1
|
Liao W, Wang J, Li Y. Natural products based on Correa's cascade for the treatment of gastric cancer trilogy: Current status and future perspective. J Pharm Anal 2025; 15:101075. [PMID: 39957902 PMCID: PMC11830317 DOI: 10.1016/j.jpha.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 02/18/2025] Open
Abstract
Gastric carcinoma (GC) is a malignancy with multifactorial involvement, multicellular regulation, and multistage evolution. The classic Correa's cascade of intestinal GC specifies a trilogy of malignant transformation of the gastric mucosa, in which normal gastric mucosa gradually progresses from inactive or chronic active gastritis (Phase I) to gastric precancerous lesions (Phase II) and finally to GC (Phase III). Correa's cascade highlights the evolutionary pattern of GC and the importance of early intervention to prevent malignant transformation of the gastric mucosa. Intervening in early gastric mucosal lesions, i.e., Phase I and II, will be the key strategy to prevent and treat GC. Natural products (NPs) have been an important source for drug development due to abundant sources, tremendous safety, and multiple pharmacodynamic mechanisms. This review is the first to investigate and summarize the multi-step effects and regulatory mechanisms of NPs on the Correa's cascade in gastric carcinogenesis. In phase I, NPs modulate Helicobacter pylori urease activity, motility, adhesion, virulence factors, and drug resistance, thereby inhibiting H. pylori-induced gastric mucosal inflammation and oxidative stress, and facilitating ulcer healing. In Phase II, NPs modulate multiple pathways and mediators regulating gastric mucosal cell cycle, apoptosis, autophagy, and angiogenesis to reverse gastric precancerous lesions. In Phase III, NPs suppress cell proliferation, migration, invasion, angiogenesis, and cancer stem cells, induce apoptosis and autophagy, and enhance chemotherapeutic drug sensitivity for the treatment of GC. In contrast to existing work, we hope to uncover NPs with sequential therapeutic effects on multiple phases of GC development, providing new ideas for gastric cancer prevention, treatment, and drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Chongqing Bishan Hospital of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuchen Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| |
Collapse
|
2
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Jia X, Ma X, Liu P. Tinosporae radix: A Review of Traditional Use, Botany, Phytochemistry, Bioactivity, and Quality Marker. Comb Chem High Throughput Screen 2024; 27:1413-1433. [PMID: 37859314 DOI: 10.2174/0113862073259834230920073050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Tinosporae radix is the root tuber of Tinospora capillipes Gagnep of the Menispermaceae family. It has the effects of clearing away heat and toxins, benefiting the throat, relieving pain, and treating sore throat, carbuncle and boils, and other diseases in clinical practice. METHODS The related references about T. radix in this review were collected by online databases, including PubMed, Elsevier, Web of Science, Willy, SciFinder, SpringLink, Google Scholar, Baidu Scholar, ACS publications, Scopus, and CNKI. The other information about T. radix was acquired from ancient books and classical works. RESULTS T. radix is an important medicinal plant with a variety of traditional uses according to the theory of Chinese medicine. Previous studies revealed that T. radix contained a variety of chemical components, including diterpenoids, alkaloids, steroids, cinnamic acid derivatives, and other compounds. Many pharmacological researches have exhibited that T. radix possesses various biological activities, including anti-cancer, hypoglycemic, anti-inflammatory, anti-bacterial, anti-ulcer, and anti-oxidant activities. Furthermore, the quality markers of T. radix were summarized and analyzed in this paper. CONCLUSION The traditional use, botany, phytochemistry, bioactivity, and quality markers of T. radix were reviewed in this paper. It will not only provide an important clue for further studying T. radix, but also supply an important theoretical basis and a valuable reference for in-depth research and exploitations of this plant in the future.
