1
|
Wiyarta E, Budiman RA, Subroto DRT, Park MN, Mayulu N, Taslim NA, Tjandrawinata RR, Tallei TE, Hardinsyah H, Nurkolis F, Kim B. Plant-Derived Natural Products for Dietary Intervention in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Phytother Res 2025. [PMID: 40420357 DOI: 10.1002/ptr.8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/31/2024] [Accepted: 03/25/2025] [Indexed: 05/28/2025]
Abstract
Growing rates of overweight and obesity worldwide call for novel approaches to treatment, and plant-derived natural products present a promising therapeutic option. Evaluate the efficacy of plant-derived natural products as dietary interventions for overweight and obesity through a systematic review and network meta-analysis. We conduct a systematic review and network meta-analysis following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. We searched from five databases and registries up to March 2024, selecting randomized controlled trials examining dietary interventions with plant-derived natural products for adults with obesity or overweight. The frequentist approach was used for the network meta-analysis, assessing 13 metabolic and obesity-related outcomes. Our review included 39 studies with 2513 participants with PROSPERO registration ID CRD42024520305. African Mango emerged as the most effective intervention, reducing body weight (MD: -10.00 kg, 95% CI: -16.74 to -3.26), waist circumference (MD: -11.70 cm, 95% CI: -17.15 to -6.25), total cholesterol (MD: -44.01 mg/dL, 95% CI: -58.95 to -29.08), triglycerides (MD: -42.65 mg/dL, 95% CI: -79.70 to -5.60), and random blood glucose (MD: -14.95 mg/dL, 95% CI: -18.60 to -11.30). Green coffee led to the largest reduction in body fat percentage (MD: -2.90%, 95% CI: -4.88 to -0.92) and BMI (MD: -3.08 kg/m2, 95% CI: -6.35 to 0.19). Ephedra was most effective in reducing fasting blood glucose (MD: -4.60 mg/dL, 95% CI: -5.49 to -3.71) and HOMA-IR (MD: -16.20, 95% CI: -18.66 to -13.74). There were too few direct comparisons between various metabolites; thus, most of the comparisons were indirect comparisons through placebo. Plant-derived natural products significantly impact obesity management, notably in body weight, waist circumference, and lipid profile reduction; however, further high-quality and rigorous studies were needed to establish the clinical efficacy of the plant-derived natural products.
Collapse
Affiliation(s)
- Elvan Wiyarta
- Intensive Care Unit, University of Indonesia Hospital, Jakarta, Indonesia
| | - Refael Alfa Budiman
- Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | | | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Dehzad MJ, Ghalandari H, Fahimzad FS, Maghsoudi Z, Makhtoomi M, Nouri M, Askarpour M. Effects of green tea supplementation on obesity indices and adipokines in adults: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. Int J Food Sci Nutr 2025:1-30. [PMID: 40326418 DOI: 10.1080/09637486.2025.2496400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/18/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND In this systematic review and meta-analysis, the impact of green tea supplementation on measurement/indices of adiposity was investigated. METHODS Using predefined keywords, online databases (PubMed, Scopus, Web of Science Core Collection, and Google Scholar) were searched for relevant studies, published from inception up to February 2024. Data were extracted and registered. Subgroup analyses and the investigation of linear and non-linear associations were carried out. RESULTS Green tea supplementation reduced BW (WMD: -0.74 kg; 95% CI: -0.97, -0.51), BMI (WMD: -0.29 kg/m2; 95% CI: -0.38, -0.19), WC (WMD: -1.04 cm; 95% CI: -1.55, -0.53), BFP (WMD: -0.65%; 95% CI: -1.03, -0.27), and leptin (WMD: -0.92 ng/ml; 95% CI: -1.71, -0.14), but did not change adiponectin levels (WMD: 0.20 µg/ml; 95% CI: -0.17, 0.57). CONCLUSION Supplementation with green tea seems to be effective in reducing excess adiposity.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Fahimzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maede Makhtoomi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Radeva-Ilieva M, Stoeva S, Hvarchanova N, Georgiev KD. Green Tea: Current Knowledge and Issues. Foods 2025; 14:745. [PMID: 40077449 PMCID: PMC11899301 DOI: 10.3390/foods14050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Green tea possesses antioxidant, anti-inflammatory, anticancer, and antimicrobial activities, reduces body weight, and slows down aging. These effects are primarily attributed to catechins contained in green tea leaves, particularly epigallocatechin-3-gallate. However, in humans, the realization of green tea's beneficial effects is limited. In order to summarize and critically analyze the available scientific information about green tea's health benefits and issues related to its use, we conducted an in-depth literature review in scientific databases. A number of in vitro studies reported that green tea catechins modulate various signaling pathways in cells, which is thought to underlie their beneficial effects. However, data on the effects of catechins in humans are scarce, which is partly due to their low stability and oral bioavailability. Furthermore, catechins may also participate in pharmacokinetic interactions when co-administered with certain drugs such as anticancer agents, drugs for cardiovascular diseases, immunosuppressors, etc. As a result, adverse drug reactions or therapy failure may occur. In conclusion, over the years, various approaches have been investigated to optimize catechin intake and to achieve beneficial effects in humans, but to date, the use of catechins for prophylaxis or disease treatment remains limited. Therefore, future studies regarding the possibilities of catechins administration are needed.
