1
|
Dong J, Wang Z, Fei F, Jiang Y, Jiang Y, Guo L, Liu K, Cui L, Meng X, Li J, Wang H. Selenium Enhances the Growth of Bovine Endometrial Stromal Cells by PI3K/AKT/GSK-3β and Wnt/β-Catenin Pathways. Vet Sci 2024; 11:674. [PMID: 39729014 DOI: 10.3390/vetsci11120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The bovine uterus is susceptible to bacterial infections after calving, particularly from Escherichia coli (E. coli), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects. The aim of this study was to investigate the regulatory role of Se in the growth of bovine endometrial stromal cells (BESCs) under the conditions of LPS-induced inflammatory damage at high cortisol levels. BESCs were treated with 1, 2, 4 μM Se in combination with co-treatment of LPS and cortisol. The results indicated that LPS inhibited the cell viability and reduced the mRNA expression of CTGF, TGF-β1, and TGF-β3. Additionally, LPS increased apoptosis, hindered the cell cycle progression by blocking it in the G0/G1 phase, and suppressed the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. Furthermore, increased concentrations of cortisol can exacerbate the impacts of LPS on cell proliferation and apoptosis. Conversely, the supplementation of Se promoted cell viability, increased the mRNA expression of TGF-β1 and TGF-β3, and enhanced cell cycle progression, while simultaneously repressing cell apoptosis as well as activating the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. The above findings demonstrated that Se can promote cell proliferation, reduce cell apoptosis, and aid in the growth of BESCs damaged by LPS under high levels of cortisol. The potential mechanisms may be associated with the regulation of the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Zi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Fan Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Yeqi Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Yongshuai Jiang
- Guangling College, Yangzhou University, Yangzhou 225009, China
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Kavut BS, Talmaç AC, Önalan Ş. Evaluation of the effects of Andiz extract on the experimentally wound in rats by microbiological and gene expression methods. Mol Biol Rep 2024; 52:70. [PMID: 39704962 DOI: 10.1007/s11033-024-10166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES This study aimed to investigate the effects of andiz extract on wound healing and compare it with saline and chlorhexidine gluconate. Microbial DNA load was used to evaluate its antibacterial effects, and gene expression methods were used to assess its contribution to cytokine release and wound healing. METHODS AND RESULTS A standardized wound site was created with a 3 mm diameter punch on 32 male Wistar albino rats. The rats were divided into four groups: Control (n = 5), Saline (n = 9), Chlorhexidine gluconate (n = 9), and Andiz extract (n = 9). Five rats in the control group were euthanised without any treatment. Irrigations of the Saline, Chlorhexidine, and Extract groups were provided regularly. After the tissue samples were taken in the 1st week, 2nd week, and 3rd week, three rats were euthanized each week for each group. The total bacterial DNA load on the samples taken was determined by a nano spectrophotometer. β-actin was chosen as housekeeping, and target gene primers were created for TGF-β and IL-1β. Expression amounts of target genes were measured by Real-Time PCR with the application of the created primers. There is a significant difference between the Extract group and the other groups regarding total bacterial DNA load. The whole bacterial load was 185% less than the initial values. TGF-β and IL-1β genes evaluated regarding gene expression were measured at the highest value in the Extract group. CONCLUSIONS This study showed the antibacterial effects of the Extract and its positive contributions to wound healing.