Collapse
Affiliation(s)
- Xiaotong Jia
- Department of Medical Nursing, Jiyuan Vocational and Technical College, Jiyuan, 459000, Henan, P.R. China
| | - Xiaogen Ma
- Department of Medical Nursing, Jiyuan Vocational and Technical College, Jiyuan, 459000, Henan, P.R. China
| | - Pengfei Liu
- Department of Neurosurgery, Jiyuan Shi People's Hospital, Jiyuan, 454650, Henan, P.R. China
| |
Collapse
|
4
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Mala L, Lalouckova K, Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals (Basel) 2021; 11:2473. [PMID: 34438930 PMCID: PMC8388705 DOI: 10.3390/ani11082473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Collapse
Affiliation(s)
- Lucie Mala
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Klara Lalouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| |
Collapse
|
6
|
Rueda-Robles A, Rubio-Tomás T, Plaza-Diaz J, Álvarez-Mercado AI. Impact of Dietary Patterns on H. pylori Infection and the Modulation of Microbiota to Counteract Its Effect. A Narrative Review. Pathogens 2021; 10:875. [PMID: 34358024 PMCID: PMC8308520 DOI: 10.3390/pathogens10070875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the stomach and can induce gastric disease and intra-gastric lesions, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This bacterium is responsible for long-term complications of gastric disease. The conjunction of host genetics, immune response, bacterial virulence expression, diet, micronutrient availability, and microbiome structure influence the disease outcomes related to chronic H. pylori infection. In this regard, the consumption of unhealthy and unbalanced diets can induce microbial dysbiosis, which infection with H. pylori may contribute to. However, to date, clinical trials have reported controversial results and current knowledge in this field is inconclusive. Here, we review preclinical studies concerning the changes produced in the microbiota that may be related to H. pylori infection, as well as the involvement of diet. We summarize and discuss the last approaches based on the modulation of the microbiota to improve the negative impact of H. pylori infection and their potential translation from bench to bedside.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
7
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
8
|
Li C, Lee S, Lai W, Chang K, Huang X, Hung P, Lee C, Hsieh M, Tsai N. Cell cycle arrest and apoptosis induction by Juniperus communis extract in esophageal squamous cell carcinoma through activation of p53-induced apoptosis pathway. Food Sci Nutr 2021; 9:1088-1098. [PMID: 33598192 PMCID: PMC7866587 DOI: 10.1002/fsn3.2084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers. It has a high mortality rate and requires novel effective drugs and therapeutic approaches. Juniperus communis (JCo), used to flavor gin and food, has been documented to have anti-tumor activity. The aim of this study was to investigate the antitumor activity of JCo extract against ESCC and its possible mechanisms. JCo extract suppressed cell growth in ESCC and showed higher selection for ESCC cells than normal cells compared to the clinical drug 5-fluorouracil (5-FU). JCo extract induced cell cycle arrest at the G0/G1 phase by regulating the expression of p53/p21 and CDKs/cyclins, triggering cell apoptosis by activating both the extrinsic (Fas/FasL/Caspase 8) and intrinsic (Bcl-2/Bax/Caspase 9) apoptosis pathways. Moreover, a combination treatment of JCo and 5-FU synergistically inhibited proliferation of ESCC cells. These results suggest that JCo extract is a potential natural therapeutic agent for esophageal cancer, as it could induce cell cycle arrest and apoptosis in ESCC cells.
Collapse
Affiliation(s)
- Chia‐Yu Li
- Department of Life‐and‐Death StudiesNanhua UniversityChiayiTaiwan
| | - Shan‐Chih Lee
- Department of Medical Imaging and Radiological SciencesChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ImagingChung Shan Medical University HospitalTaichungTaiwan
| | - Wen‐Lin Lai
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| | - Kai‐Fu Chang
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Xiao‐Fan Huang
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Peng‐Yun Hung
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
| | - Chi‐Pin Lee
- Division of CardiologyDepartment of Internal MedicineDistmanson Medical Foundation Chia‐Yi Christian HospitalChia‐YiTaiwan
| | - Ming‐Chang Hsieh
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| | - Nu‐Man Tsai
- Department of Medical Laboratory and BiotechnologyChung Shan Medical UniversityTaichungTaiwan
- Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
9
|
Ahmad SS, Khalid M, Kamal MA, Younis K. Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:1884-1895. [PMID: 33588732 PMCID: PMC9185787 DOI: 10.2174/1570159x19666210215122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body. CONCLUSION Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.
