressed materials demonstrated that thermal stability was increased with higher γ-PGA distribution po-lymer fractions. The obtained biomaterials might be potentially useful for applications in cosmetics and as vehicle of active molecules in the pharmaceutical field.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (O.F.R.); (E.C.); (S.D.)
| | - Sondos Hejazi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (C.V.L.G.)
| | - Domenico Zannini
- Institute for Polymers, Composites and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy; (D.Z.); (G.S.)
| | | | - Prospero Di Pierro
- Department of Agriculture, University of Naples “Federico II”, 80055 Naples, Italy;
| | - Elisabetta Cassese
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (O.F.R.); (E.C.); (S.D.)
| | - Sergio D’ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (O.F.R.); (E.C.); (S.D.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy; (D.Z.); (G.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (O.F.R.); (E.C.); (S.D.)
- Correspondence: (C.S.); (R.P.); Tel.: +39-081-566-7654 (C.S.); +39-081-252-9470 (R.P.)
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (C.V.L.G.)
- Correspondence: (C.S.); (R.P.); Tel.: +39-081-566-7654 (C.S.); +39-081-252-9470 (R.P.)
| |
Collapse
|
8
|
Immobilization of Mutant Phosphotriesterase on Fuller’s Earth Enhanced the Stability of the Enzyme. Catalysts 2021. [DOI: 10.3390/catal11080983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immobilization is a method for making an enzyme more robust in the environment, especially in terms of its stability and reusability. A mutant phosphotriesterase (YT PTE) isolated from Pseudomonas dimunita has been reported to have high proficiency in hydrolyzing the Sp and Rp-enantiomers of organophosphate chromophoric analogs and therefore has great potential as a decontamination agent and biosensor. This work aims to investigate the feasibility of using Fuller’s earth (FE) as a YT PTE immobilization support and characterize its biochemical features after immobilization. The immobilized YT PTE was found to show improvement in thermal stability with a half-life of 24 h compared to that of the free enzyme, which was only 8 h. The stability of the immobilized YT PTE allowed storage for up to 4 months and reuse for up to 6 times. The immobilized YT PTE showed high tolerance against all tested metal ions, Tween 40 and 80 surfactants and inorganic solvents. These findings showed that the immobilized YT PTE became more robust for use especially with regards to its stability and reusability. These features would enhance the future applicability of this enzyme as a decontamination agent and its use in other suitable industrial applications.
Collapse
|
9
|
Chen J, Guo Z, Xin Y, Shi Y, Li Y, Gu Z, Zhong J, Guo X, Zhang L. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides. Enzyme Microb Technol 2021; 146:109766. [PMID: 33812563 DOI: 10.1016/j.enzmictec.2021.109766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 01/10/2023]
Abstract
Phosphotriesterase (PTE) is considered to be a good biodegradation agent for organophosphorus pesticides. However, the instability of the free PTE limits its application. In this study, the free PTE was hybridized with copper ions (Cu2+) to enhance its catalytic stability and activity. The acquired particles were freeze-dried after precipitation with PO43- at 4 °C for 72 h. Scanning electron microscopy showed that the Cu-PTE complexes formed flower-like nanoparticles after hybridization. The characteristic peaks of both the enzyme and metal material were revealed by Fourier transform-infrared spectroscopy. X-ray diffraction analysis indicated that PTE was encapsulated in the Cu3(PO4)2·3H2O based hybrid nanoflowers. Compared with free PTE, the catalytic activity of Cu-PTE hybrid nanoflowers was significantly increased about 2.2 fold. The catalytic efficiency (kcat/Vmax) of Cu-PTE hybrid nanoflowers was 1.76 fold than that of free PTE. The stability of the immobilized PTE under thermal and pH conditions was improved and the tolerance of it to organic solvents was also enhanced. Moreover, the Cu-PTE hybrid nanoflowers still exhibited 72.3 % relative activity after ten consecutive reactions. In general, this is the first time to use copper based hybrid nanoflowers to immobilize PTE, and the immobilized enzyme shows excellent performance on OPs degradation. The Cu-PTE hybrid nanoflowers may have great potential in the biodegradation of organophosphorus compounds in future.
Collapse
Affiliation(s)
- Jianxiong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Zitao Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yu Xin
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yi Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Youran Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Zhenghua Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, PR China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, PR China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| |
Collapse
|
10
|
Environmental Assessment of Enzyme Production and Purification. Molecules 2021; 26:molecules26030573. [PMID: 33499126 PMCID: PMC7865607 DOI: 10.3390/molecules26030573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
The importance of bioprocesses has increased in recent decades, as they are considered to be more sustainable than chemical processes in many cases. E factors can be used to assess the sustainability of processes. However, it is noticeable that the contribution of enzyme synthesis and purification is mostly neglected. We, therefore, determined the E factors for the production and purification of 10 g enzymes. The calculated complete E factor including required waste and water is 37,835 gwaste·genzyme-1. This result demonstrates that the contribution of enzyme production and purification should not be neglected for sustainability assessment of bioprocesses.