Collapse
Affiliation(s)
- Büşra Sümeyye Kavut
- Department of Periodontology, Faculty of Dentistry, Van YüzüncüYıl University, Van, Turkey.
| | - Ahmet Cemil Talmaç
- Department of Periodontology, Faculty of Dentistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Şükrü Önalan
- Department of Aquaculture, Faculty of Aquaculture, Van YüzüncüYıl University, Van, Turkey
- Biotechnology Application and Research Center, Van YüzüncüYıl University, Van, Turkey
| |
Collapse
|
3
|
Li H, Wang H, Cui L, Liu K, Guo L, Li J, Dong J. The effect of selenium on the proliferation of bovine endometrial epithelial cells in a lipopolysaccharide-induced damage model. BMC Vet Res 2024; 20:109. [PMID: 38500165 PMCID: PMC10946195 DOI: 10.1186/s12917-024-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted β-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/β-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Heng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Luying Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Kangjun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Long Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Jianji Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China.
| | - Junsheng Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Karas RA, Alexeree S, Elsayed H, Attia YA. Assessment of wound healing activity in diabetic mice treated with a novel therapeutic combination of selenium nanoparticles and platelets rich plasma. Sci Rep 2024; 14:5346. [PMID: 38438431 PMCID: PMC10912747 DOI: 10.1038/s41598-024-54064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Diabetic wound healing is sluggish, often ending in amputations. This study tested a novel, two-punch therapy in mice-Selenium nanoparticles (Se NPs) and platelet-rich plasma (PRP)-to boost healing. First, a mouse model of diabetes was created. Then, Se NPs were crafted for their impressive antioxidant and antimicrobial powers. PRP, packed with growth factors, was extracted from the mice's blood. Wound healing was tracked for 28 days through photos, scoring tools, and tissue analysis. Se NPs alone spurred healing, and PRP added extra fuel. Furthermore, when used in combination with PRP, the healing process was accelerated due to the higher concentration of growth factors in PRP. Notably, the combination of Se NPs and PRP exhibited a synergistic effect, significantly enhancing wound healing in diabetic mice. These findings hold promise for the treatment of diabetic wounds and have the potential to reduce the need for lower limb amputations associated with diabetic foot ulcers. The innovative combination therapy using Se NPs and PRP shows great potential in expediting the healing process and addressing the challenges of impaired wound healing in individuals with diabetes. This exciting finding suggests this therapy could change diabetic wound management, potentially saving limbs and improving lives.
Collapse
Affiliation(s)
- Rania A Karas
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Shaimaa Alexeree
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Cairo, 11829, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Li H, Dong J, Cui L, Liu K, Guo L, Li J, Wang H. The effect and mechanism of selenium supplementation on the proliferation capacity of bovine endometrial epithelial cells exposed to lipopolysaccharide in vitro under high cortisol background. J Anim Sci 2024; 102:skae021. [PMID: 38289713 PMCID: PMC10889726 DOI: 10.1093/jas/skae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3β (GSK-3β) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of β-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Rahimi B, Panahi M, Lotfi H, Khalili M, Salehi A, Saraygord-Afshari N, Alizadeh E. Sodium selenite preserves rBM-MSCs' stemness, differentiation potential, and immunophenotype and protects them against oxidative stress via activation of the Nrf2 signaling pathway. BMC Complement Med Ther 2023; 23:131. [PMID: 37098557 PMCID: PMC10127330 DOI: 10.1186/s12906-023-03952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The physiological level of reactive oxygen species (ROS) is necessary for many cellular functions. However, during the in-vitro manipulations, cells face a high level of ROS, leading to reduced cell quality. Preventing this abnormal ROS level is a challenging task. Hence, here we evaluated the effect of sodium selenite supplementation on the antioxidant potential, stemness capacity, and differentiation of rat-derived Bone Marrow MSCs (rBM-MSCs) and planned to check our hypothesis on the molecular pathways and networks linked to sodium selenite's antioxidant properties. METHODS MTT assay was used to assess the rBM-MSCs cells' viability following sodium selenite supplementation (concentrations of: 0.001, 0.01, 0.1, 1, 10 µM). The expression level of OCT-4, NANOG, and SIRT1 was explored using qPCR. The adipocyte differentiation capacity of MSCs was checked after Sodium Selenite treatment. The DCFH-DA assay was used to determine intracellular ROS levels. Sodium selenite-related expression of HIF-1α, GPX, SOD, TrxR, p-AKT, Nrf2, and p38 markers was determined using western blot. Significant findings were investigated by the String tool to picture the probable molecular network. RESULTS Media supplemented with 0.1 µM sodium selenite helped to preserve rBM-MSCs multipotency and keep their surface markers presentation; this also reduced the ROS level and improved the rBM-MSCs' antioxidant and stemness capacity. We observed enhanced viability and reduced senescence for rBM-MSCs. Moreover, sodium selenite helped in rBM-MSCs cytoprotection by regulating the expression of HIF-1 of AKT, Nrf2, SOD, GPX, and TrxR markers. CONCLUSIONS We showed that sodium selenite could help protect MSCs during in-vitro manipulations, probably via the Nrf2 pathway.