Collapse
Affiliation(s)
| | | | - Mohammad A. Kamal
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | - Kaiser Younis
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| |
Collapse
|
10
|
Ardalani H, Hadipanah A, Sahebkar A. Medicinal Plants in the Treatment of Peptic Ulcer Disease: A Review. Mini Rev Med Chem 2020; 20:662-702. [PMID: 31880244 DOI: 10.2174/1389557520666191227151939] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Peptic Ulcer Disease (PUD) is the most common disorder of the stomach and duodenum, which is associated with Helicobacter pylori infection. PUD occurs due to an imbalance between offensive and defensive factors and Proton Pump Inhibitors (PPI), Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and antibiotics are frequently used for the treatment. Recently, medicinal plants have emerged as efficacious, safe and widely available alternative therapies for PUD. The aim of this review was to study the medicinal plants and phytochemicals, which have been used for PUD treatment to evaluate the potential role of natural compounds to develop herbal remedies for PUD. Information was obtained using a literature search of electronic databases, such as Web of Science, Google Scholar, PubMed, Sci Finder, Reaxys and Cochrane. Common and scientific names of the plants and keywords such as 'peptic ulcer', 'gastric ulcer', 'stomach ulcer' and 'duodenal ulcer' were used for search. Eventually, 279 plants from 89 families were identified and information on the plant families, part of the plant used, chemical constituents, extracts, ulcer model used and dosage were abstracted. The results indicated that most of the anti-PUD plants were from Asteraceae (7.1%) and Fabaceae (6.8%) families while flavonoids (49%), tannins (13%), saponins (10%) and alkaloids (9%) were the most common natural compounds in plants with anti-PUD activity.
Collapse
Affiliation(s)
- Hamidreza Ardalani
- Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department Agroecology, Aarhus University, 4200 Slagelse, Denmark
| | - Amin Hadipanah
- Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
A Systematic Review of the Mechanisms Underlying Treatment of Gastric Precancerous Lesions by Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9154738. [PMID: 32454874 PMCID: PMC7212333 DOI: 10.1155/2020/9154738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
Gastric precancerous lesions (GPLs) are an essential precursor in the occurrence and development of gastric cancer, known to be one of the most common and lethal cancers worldwide. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and therapy of GPL owing to several advantages including a definite curative effect, fewer side effects compared to other treatments, multiple components, and holistic regulation. Despite these characteristic advantages, the mechanisms of TCM in treating GPL have not been fully elucidated. In this review, we summarize the current knowledge with respect to herbal formulations and the therapeutic mechanisms of TCM active ingredients for GPL. This paper elaborates on the mechanisms of TCM underlying the prevention and treatment of GPL, specifically those that are linked to anti-H. pylori, anti-inflammation, antiproliferation, proapoptotic, antioxidation, antiglycolytic, and antiangiogenesis effects.
Collapse
|
12
|
Liu L, He L, Yin C, Huang R, Shen W, Ge H, Sun M, Li S, Gao Y, Xiong W. Effects of palmatine on BDNF/TrkB-mediated trigeminal neuralgia. Sci Rep 2020; 10:4998. [PMID: 32193501 PMCID: PMC7081188 DOI: 10.1038/s41598-020-61969-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/03/2020] [Indexed: 11/13/2022] Open
Abstract
Trigeminal neuralgia (TN), a sudden, needle-like pain in the distribution area of the trigeminal nerve, can seriously affect the physical and mental health of patients. In chronic pain conditions including TN, increased levels of brain-derived neurotrophic factor (BDNF) may enhance pain transmission. This study compares the effect of palmatine administration on the expression of BDNF and its receptor TrkB (tropomyosin receptor kinase B) in trigeminal ganglion cells of Sprague-Dawley rats in a sham versus TN model group. Within 14 days of surgery, the mechanical allodynia threshold of the TN group was significantly lower than that of the sham group, while the TN + palmatine group had a higher mechanical pain sensitivity threshold than the TN group (p < 