Collapse
|
11
|
Gurevich D, Dor S, Erov M, Dan Y, Moy JC, Mairesse O, Dafny-Yelin M, Adler-Abramovich L, Afriat-Jurnou L. Directed Enzyme Evolution and Encapsulation in Peptide Nanospheres of Quorum Quenching Lactonase as an Antibacterial Treatment against Plant Pathogen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2179-2188. [PMID: 33405501 DOI: 10.1021/acsami.0c15808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need to increase agricultural yield has led to an extensive use of antibiotics against plant pathogens, which has resulted in the emergence of resistant strains. Therefore, there is an increasing demand for new methods, preferably with lower chances of developing resistant strains and a lower risk to the environment or public health. Many Gram-negative bacterial pathogens use quorum sensing, a population-density-dependent regulatory mechanism, to monitor the secretion of N-acyl-homoserine lactones (AHLs) and pathogenicity. Therefore, quorum sensing represents an attractive antivirulence target. AHL lactonases hydrolyze AHLs and have potential antibacterial properties; however, their use is limited by thermal instability and durability, or low activity. Here, we demonstrate that an AHL lactonase from the phosphotriesterase-like lactonase family exhibits high activity with the AHL secreted from the plant pathogen Erwinia amylovora and attenuates infection in planta. Using directed enzyme evolution, we were able to increase the enzyme's temperature resistance (T50, the temperature at which 50% of the activity is retained) by 8 °C. Then, by performing enzyme encapsulation in nanospherical capsules composed of tertbutoxycarbonyl-Phe-Phe-OH peptide, the shelf life was extended for more than 5 weeks. Furthermore, the encapsulated and free mutant were able to significantly inhibit up to 70% blossom's infection in the field, achieving the same efficacy as seen with antibiotics commonly used today to treat the plant pathogen. We conclude that specific AHL lactonase can inhibit E. amylovora infection in the field, as it degrades the AHL secreted by this plant pathogen. The combination of directed enzyme evolution and peptide nanostructure encapsulation significantly improved the thermal resistance and shelf life of the enzyme, respectively, increasing its potential in future development as antibacterial treatment.
Collapse
Affiliation(s)
- David Gurevich
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Shlomit Dor
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mayan Erov
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jehudith Clara Moy
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Orly Mairesse
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mery Dafny-Yelin
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|
12
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
13
|
Wang F, Zhang G, Peng J, Ji X, Hai J, Deng X, Lin L. High cell-density fermentation, expression and purification of bacteriophage lysin TSPphg, a thermostable antimicrobial protein from extremophilic Thermus bacteriophage TSP4. Protein Expr Purif 2020; 174:105676. [PMID: 32442498 DOI: 10.1016/j.pep.2020.105676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/28/2022]
Abstract
Recently, high cell-density (HCD) cultivation has become an important tool for production of many microbial products. However, to the best of our knowledge, no study regarding HCD fermentation, overproduction and purification of thermostable bacteriophage lysin has been reported. Here, by employing a glucose-limited fed-batch strategy, we performed high density fermentation of the host Escherichia coli BL21(DE3) cells, compared the efficiency of high pressure homogenization, ultrasonication and thermolysis in bacterial cell disruption after HCD cultivation, and purified TSPphg, a thermostable lysin derived from extremophilic bacteriophage TSP4. On the 20-L scale, the overproduction level of TSPphg was up to 67.8 ± 0.7%. In total, we obtained a broth titer of 3322.8 ± 26 mg/L TSPphg with a purity of 95.5 ± 0.7% from a bacterial cell mass of 86.3 ± 4.9 g/L after 26 h of fermentation. The overall productivity of TSPphg was 127.8 ± 1 mg/L/h. Additionally, the antimicrobial activity of purified TSPphg against both Gram-negative (Escherichia coli O157) and Gram-positive (Staphylococcus aureus) pathogenic bacteria was further confirmed by scanning electron microscope analysis. Summarily, for the first time, we have established a relatively stable and efficient HCD cultivation and purification process for recovery of thermostable lysins from extremophilic Thermus bacteriophages. Our results provide insights into the strategies for time-saving and cost-effective production of antimicrobial proteins to replace or supplement antibiotics in the current age of mounting antibiotic resistance.