Collapse
Affiliation(s)
- Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Jiao M, Liu C, Prieto M, Lu X, Wu W, Sun J, García-Oliveira P, Tang X, Xiao J, Simal-Gandara J, Hu D, Li N. Biological Functions and Utilization of Different Part of the Papaya: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mingyue Jiao
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - M.A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Wenfu Wu
- School of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - P. García-Oliveira
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Dagang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Khurana A, Banothu AK, Thanusha AV, Nayal A, Dinda AK, Singhal M, Bharani KK, Koul V. Preclinical efficacy study of a porous biopolymeric scaffold based on gelatin-hyaluronic acid-chondroitin sulfate in a porcine burn injury model: role of critical molecular markers (VEGFA, N-cadherin, COX-2), gamma sterilization efficacy and a comparison of healing potential to Integra™. Biomed Mater 2021; 16. [PMID: 34384056 DOI: 10.1088/1748-605x/ac1d3e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Development of scaffold from biopolymers can ease the requirements for donor skin autograft and plays an effective role in the treatment of burn wounds. In the current study, a porous foam based, bilayered hydrogel scaffold was developed using gelatin, hyaluronic acid and chondroitin sulfate (G-HA-CS). The fabricated scaffold was characterized physicochemically for pre- and post-sterilization efficacy by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA).In-vitrostudies proved that the scaffold promoted cellular proliferation. The efficacy of G-HA-CS scaffold was compared with Integra™ at different time points (7, 14, 21 and 42 days), in a swine second degree burn wound model. Remarkable healing potential of the scaffold was evident from the wound contraction rate, reduction of IL-6, TNF-αand C3. The expression of healing markers TGF-β1 and collagen 1 revealed significant skin regeneration with regulated fibroblast activation towards the late phase of healing (p< 0.001 at day 21 and 42 vs. control). Expression of Vascular Endothelial Growth Factor A (VEGFA), vimentin and N-cadherin were found to favor angiogenesis and skin regeneration. Mechanistically, scaffold promoted wound healing by modulation of CD-45, cyclooxygenase-2 and MMP-2. Thus, the promising results with foam based scaffold, comparable to Integra™ in swine burn injury model offer an innovative lead for clinical translation for effective management of burn wound.