0.05). Real-time quantitative PCR, immunohistochemistry, and immunofluorescence showed that BDNF and TrkB expression in the TN group was higher than that in the sham group, while palmatine treatment could reverse these changes. Western blotting showed that palmatine treatment could reduce the elevated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) in TN rats. Thus, the BDNF/TrkB pathway may be involved in the pain transmission process of TN, and palmatine treatment may reduce pain transmission by inhibiting the BDNF/TrkB pathway and suppressing ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Lijuan Liu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lingkun He
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cancan Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruoyu Huang
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenhao Shen
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huixiang Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Mengyun Sun
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shujuan Li
- Second Clinic Medical College of Grade 2017, Nanchang University, Nanchang, Jiangxi, China
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
Synthesis and Structure-Activity Relationship of Palmatine Derivatives as a Novel Class of Antibacterial Agents against Helicobacter pylori. Molecules 2020; 25:molecules25061352. [PMID: 32188132 PMCID: PMC7146163 DOI: 10.3390/molecules25061352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Taking palmatine (PMT) as the lead, 20 new PMT derivatives were synthesized and examined for their antibacterial activities against six tested metronidazole (MTZ)-resistant Helicobacter pylori (H. pylori) strains. The structure–activity relationship (SAR) indicated that the introduction of a suitable secondary amine substituent at the 9-position might be beneficial for potency. Among them, compound 1c exhibited the most potent activities against MTZ-resistant strains, with minimum inhibitory concentration (MIC) values of 4–16 μg/mL, better than that of the lead. It also exhibited a good safety profile with a half-lethal dose (LD50) of over 1000 mg/kg. Meanwhile, 1c might exert its antimicrobial activity through targeting H. pylori urease. These results suggested that PMT derivatives might be a new family of anti-H. pylori components.
Collapse
|
14
|
Fong P, Hao CH, Io CC, Sin PI, Meng LR. In Silico and In Vitro Anti- Helicobacter Pylori Effects of Combinations of Phytochemicals and Antibiotics. Molecules 2019; 24:E3608. [PMID: 31591315 PMCID: PMC6804086 DOI: 10.3390/molecules24193608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is a WHO class 1 carcinogenic factor of gastric adenocarcinoma. In the past decades, many studies have demonstrated the increasing trend of antibiotic resistance and pointed out the necessity of new effective treatment. This study was aimed at identifying phytochemicals that can inhibit H. pylori and possibly serve as adjuvant treatments. Here, in silico molecular docking and drug-like properties analyses were performed to identify potential inhibitors of urease, shikimate kinase and aspartate-semialdehyde dehydrogenase. These three enzymes are targets of the treatment of H. pylori. Susceptibility and synergistic testing were performed on the selected phytochemicals and the positive control antibiotic, amoxicillin. The in-silico study revealed that oroxindin, rosmarinic acid and verbascoside are inhibitors of urease, shikimate kinase and aspartate-semialdehyde dehydrogenase, respectively, in which, oroxindin has the highest potency against H. pylori, indicated by a minimum inhibitory concentration (MIC) value of 50 μg/mL. A combination of oroxindin and amoxicillin demonstrated additive effects against H. pylori, as indicated by a fractional inhibitory concentration (FIC) value of 0.75. This study identified phytochemicals that deserve further investigation for the development of adjuvant therapeutic agents to current antibiotics against H. pylori.
Collapse
Affiliation(s)
- Pedro Fong
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China.
| | - Chon-Hou Hao
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China.
| | - Chi-Cheng Io
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China.
| | - Pou-Io Sin
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China.
| | - Li-Rong Meng
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China.