Collapse
Affiliation(s)
- Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Guanling Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Jiani Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Xinyu Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Jun Hai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Xianyu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province, 650500, China.
| |
Collapse
|
14
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|
15
|
Li R, Yang J, Xiao Y, Long L. In vivo immobilization of an organophosphorus hydrolyzing enzyme on bacterial polyhydroxyalkanoate nano-granules. Microb Cell Fact 2019; 18:166. [PMID: 31601206 PMCID: PMC6785862 DOI: 10.1186/s12934-019-1201-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/27/2019] [Indexed: 11/14/2022] Open
Abstract
Background Polyhydroxyalkanoate (PHA) are nano-granules naturally produced by bacteria. Two types of proteins, PHA synthase (PhaC) and phasins (PhaPs), are attached to the PHA surface by covalent and hydrophobic interactions. Utilizing these anchored proteins, functionalized PHA nano-granules displaying proteins of interest can be easily prepared by fermentation. Results In this study, a one-step fabrication method was developed for stable and efficient immobilization of an organophosphorus degrading enzyme on PHA nano-granules. The nano-biocatalysts were produced in recombinant Escherichia coli cells into which the polyhydroxyalkanoate synthesis pathway from Cupriavidus necator had been introduced. Two different strategies, covalent attachment and hydrophobic binding, were investigated by fusing bacterial organophosphorus anhydride hydrolase (OPAA4301) with PhaC and PhaP, respectively. Using both methods, the tetrameric enzyme successfully self-assembled and was displayed on the PHA surface. The display density of the target fused enzyme was enhanced to 6.8% of total protein on decorated PHA by combination of covalent and non-covalent binding modes. Immobilization of the enzyme on PHA granules resulted in higher catalytic efficiency, increased stability and excellent reusability. The kcat values of the immobilized enzymes increased by threefold compared to that of the free enzyme. The pH stability under acidic conditions was significantly enhanced, and the immobilized enzyme was stable at pH 3.0–11.0. Furthermore, more than 80% of the initial enzyme activity retained after recycling ten times. Conclusions This study provides a promising approach for cost-efficient in vivo immobilization of a tetrameric organophosphorus degrading enzyme. The immobilization process expands the utility of the enzyme, and may inspire further commercial developments of PHA nano-biocatalysts. As revealed by our results, combination of covalent and non-covalent binding is recommended for display of enzymes on PHA granules.
Collapse
Affiliation(s)
- Ru Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Yunzhu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China. .,University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
16
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
17
|
Schocke L, Bräsen C, Siebers B. Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms. Curr Opin Biotechnol 2019; 59:71-77. [PMID: 30875666 DOI: 10.1016/j.copbio.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Archaea dominate extreme habitats and possess unique cellular and metabolic properties with novel or modified metabolic pathways and unusual enzymes. Thermoacidophilic Sulfolobus species and their thermo(acido)philic enzymes gained special attention due to their adaptation toward two extremes, high temperature (75-80°C) and low pH (pH 2-5), that matches harsh process conditions in industrial applications. For different Sulfolobus species versatile genetic systems have been established and significant metabolic and physiological information from classical biochemistry and genetic as well as poly-omics and systems biology approaches is available. Their ease of growth under aerobic or microaerophilic conditions and established fermentation technologies gaining high cell yields promote Sulfolobus as source for extremozymes and as valuable novel platform organism for industrial biotechnology.
Collapse
Affiliation(s)
- Larissa Schocke
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
18
|
Lushchekina S, Masson P. Catalytic bioscavengers against organophosphorus agents: mechanistic issues of self-reactivating cholinesterases. Toxicology 2018; 409:91-102. [DOI: 10.1016/j.tox.2018.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
|
19
|
Porzio E, Bettazzi F, Mandrich L, Del Giudice I, Restaino OF, Laschi S, Febbraio F, De Luca V, Borzacchiello MG, Carusone TM, Worek F, Pisanti A, Porcaro P, Schiraldi C, De Rosa M, Palchetti I, Manco G. Innovative Biocatalysts as Tools to Detect and Inactivate Nerve Agents. Sci Rep 2018; 8:13773. [PMID: 30214052 PMCID: PMC6137069 DOI: 10.1038/s41598-018-31751-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Pesticides and warfare nerve agents are frequently organophosphates (OPs) or related compounds. Their acute toxicity highlighted more than ever the need to explore applicable strategies for the sensing, decontamination and/or detoxification of these compounds. Herein, we report the use of two different thermostable enzyme families capable to detect and inactivate OPs. In particular, mutants of carboxylesterase-2 from Alicyclobacillus acidocaldarius and of phosphotriesterase-like lactonases from Sulfolobus solfataricus and Sulfolobus acidocaldarius, have been selected and assembled in an optimized format for the development of an electrochemical biosensor and a decontamination formulation, respectively. The features of the developed tools have been tested in an ad-hoc fabricated chamber, to mimic an alarming situation of exposure to a nerve agent. Choosing ethyl-paraoxon as nerve agent simulant, a limit of detection (LOD) of 0.4 nM, after 5 s of exposure time was obtained. Furthermore, an optimized enzymatic formulation was used for a fast and efficient environmental detoxification (>99%) of the nebulized nerve agent simulants in the air and on surfaces. Crucial, large-scale experiments have been possible thanks to production of grams amounts of pure (>90%) enzymes.
Collapse
Affiliation(s)
- Elena Porzio
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Francesca Bettazzi
- Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | | | | | | | - Ferdinando Febbraio
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Valentina De Luca
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | | | - Teresa M Carusone
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | | | | | - Mario De Rosa
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Palchetti
- Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy.
| |
Collapse
|