Collapse
Affiliation(s)
- Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Warangal 506166, Telangana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India.,Department of Aquatic Animal Health Management, College of Fishery Science, PVNRTVU, Pebbair, Wanaparthy 509104, Telangana, India
| | - A V Thanusha
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Aradhana Nayal
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Maneesh Singhal
- Department of Plastic, Reconstructive and Burns Surgery, J.P.N. Apex Trauma Centre, All India Institute of Medical Sciences (AIIMS), Raj Nagar, New Delhi 110029, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India.,Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Warangal 506166, Telangana, India.,Department of Aquatic Animal Health Management, College of Fishery Science, PVNRTVU, Pebbair, Wanaparthy 509104, Telangana, India
| | - Veena Koul
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Jarisarapurin W, Kunchana K, Chularojmontri L, Wattanapitayakul SK. Unripe Carica papaya Protects Methylglyoxal-Invoked Endothelial Cell Inflammation and Apoptosis via the Suppression of Oxidative Stress and Akt/MAPK/NF-κB Signals. Antioxidants (Basel) 2021; 10:antiox10081158. [PMID: 34439407 PMCID: PMC8388906 DOI: 10.3390/antiox10081158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, causes endothelial oxidative stress and vascular complications in diabetes. Excessive MGO-induced ROS production triggers eNOS uncoupling, inflammatory responses, and cell death signaling cascades. Our previous study reported that unripe Carica papaya (UCP) had antioxidant activities that prevented H2O2-induced endothelial cell death. Therefore, this study investigated the preventive effect of UCP on MGO-induced endothelial cell damage, inflammation, and apoptosis. The human endothelial cell line (EA.hy926) was pretreated with UCP for 24 h, followed by MGO-induced dicarbonyl stress. Treated cells were evaluated for intracellular ROS/O2•− formation, cell viability, apoptosis, NO releases, and cell signaling through eNOS, iNOS, COX-2, NF-κB, Akt, MAPK (JNK and p38), and AMPK/SIRT1 autophagy pathways. UCP reduced oxidative stress and diminished phosphorylation of Akt, stress-activated MAPK, leading to the decreases in NF-kB-activated iNOS and COX-2 expression. However, UCP had no impact on the autophagy pathway (AMPK and SIRT1). Although UCP pretreatment decreased eNOS phosphorylation, the amount of NO production was not altered. The signaling of eNOS and NO production were decreased after MGO incubation, but these effects were unaffected by UCP pretreatment. In summary, UCP protected endothelial cells against carbonyl stress by the mechanisms related to ROS/O2•− scavenging activities, suppression of inflammatory signaling, and inhibition of JNK/p38/apoptosis pathway. Thus, UCP shows considerable promise for developing novel functional food and nutraceutical products to reduce risks of endothelial inflammation and vascular complications in diabetes.
Collapse
Affiliation(s)
- Wattanased Jarisarapurin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand;
| | - Suvara K. Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
- Correspondence: ; Tel.: +66-2649-5385
| |
Collapse
|
10
|
Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021; 26:molecules26133921. [PMID: 34206931 PMCID: PMC8271805 DOI: 10.3390/molecules26133921] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose “green cosmetics”, which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.
Collapse
|
11
|
Beneficial Role of Carica papaya Extracts and Phytochemicals on Oxidative Stress and Related Diseases: A Mini Review. BIOLOGY 2021; 10:biology10040287. [PMID: 33916114 PMCID: PMC8066973 DOI: 10.3390/biology10040287] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary This review highlights the medicinal benefits of a natural remedy, the Carica papaya extracts and its phytochemicals. In this review, the potential of Carica papaya against various conditions, including cancer, inflammation, aging, healing of the skin, and lifelong diseases has been summarized and discussed. In short, more research and development should focus on this natural remedy that can potentially act as a prophylaxis against chronic diseases. Abstract Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.