| |
Collapse
|
15
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
16
|
de Nova PJG, Carvajal A, Prieto M, Rubio P. In vitro Susceptibility and Evaluation of Techniques for Understanding the Mode of Action of a Promising Non-antibiotic Citrus Fruit Extract Against Several Pathogens. Front Microbiol 2019; 10:884. [PMID: 31105673 PMCID: PMC6491944 DOI: 10.3389/fmicb.2019.00884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The screening for alternatives to antibiotics is an urgent need for the pharmaceutical industry. One of these alternatives seems to be the citrus fruit extracts, which are showing a significant antibacterial activity against Gram-negative and Gram-positive bacteria. One of these citrus extracts, named BIOCITRO®, is assessed in this study to elucidate its bacteriostatic and bactericidal effect and its mode of action on the important pathogens Campylobacter coli, C. jejuni, Escherichia coli, Salmonella enterica ssp. enterica, Clostridium difficile, C. perfringens, and Staphylococcus aureus. For most of the strains tested of these bacteria the product was bactericidal as well as bacteriostatic at the same concentration, and the minimum bactericidal concentrations ranged from 16 to 256 μg/mL. Regarding the mode of action, important changes in the permeability, structure, composition and morphology of the bacterial envelope were evidenced using flow cytometry, Fourier transform infrared spectroscopy and scanning electron microscopy. The main effect of the product was found over carbohydrates and polysaccharides, inducing the release of microvesicles by the cells in addition to other specific effects. During the study, the techniques used were evaluated to clarify their contribution to the knowledge of the mode of action of the product. The survival test elucidated whether the modifications displayed using other techniques affected the viability of the cells or on the contrary, the cells remained viable even with evident changes in their structure, composition or morphology. Flow cytometry showed that for some strains the proportion of cells detected with altered membrane permeability were higher than the number of non-viable cells, and therefore the damage did not affect the viability of some cells. On the contrary, some cells observed using scanning electron microscopy with no apparent damage, were demonstrated non-viable using the survival test, making this technique indispensable in studies of the mode of action of antimicrobials to make a correct interpretation of the data from other techniques.
Collapse
Affiliation(s)
- Pedro J. G. de Nova
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Miguel Prieto
- Institute of Food Science and Technology, Universidad de León, León, Spain
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| |
Collapse
|
17
|
Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? Int J Mol Sci 2018; 19:ijms19082361. [PMID: 30103451 PMCID: PMC6121492 DOI: 10.3390/ijms19082361] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
In this critical review, plant sources used as effective antibacterial agents against Helicobacter pylori infections are carefully described. The main intrinsic bioactive molecules, responsible for the observed effects are also underlined and their corresponding modes of action specifically highlighted. In addition to traditional uses as herbal remedies, in vitro and in vivo studies focusing on plant extracts and isolated bioactive compounds with anti-H. pylori activity are also critically discussed. Lastly, special attention was also given to plant extracts with urease inhibitory effects, with emphasis on involved modes of action.
Collapse
|
18
|
Development and Validation of a HPLC-ESI-MS/MS Method for Simultaneous Quantification of Fourteen Alkaloids in Mouse Plasma after Oral Administration of the Extract of Corydalis yanhusuo Tuber: Application to Pharmacokinetic Study. Molecules 2018; 23:molecules23040714. [PMID: 29561801 PMCID: PMC6017933 DOI: 10.3390/molecules23040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
The tuber of Corydalis yanhusuo is a famous traditional Chinese medicine and found to have potent pharmacological effects, such as antinociceptive, antitumor, antibacterial, anti-inflammatory, and anti-depressive activities. Although there are several methods to be developed for the analysis and detection of the bioactive ingredients’ alkaloids, so far, only few prominent alkaloids could be quantified, and in vitro and in vivo changes of comprehensive alkaloids after oral administration are still little known. In this study, we first developed a simple and sensitive high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to quantify the comprehensive alkaloids of extracts of C. yanhusuo in mouse plasma, using nitidine chloride as an internal standard. As results, at least fourteen alkaloids, including an aporphine (oxoglaucine), a protopine (protopine), five tertiary alkaloids (corydaline, tetrahydroberberine, tetrahydropalmatine, tetrahydrocolumbamine, and tetrahydrocoptisine) and seven quaternary alkaloids (columbamine, palmatine, berberine, epiberberine, coptisine, jatrorrhizine, and dehydrocorydaline) could be well quantified simultaneously in mouse plasma. The lower limits of quantification were greater than, or equal to, 0.67 ng/mL, and the average matrix effects ranged from 96.4% to 114.3%. The mean extraction recoveries of quality control samples were over 71.40%, and the precision and accuracy were within the acceptable limits. All the analytes were shown to be stable under different storage conditions. Then the established method was successfully applied to investigate the pharmacokinetics of these alkaloids after oral administration of the extract of Corydalis yanhusuo in mice. To the best of our knowledge, this is the first document to report the comprehensive and simultaneous analyses of alkaloids of C. yanhusuo in mouse plasma. It was efficient and useful for comprehensive pharmacokinetic and metabolomic analyses of these complex alkaloids after drug administration.