Collapse
Affiliation(s)
- Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University—Varna, 9002 Varna, Bulgaria; (S.S.); (N.H.); (K.D.G.)
| | | | | | | |
Collapse
|
4
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. Int J Mol Sci 2024; 25:4162. [PMID: 38673748 PMCID: PMC11049841 DOI: 10.3390/ijms25084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Camelia Sorina Stancu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania; (L.T.); (M.D.); (G.M.S.); (T.B.); (L.Ş.N.); (A.V.S.)
| |
Collapse
|
6
|
Pandey V, Rathee S, Sen D, Jain SK, Patil UK. Phytovesicular Nanoconstructs for Advanced Delivery of Medicinal Metabolites: An In-Depth Review. Curr Drug Targets 2024; 25:847-865. [PMID: 39171597 DOI: 10.2174/0113894501310832240815071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Phytochemicals, the bioactive compounds in plants, possess therapeutic benefits, such as antimicrobial, antioxidant, and pharmacological activities. However, their clinical use is often hindered by poor bioavailability and stability. Phytosome technology enhances the absorption and efficacy of these compounds by integrating vesicular systems like liposomes, niosomes, transfersomes, and ethosomes. Phytosomes offer diverse biological benefits, including cardiovascular protection through improved endothelial function and oxidative stress reduction. They enhance cognitive function and protect against neurodegenerative diseases in the nervous system, aid digestion and reduce inflammation in the gastrointestinal system, and provide hepatoprotective effects by enhancing liver detoxification and protection against toxins. In the genitourinary system, phytosomes improve renal function and exhibit anti-inflammatory properties. They also modulate the immune system by enhancing immune responses and reducing inflammation and oxidative stress. Additionally, phytosomes promote skin health by protecting against UV radiation and improving hydration and elasticity. Recent patented phytosome technologies have led to innovative formulations that improve the stability, bioavailability, and therapeutic efficacy of phytochemicals, although commercialization challenges like manufacturing scalability and regulatory hurdles remain. Secondary metabolites from natural products are classified into primary and secondary metabolites, with a significant focus on terpenoids, phenolic compounds, and nitrogen-containing compounds. These metabolites have notable biological activities: antimicrobial, antioxidant, antibiotic, antiviral, anti-inflammatory, and anticancer effects. In summary, this review amalgamates the latest advancements in phytosome technology and secondary metabolite research, presenting a holistic view of their potential to advance therapeutic interventions and contribute to the ever-evolving landscape of natural product-based medicine.
Collapse
Affiliation(s)
- Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
7
|
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper ( Piper nigrum) and Red Pepper ( Capsicum annum) against Diverse Metabolic Complications. Molecules 2023; 28:6569. [PMID: 37764345 PMCID: PMC10534530 DOI: 10.3390/molecules28186569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Marakiya T. Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa;
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| |
Collapse
|
8
|
Colonetti L, Grande AJ, Toreti IR, Ceretta LB, da Rosa MI, Colonetti T. GREEN TEA PROMOTES WEIGHT LOSS IN WOMEN WITH POLYCYSTIC OVARY SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS. Nutr Res 2022; 104:1-9. [DOI: 10.1016/j.nutres.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
|
9
|
Yadav SS, Singh MK, Hussain S, Dwivedi P, Khattri S, Singh K. Therapeutic spectrum of piperine for clinical practice: a scoping review. Crit Rev Food Sci Nutr 2022; 63:5813-5840. [PMID: 34996326 DOI: 10.1080/10408398.2021.2024792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.