Collapse
|
12
|
Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi HR, Jafari E, Ameri A, Amirheidari B. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl 2021; 36:193-209. [PMID: 33722085 DOI: 10.1177/08853282211001359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, polycaprolactone/gelatin (PCL/GEL) electrospun nanofibers containing biogenic selenium nanoparticles (Se NPs) and Se NPs/vitamin E (VE) with average diameters of 397.8 nm and 279.5 nm, respectively (as determined by SEM inspection) were prepared and their effect on wound healing was evaluated using in-vivo studies. The energy dispersive X-ray (EDX) mapping, TEM micrograph, and FTIR spectra of the prepared nanofibers strongly demonstrated well entrapment of Se NPs and VE into scaffolds. An amount of 57% Se NPs and 43% VE were gradually released from PCL/GEL/Se NPs/VE scaffold after 4 days immersion in PBS solution (pH 7.4). The both PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds supported 3T3 cell proliferation and attachment as confirmed by MTT assay and SEM imaging. Complete re-epithelialization, low level of edema and inflammatory cells in coordination with high level of oriented collagens demonstrated the wound healing activity of PCL/GEL/Se NPs/VE. Besides, significant antioxidant efficacy of PCL/GEL/Se NPs and PCL/GEL/Se NPs/VE scaffolds was demonstrated according to GSH and MDA assays. To sum up, the prepared PCL/GEL/Se NPs/VE scaffold in the present study represented suitable healing effect on animal model which candidate it for further studies.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Hamid-Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Alieh Ameri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Li K, Xue Y, Yan T, Zhang L, Han Y. Si substituted hydroxyapatite nanorods on Ti for percutaneous implants. Bioact Mater 2020; 5:116-123. [PMID: 32021946 PMCID: PMC6994265 DOI: 10.1016/j.bioactmat.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
An ideal intraosseous transcutaneous implant should form a tight seal with soft tissue, besides a requirement of osseointegration at the bone-fixed position. Si substituted hydroxyapatite (Si-HA) nanorods releasing Si ion and simulating nanotopography of natural tissue were designed on Ti to enhance fibroblast response in vitro and biosealing with soft tissue in vivo. Si-HA nanorods were fabricated by alkali-heat treatment followed with hydrothermal treatment. The hydrothermal formation mechanism of Si-HA nanorods was explored. The surface characteristic of Si-HA nanorods was compared with pure HA nanorods. Fibroblast behaviors in vitro and skin response in vivo on different surfaces were also evaluated. The obtained results show that the substitution of Si did not significantly alter the phase component, morphology, roughness and wettability of HA, but additional Si and more Ca were released from Si-HA into medium. Comparing to pure HA nanrods and Ti substrate, Si-HA nanrods enhanced cell behaviors including proliferation, fibrotic phenotype and collagen secretion in vitro, and reduced epithelial down growth in vivo. The enhanced cell response and biosealing should be due to the releasing of Ca, Si and nanotopography of Si-HA nanorods. Si-HA nanorods can be a potential coating to accelerate skin integration for percutaneous implants in clinic.
Collapse
Affiliation(s)
| | | | | | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Soib HH, Ismail HF, Husin F, Abu Bakar MH, Yaakob H, Sarmidi MR. Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities. Molecules 2020; 25:E517. [PMID: 31991676 PMCID: PMC7037417 DOI: 10.3390/molecules25030517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Herbal plants are traditionally utilized to treat various illnesses. They contain phytochemicals that can be extracted using conventional methods such as maceration, soxhlet, and boiling, as well as non-conventional methods including ultrasonic, microwave, and others. Carica papaya leaves have been used for the treatment of dengue, fungal, and bacterial infections as well as an ingredient in anti-aging products. Phytochemicals analysis detected the presence of kaempferol, myricetin, carpaine, pseudocarpaine, dehydrocarpaine I and II, ferulic acid, caffeic acid, chlorogenic acid, β-carotene, lycopene, and anthraquinones glycoside. Conventional preparation by boiling and simple maceration is practical, simple, and safe; however, only polar phytochemicals are extracted. The present study aims to investigate the effects