Collapse
|
19
|
Yang C, Guo F, Zang C, Li C, Cao H, Zhang B. The Effect of Ginger Juice Processing on the Chemical Profiles of Rhizoma coptidis. Molecules 2018; 23:E380. [PMID: 29439421 PMCID: PMC6017751 DOI: 10.3390/molecules23020380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis (RC) has been used as an herbal medicine in China for over one thousand years, and it was subjected to specific processing before use as materia medica. Processing is a pharmaceutical technique that aims to enhance the efficacy and/or reduce the toxicity of crude drugs according to traditional Chinese medicine theory. In this study, the chemical profiles of RC, ginger juice processed RC (GRC), and water processed RC (WRC) was determined to reveal the mechanism of processing of RC. UPLC-QTOF-MS analysis of methanol extract of RC, GRC, and WRC has been conducted to investigate the effect of processing on the composition of RC. HPLC-PDA was used to determine the variance of total alkaloids and seven alkaloids of RC during the processing. The volatiles of RC, GRC and ginger juice were separated by distillation, the change of volatiles content was recorded and analyzed, and the qualitative analysis of the volatiles was carried out using GC-MS. The microstructures of RC, GRC and WRC were observed using a light microscope. Results showed that ginger juice/water processing had limited influence on the composition of RC's methanol extract, but significant influence on the content of some alkaloids in RC. Ginger juice processing significantly increased (p < 0.05) the volatiles content of RC and changed the volatiles composition obviously. Processing also had an influence on the microstructure of RC. This research comprehensively revealed the mechanism of ginger juice processing of RC.
Collapse
Affiliation(s)
- Chunyu Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui Cao
- School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Baoxian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
20
|
Fierascu I, Ungureanu C, Avramescu SM, Cimpeanu C, Georgescu MI, Fierascu RC, Ortan A, Sutan AN, Anuta V, Zanfirescu A, Dinu-Pirvu CE, Velescu BS. Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:3. [PMID: 29301523 PMCID: PMC5755145 DOI: 10.1186/s12906-017-2066-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Juniperus communis L. represents a multi-purpose crop used in the pharmaceutical, food, and cosmetic industry. Several studies present the possible medicinal properties of different Juniperus taxa native to specific geographical area. The present study aims to evaluate the genoprotective, antioxidant, antifungal and anti-inflammatory potential of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. METHODS The prepared hydroethanolic extract of Juniperus communis L. was characterized by GC-MS, HPLC, UV-Vis spectrometry and phytochemical assays. The antioxidant potential was evaluated using the DPPH assay, the antifungal effect was studied on Aspergillus niger ATCC 15475 and Penicillium hirsutum ATCC 52323, while the genoprotective effect was evaluated using the Allium cepa assay. The anti-inflammatory effect was evaluated in two inflammation experimental models (dextran and kaolin) by plethysmometry. Male Wistar rats were treated by gavage with distilled water (negative control), the microemulsion (positive control), diclofenac sodium aqueous solution (reference) and microemulsions containing juniper extract (experimental group). The initial paw volume and the paw volumes at 1, 2, 3, 4, 5 and 24 h were measured. RESULTS Total terpenoids, phenolics and flavonoids were estimated to be 13.44 ± 0.14 mg linalool equivalent, 19.23 ± 1.32 mg gallic acid equivalent, and 5109.6 ± 21.47 mg rutin equivalent per 100 g of extract, respectively. GC-MS characterization of the juniper extract identified 57 volatile compounds in the sample, while the HPLC analysis revealed the presence of the selected compounds (α-pinene, chlorogenic acid, rutin, apigenin, quercitin). The antioxidant potential of the crude extract was found to be 81.63 ± 0.38% (measured by the DPPH method). The results of the antifungal activity assay (for Aspergillus niger and Penicillium hirsutum) were 21.6 mm, respectively 17.2 mm as inhibition zone. Test results demonstrated the genoprotective potential of J. communis undiluted extract, inhibiting the mitodepressive effect of ethanol. The anti-inflammatory action of the juniper extract, administered as microemulsion in acute-dextran model was increased when compared to kaolin subacute inflammation induced model. CONCLUSION The hydroalcoholic extract obtained from wild-growing Juniperus communis native to Romanian southern sub-Carpathian hills has genoprotective, antioxidant, antifungal and anti-inflammatory properties.