Collapse
|
10
|
Dibba P, Kothari M, Grosman I. Prebiotics, Probiotics, and Dietary Supplements. NUTRITION, WEIGHT, AND DIGESTIVE HEALTH 2022:169-192. [DOI: 10.1007/978-3-030-94953-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Susilawati Y, Chaerunisa AY, Purwaningsih H. Phytosome drug delivery system for natural cosmeceutical compounds: Whitening agent and skin antioxidant agent. J Adv Pharm Technol Res 2021; 12:327-334. [PMID: 34820305 PMCID: PMC8588919 DOI: 10.4103/japtr.japtr_100_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/27/2020] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
Plants have been used as traditional medicine since ancient times for treating the diseases, metabolite active compounds from plants have excellent bioactivity, and pharmacological properties from plants are used as skin whitening agent and antioxidant in multiple mechanisms of action. However, these compounds have physicochemical limitations in terms of its poor solubility and penetration into the cells membrane. Phytosome drug delivery system can be the primary choice to improve the physicochemical properties, which allows increasing the effectiveness. This review aimed to summarize and discuss the phytosome formulations of potential active compounds as skin whitening agent and skin antioxidant, which obtained from Scopus, PubMed, and Google Scholar databases. We assessed that the main purpose of these phytosome formulations was to improve penetration, stability, and solubility of the active compounds. These studies proved that phytosome formulations can improve the physicochemical characteristics and effectiveness of compounds. The phytosome drug delivery system becomes a promising modification technique for natural compounds due to the ability to improve the physicochemical properties and increase the effectiveness. Phytosome formulation could be the excellent approach for cosmeceutical product with good effectivity in the future.
Collapse
Affiliation(s)
- Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | - Anis Yohana Chaerunisa
- Pharmaceutical and Technology Pharmaceutics, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | - Hesti Purwaningsih
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| |
Collapse
|
12
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, Alshehri AA. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics 2021; 13:pharmaceutics13091475. [PMID: 34575551 PMCID: PMC8465302 DOI: 10.3390/pharmaceutics13091475] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is the extremely low absorption rate and poor penetration across biological barriers (i.e., the skin). Phytosomes as lipid-based nanocarriers play a crucial function in the enhancement of pharmacokinetic and pharmacodynamic properties of herbal-originated polyphenolic compounds, and make this nanotechnology a promising tool for the development of new topical formulations. The implementation of this nanosized delivery system could enhance the penetration of phytochemicals across biological barriers due to their unique physiochemical characteristics, improving their bioavailability. In this review, we provide an outlook on the current knowledge of the biological barriers of phytoconstituents topical applications. The great potential of the emerging nanotechnology in the delivery of bioactive phytochemicals is reviewed, with particular focus on phytosomes as an innovative lipid-based nanocarrier. Additionally, we compared phytosomes with liposomes as the gold standard of lipid-based nanocarriers for the topical delivery of phytochemicals. Finally, the advantages of phytosomes in topical applications are discussed.
Collapse
Affiliation(s)
- Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.)
| | - Fahad A. Almughem
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.)
| | - Somayah J. Jarallah
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Wijdan K. Alsharif
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Nouf M. Alzahrani
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
- Correspondence: ; Tel.: +966-509-896-863
| |
Collapse
|
14
|
Ziegenhagen R, Heimberg K, Lampen A, Hirsch-Ernst KI. Safety Aspects of the Use of Isolated Piperine Ingested as a Bolus. Foods 2021; 10:foods10092121. [PMID: 34574230 PMCID: PMC8467119 DOI: 10.3390/foods10092121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Piperine is a natural ingredient of Piper nigrum (black pepper) and some other Piper species. Compared to the use of pepper for food seasoning, piperine is used in food supplements in an isolated, concentrated form and ingested as a bolus. The present review focuses on the assessment of the possible critical health effects regarding the use of isolated piperine as a single ingredient in food supplements. In human and animal studies with single or short-term bolus application of isolated piperine, interactions with several drugs, in most cases resulting in increased drug bioavailability, were observed. Depending on the drug and extent of the interaction, such interactions may carry the risk of unintended deleteriously increased or adverse drug effects. Animal studies with higher daily piperine bolus doses than in human interaction studies provide indications of disturbance of spermatogenesis and of maternal reproductive and embryotoxic effects. Although the available human studies rarely reported effects that were regarded as being adverse, their suitability for detailed risk assessment is limited due to an insufficient focus on safety parameters apart from drug interactions, as well as due to the lack of investigation of the potentially adverse effects observed in animal studies and/or combined administration of piperine with other substances. Taken together, it appears advisable to consider the potential health risks related to intake of isolated piperine in bolus form, e.g., when using certain food supplements.