of three different non-conventional extraction techniques (ultrasonic-assisted extraction, reflux, and agitation) on C. papaya phytochemical constituents, the antioxidant capacity, and wound-healing activities. Among the three techniques, the reflux technique produced the highest extraction yield (17.86%) with the presence of saponins, flavonoids, coumarins, alkaloids, and phenolic metabolites. The reflux technique also produced the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging with an IC50 value of 0.236 mg/mL followed by ultrasonic-assisted extraction (UAE) (IC50: 0.377 mg/mL) and agitation (IC50: 0.404 mg/mL). At tested concentrations (3.125 µg/mL to 500 µg/mL), all extracts do not exhibit a cytotoxicity effect on the human skin fibroblast, HSF1184. Interestingly, reflux and UAE were active fibroblast proliferators that support 85% (12.5 µg/mL) and 41% (6.25 µg/mL) better cell growth, respectively. Additionally, during the early 24 h of the scratch assay, the migration rate at 12.5 µg/mL was faster for all extracts with 51.8% (reflux), 49.3% (agitation), and 42.5% (UAE) as compared to control (21.87%). At 48 h, proliferated cells covered 78.7% of the scratch area for reflux extract, 63.1% for UAE, 61% for agitation, and 42.6% for control. Additionally, the collagen synthesis was enhanced for 31.6% and 65% after 24 and 48 h of treatment for reflux. An HPLC-MS/MS-QTOF (quadruple time-of-flight) analysis of reflux identified nine phytochemicals, including carpaine, kaempferol 3-(2G-glucosylrutinoside), kaempferol 3-(2″-rhamnosylgalactoside), 7-rhamnoside, kaempferol 3-rhamnosyl-(1->2)-galactoside-7-rhamnoside, luteolin 7-galactosyl-(1->6)-galactoside, orientin 7-O-rhamnoside, 11-hydroperoxy-12,13-epoxy-9-octadecenoic acid, palmitic amide, and 2-hexaprenyl-6-methoxyphenol. The results suggested that reflux was the best technique as compared to ultrasonic and agitation.
Collapse
Affiliation(s)
- Husnul Hanani Soib
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Hassan Fahmi Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia;
| | - Fitrien Husin
- Institute of Bioproduct Development, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Harisun Yaakob
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia;
- Institute of Bioproduct Development, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Mohamad Roji Sarmidi
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), University Teknologi Malaysia, Skudai 81310, Malaysia;
| |
Collapse
|
15
|
Abstract
Background:
Carica papaya, a tree-like herb, is cultivated in more than 50 tropical
and subtropical countries worldwide. The parts [leaves, fruit (ripe and unripe), seeds and
latex] are used as food as well as traditional medicine in several ways for a number of diseases.
Papaya, with a variety of phytochemicals like carotenoids, polyphenols, benzyl isothiocynates,
benzyl glucosinates, prunasin (cyanogenic substrate), papain and chymopapain, alkaloids,
phenolic compounds, flavonoids, vitamins (A, C, E), carotenoids, cyanogenicglucosides,
cystatin, and glucosinolates exhibits significant health benefits ranging from digestive
to immune modulation. These compounds have antioxidant, chemoprotective, anti-diabetic,
anti-bacterial, anti-plasmodial and anti-fungal activities. Papaya aqueous leaf extract was
evaluated for immunomodulatory and anti-tumor activities through cytokine modulation
with Th1 type shift in human immune system through molecular studies. The platelet augmenting
potential of aqueous leaf extract has been reported in numerous clinical studies and
deserves special mention.
Objective:
The scientific knowledge of carica papaya in the post-genomic era including molecular
studies and clinical trials is discussed in the review.
Methods:
The published literature on botany, chemical composition, ethnopharmacology,
and uses of papaya in food and medical industry was searched through databases like Pub-
Med, Scopus, and Google scholar to comprehend the benefits of Carica papaya for human
use with around more than 600 published peer- reviewed papers.
Results:
Many traditional and novel uses of Carica papaya for the human benefit are detailed
in the review that significantly adds to the scientific knowledge of curious readers.
Conclusion:
Each component of the papaya plant is rich in phytochemicals and is economically
important. Most of the phytochemicals are linked to biological functions and influence
a variety of cellular processes; hence they have implications in refining human health.