Collapse
Affiliation(s)
- Irina Fierascu
- The National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Camelia Ungureanu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1 Polizu Str., 011061 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Mihaela Ioana Georgescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Radu Claudiu Fierascu
- The National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Alina Ortan
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Anca Nicoleta Sutan
- Department of Natural Sciences, University of Pitesti, 1 Targu din Vale, 110040 Pitesti, Arges Romania
| | - Valentina Anuta
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina Elena Dinu-Pirvu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
21
|
Yilmaz A, Crowley RS, Sherwood AM, Prisinzano TE. Semisynthesis and Kappa-Opioid Receptor Activity of Derivatives of Columbin, a Furanolactone Diterpene. JOURNAL OF NATURAL PRODUCTS 2017; 80:2094-2100. [PMID: 28718638 PMCID: PMC5665014 DOI: 10.1021/acs.jnatprod.7b00327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Columbin (1) is a furanolactone diterpene isolated from the roots of Jateorhiza and Tinospora species. These species generally grow in Asia and Africa and have been used in folk medicine for their apparent analgesic and antipyretic activities. Columbin (1) is of particular interest due to its structural similarity to the known kappa-opioid receptor (KOR) agonist salvinorin A. Given that the KOR is of interest in the study of many serious diseases, such as anxiety, depression, and drug addiction, obtaining natural or semisynthetic molecules with KOR activity recently has gained much interest. For this reason, in the present study, derivatives of 1 were designed and synthesized using known structure-activity relationships of salvinorin A at KORs. The structures of the columbin analogues prepared were elucidated by NMR spectroscopy and mass spectroscopy, and their KOR activity was investigated in vitro by inhibition of forskolin-induced cAMP accumulation. Slight improvements in KOR activity were observed in columbin derivatives over their parent compound. However, despite the structural similarities to salvinorin A, neither columbin (1) nor its derivatives were potent KOR ligands. This work represents not only the first evaluation of columbin (1) at the KOR but also one of the first works to explore synthetic strategies that are tolerated on the columbin core.
Collapse
Affiliation(s)
- Anil Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, 34469 Maslak, İstanbul, Turkey
| | - Rachel Saylor Crowley
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Alexander M. Sherwood
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Thomas E. Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
22
|
Zhou X, Rong Q, Xu M, Zhang Y, Dong Q, Xiao Y, Liu Q, Chen H, Yang X, Yu K, Li Y, Zhao L, Ye G, Shi F, Lv C. Safety pharmacology and subchronic toxicity of jinqing granules in rats. BMC Vet Res 2017; 13:179. [PMID: 28623915 PMCID: PMC5474005 DOI: 10.1186/s12917-017-1095-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Jinqing granules which are made of a mixture extract that contains Radix Tinosporae and Canarii fructus in proportions according to a longstanding formula have a good effect on the prevention and treatment of gastric ulcer disease. It has not been through safety through systematic toxicological studies, however. To provide basis for clinical application, we performed safety pharmacology and subchronic toxicity experiments in specific pathogen-free Sprague-Dawley rats. RESULTS In safety pharmacology experiments, Jinqing granules had no evident adverse effects on the central nervous, cardiovascular, or respiratory systems. In subchronic toxicity study, 2-8 g/kg of Jinqing granules induced no evident adverse effects on Clinical signs, body weight changes, food and water intake, death daily, indicators of urine, hematological assay, serum biochemistry, organ coefficient and histopathological examination. However, the 16 g/kg dose was associated with slightly slowed weight growth, decreased number of sperm in seminiferous tubules and increased values of serum aspartate aminotransferase and bilirubin. During the 30-day feeding test, 3 rats that received the 16 g/kg dose died, but the deaths were most likely due to trauma of oral gavage, not to drug toxicity. CONCLUSION Jinqing granules given to Sprague-Dawley rats orally for 30 days at a dose of 8 g/kg or less appears safe, but higher doses were not proven safe. The significance of these observations with respect to animal usage of Jinqing granules deserves thorough investigation.
Collapse
Affiliation(s)
- Xuerong Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qian Rong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Min Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuanli Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qi Dong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuanling Xiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qiji Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Kaisheng Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Cheng Lv
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|