Collapse
|
15
|
Llaha F, Zamora-Ros R. The Effects of Polyphenol Supplementation in Addition to Calorie Restricted Diets and/or Physical Activity on Body Composition Parameters: A Systematic Review of Randomized Trials. Front Nutr 2020; 7:84. [PMID: 32582757 PMCID: PMC7283923 DOI: 10.3389/fnut.2020.00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Both, calorie restricted diets (CRD) and physical activity (PA) are conventional obesity therapies but their effectiveness is usually limited in the long-term. Polyphenols are bioactive compounds that have shown to possess some anti-obesity properties. The synergic effects between dietary polyphenols and CRD or PA on body weight and fat are supported by several animal studies, but evidence in human is still inconsistent. Thus, our aim was to review the combined effects of polyphenol supplementation with CRD and/or PA on body weight and fat, body mass index (BMI) and waist circumference (WC) in overweight or obese adults. Methods: Electronic databases (PubMed, Web of Science and Cochrane CENTRAL) were searched for randomized clinical trials (RCT) examining the combination of polyphenols with CRD and/or PA (up to December 31st, 2019). Articles were included if they had a duration of intervention ≥ 4 weeks. Both, quality and risk of bias of the included studies were assessed using the Cochrane RoB2 Tool. Results: The review included 4 and 11 RCTs investigating the anti-obesity effects of polyphenol supplementation combined with CRD and PA, respectively. Isoflavone supplementation may increase fat loss during exercise among post-menopausal women in non-Asian studies. In the rest of RCTs regarding polyphenol supplementation and CRD or PA, no additive changes were found. Conclusion: The results do not yet support polyphenol supplementation as a complementary strategy for enhancing the effectiveness of CRD and PA on weight and fat loss. However, this review suggests that isoflavone and soy products combined with lifestyle changes, especially exercise, provide additional anti-obesity effects in postmenopausal women. The potential role of polyphenols alone or, especially, in addition to conventional therapies (CRD and PA) mostly remains uncertain; and therefore, larger and longer RCTs examining these effects are needed. Protocol Registration: PROSPERO CRD42020159890.
Collapse
Affiliation(s)
- Fjorida Llaha
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
16
|
Hafez DA, Elkhodairy KA, Teleb M, Elzoghby AO. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy. Expert Opin Drug Deliv 2020; 17:279-285. [DOI: 10.1080/17425247.2020.1723542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dina A. Hafez
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kadria A. Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed O. Elzoghby
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, USA
| |
Collapse
|
17
|
Yilmaz-Akyuz E, Ustun-Aytekin O, Bayram B, Tutar Y. Nutrients, Bioactive Compounds, and Health Benefits of Functional and Medicinal Beverages. NUTRIENTS IN BEVERAGES 2019:175-235. [DOI: 10.1016/b978-0-12-816842-4.00006-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. Food Chem Toxicol 2018; 121:173-193. [DOI: 10.1016/j.fct.2018.08.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
|
19
|
Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci 2018; 14:265-274. [PMID: 32104457 PMCID: PMC7032241 DOI: 10.1016/j.ajps.2018.05.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Although active constituents extracted from plants show robust in vitro pharmacological effects, low in vivo absorption greatly limits the widespread application of these compounds. A strategy of using phyto-phospholipid complexes represents a promising approach to increase the oral bioavailability of active constituents, which is consist of ‘‘label-friendly” phospholipids and active constituents. Hydrogen bond interactions between active constituents and phospholipids enable phospholipid complexes as an integral part. This review provides an update on four important issues related to phyto-phospholipid complexes: active constituents, phospholipids, solvents, and stoichiometric ratios. We also discuss recent progress in research on the preparation, characterization, structural verification, and increased bioavailability of phyto-phospholipid complexes.
Collapse
|
20
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|