Collapse
Affiliation(s)
- Dave Heena
- Directorate of Research & Innovation, Nirma University, Ahmedabad - 382 481, India
| | - Trivedi Sunil
- FRIGE's Institute of Human Genetics, Ahmedabad - 380015, India
| |
Collapse
|
16
|
Amin AH, Bughdadi FA, Abo-Zaid MA, Ismail AH, El-Agamy SA, Alqahtani A, El-Sayyad HIH, Rezk BM, Ramadan MF. Immunomodulatory effect of papaya (Carica papaya) pulp and seed extracts as a potential natural treatment for bacterial stress. J Food Biochem 2019; 43:e13050. [PMID: 31571245 DOI: 10.1111/jfbc.13050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The current study evaluated the immunomodulatory effects of Carica papaya pulp and seeds methanol (MeOH) extracts on mice infected with Listeria monocytogenes. Gas chromatography-mass spectrometry analysis identified 10 active constituents in C. papaya seed MeOH extract and 10 compounds in C. papaya pulp MeOH extract. The experimental animals were divided into negative control (G1) group, positive control (G2) group, pulp extract treated (G3) group, and seed extract treated (G4) group. After infection of animals (G2, G3, and G4), treatments were started for 3 weeks. Estimation of the immunological parameters showed a marked decrease in IgM levels and an increase in IgG levels in the treated groups (G3 and G4) compared with those in G2. The proinflammatory cytokines (IL-10, IL-12, IL-1β, IL-6, and TGF-β1) were decreased in the treated groups (G3 and G4) compared with those in G2. Nitric oxide levels were also decreased, and the percentages of phagocytosis increased compared with those of G2. The results demonstrated the immunomodulatory and anti-inflammatory effects of C. papaya pulp and seeds MeOH extracts. PRACTICAL APPLICATIONS: Based on the antioxidant and antibacterial activities exhibited by the pulp and seed MeOH extracts investigated in this study, Carica papaya might be considered as a natural source of phytochemicals that could be utilized in novel foods and pharmaceuticals. Further investigation are needed to identify and purify compounds that might be responsible for the observed effects.
Collapse
Affiliation(s)
- Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Department of Natural Sciences, Southern University at New Orleans, New Orleans, Louisiana
| | - Faisal A Bughdadi
- Biology Department, University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mabrouk A Abo-Zaid
- Biology Department, Faculty of Science, Jazan university, Jazan, Saudi Arabia
| | - Ahmed H Ismail
- Biology Department, Faculty of Science, Jazan university, Jazan, Saudi Arabia
| | - Sherif A El-Agamy
- Biology Department, Faculty of Science, Jazan university, Jazan, Saudi Arabia
| | - Alaa Alqahtani
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.,College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Bashir Mahmoud Rezk
- Department of Natural Sciences, Southern University at New Orleans, New Orleans, Louisiana
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia.,Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Yang BY, Deng GY, Zhao RZ, Dai CY, Jiang CY, Wang XJ, Jing YF, Liu XJ, Xia SJ, Han BM. Porous Se@SiO 2 nanosphere-coated catheter accelerates prostatic urethra wound healing by modulating macrophage polarization through reactive oxygen species-NF-κB pathway inhibition. Acta Biomater 2019; 88:392-405. [PMID: 30753941 DOI: 10.1016/j.actbio.2019.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) patients experience complications after surgery. We studied oxidative stress scavenging by porous Se@SiO2 nanospheres in prostatic urethra wound healing after transurethral resection of the prostate (TURP). Beagle dogs were randomly distributed into two groups after establishing TURP models. Wound recovery and oxidative stress levels were evaluated. Re-epithelialization and the macrophage distribution at the wound site were assessed by histology. The mechanism by which porous Se@SiO2 nanospheres regulated macrophage polarization was investigated by qRT-PCR, western blotting, flow cytometry, immunofluorescence and dual luciferase reporter gene assays. Our results demonstrated that Porous Se@SiO2 nanosphere-coated catheters advance re-epithelization of the prostatic urethra, accelerating wound healing in beagle dogs after TURP, and improve the antioxidant capacity to inhibit oxidative stress and induced an M2 phenotype transition of macrophages at the wound. By restraining the function of reactive oxygen species (ROS), porous Se@SiO2 nanospheres downregulated Ikk, IκB and p65 phosphorylation to block the downstream NF-κB pathway in macrophages in vitro. Since activation of NF-κB signaling cascades drives macrophage polarization, porous Se@SiO2 nanospheres promoted macrophage phenotype conversion from M1 to M2. Our findings suggest that porous Se@SiO2 nanosphere-coated catheters promote postoperative wound recovery in the prostatic urethra by promoting macrophage polarization toward the M2 phenotype through suppression of the ROS-NF-κB pathway, attenuating the inflammatory response. STATEMENT OF SIGNIFICANCE: The inability to effectively control post-operative inflammatory responses after surgical treatment of benign prostatic hyperplasia (BPH) remains a challenge to researchers and surgeons, as it can lead to indirect cell death and ultimately delay wound healing. Macrophages at the wound site work as pivotal regulators of local inflammatory response. Here, we designed and produced a new type of catheter with a coating of porous Se@SiO2 nanosphere and demonstrated its role in promoting prostatic urethra wound repair by shifting macrophage polarization toward the anti-inflammatory M2 phenotype via suppressing ROS-NF-κB pathway. These results indicate that the use of porous Se@SiO2 nanosphere-coated catheter may provide a therapeutic strategy for postoperative complications during prostatic urethra wound healing to improve patient quality of life.
Collapse
|
18
|
Hao S, Zhang Y, Meng J, Liu J, Wen T, Gu N, Xu H. Integration of a Superparamagnetic Scaffold and Magnetic Field To Enhance the Wound-Healing Phenotype of Fibroblasts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22913-22923. [PMID: 29901385 DOI: 10.1021/acsami.8b04149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most of the existing scaffolds for guiding tissue regeneration do not provide direct mechanical stimulation to the cells grown on them. In this work, we used nanofibrous superparamagnetic scaffolds with applied magnetic fields to build a "dynamic" scaffold platform and investigated the modulating effects of this platform on the phenotypes of fibroblasts. The results of enzyme-linked immunosorbent and transwell assays indicated that fibroblasts cultivated in this platform secreted significantly higher type I collagen, vascular endothelial growth factor A, and transforming growth factor-β1 and did so in a time-dependent manner. At the same time, they produced fewer pro-inflammatory cytokines, including interleukin-1β and monocyte chemoattractant protein-1; this, in turn, accelerated the osteogenesis of preosteoblasts with the help of increased basic fibroblast growth factor as well as balanced extracellular matrix components. Mechanistic studies revealed that the platform modulated the phenotypic polarization of fibroblasts through the activation of components of integrin, focal adhesion kinase, and extracellular signal-regulated kinase signaling pathways and the inhibition of the activation of Toll-like receptor-4 and nuclear factor κB. Overall, the platform promoted the wound-healing phenotype of fibroblasts, which would be of great benefit to the scaffold-guided tissue regeneration.
Collapse
Affiliation(s)
- Suisui Hao
- Institute of Basic Medicine, Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing 100005 , China
| | - Yu Zhang
- School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Jie Meng
- Institute of Basic Medicine, Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing 100005 , China
| | - Jian Liu
- Institute of Basic Medicine, Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing 100005 , China
| | - Tao Wen
- Institute of Basic Medicine, Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing 100005 , China
| | - Ning Gu
- School of Biological Sciences and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Haiyan Xu
- Institute of Basic Medicine, Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing 100005 , China
| |
Collapse
|
19
|
Balaji A, Jaganathan SK, Ismail AF, Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int J Nanomedicine 2016; 11:4339-55. [PMID: 27621626 PMCID: PMC5015880 DOI: 10.2147/ijn.s112265] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4–50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; IJNUTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Rathanasamy Rajasekar
- Department of Mechanical Engineering, School of Building and Mechanical Sciences, Kongu Engineering College, Tamil Nadu, India
| |
Collapse
|