1
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Ma J, Zhong X, Li Z, Jiang Y, Jiang Y, Liu X, Hu Y, Yang Z, Zhai G. Di-Dang-Tang suppresses ferroptosis in the hippocampal CA1 region by targeting PGK1/NRF2/GPX4 signaling pathway to exert neuroprotection in vascular dementia. Int Immunopharmacol 2025; 150:114233. [PMID: 39946772 DOI: 10.1016/j.intimp.2025.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Increasing evidence has emphasized the crucial role of ferroptosis in the pathogenesis of Vascular dementia (VaD). Di-Dang-Tang (DDT) has the effects of removing blood stasis according to the theory of Traditional Chinese medicine (TCM), while its effects on ferroptosis and mechanisms remain unclear. To elucidate whether the neuroprotective effect of DDT treatment is associated with ferroptosis mediated by the Phosphoglycerate kinase 1 (PGK1)/ Nuclear Factor Erythroid 2-related factor (NRF2)/ Glutathione Peroxidase 4 (GPX4) signaling pathway in the hippocampal CA1 region of rats with the 2-vessel occlusion (2VO) model, we conducted a series of experiments. Nissl staining, HE staining and FJB staining were used to assess the effects of DDT on the degeneration and apoptosis of neurons in the CA1 region of the hippocampus. DDT's suppression on ferroptosis and its protective effects were also evaluated by ELISA and DHE fluorescence. Immunofluorescence assay, immunohistochemistry examination, and western blot analysis further validated DDT's regulatory effects on ferroptosis via PGK1/NRF2/GPX4 pathway. Additionally, we explored the key mediating role of PGK1 in the DDT treatment of VaD by overexpressing PGK1 using AAV-OE-PGK1 plasmid injection. DDT significantly attenuated neuronal apoptosis and degeneration in CA1 region and ameliorated cognitive dysfunctions in VaD rats. DDT inhibited ferroptosis in this brain region, as evidenced by an up-regulation of GPX4 and SLC7A11, and a decline in ferroptosis-related indices. Further, DDT activated protein expression of the PGK1/NRF2/GPX4 pathway, alleviating the lipid peroxidation. Notably, the inhibition of ferroptosis by DDT was achieved by suppression of the PGK1 axis signaling pathway.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- NF-E2-Related Factor 2/metabolism
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/pathology
- Signal Transduction/drug effects
- Male
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Phosphoglycerate Kinase/metabolism
- Phosphoglycerate Kinase/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Rats
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Rats, Sprague-Dawley
- Disease Models, Animal
Collapse
Affiliation(s)
- Junjie Ma
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Xinxin Zhong
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Zhiyuan Li
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Yongxia Jiang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Yongqu Jiang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Xiaoli Liu
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Yue Hu
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Zhou Yang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Guojie Zhai
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, No. 2666, Ludang Road, Wujiang District, Suzhou City, Jiangsu 215200, China.
| |
Collapse
|
3
|
Fu Y, Yang L, Liu L, Kong L, Sun H, Sun Y, Yin F, Yan G, Wang X. Rhein: An Updated Review Concerning Its Biological Activity, Pharmacokinetics, Structure Optimization, and Future Pharmaceutical Applications. Pharmaceuticals (Basel) 2024; 17:1665. [PMID: 39770507 PMCID: PMC11679290 DOI: 10.3390/ph17121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Rhein is a natural active ingredient in traditional Chinese medicine that has attracted much attention due to its wide range of pharmacological activities. However, its clinical application is limited by low water solubility, poor oral absorption, and potential toxicity to the liver and kidneys. Recently, advanced extraction and synthesis techniques have made it possible to develop derivatives of rhein, which have better pharmacological properties and lower toxicity. This article comprehensively summarizes the biological activity and action mechanism of rhein. Notably, we found that TGF-β1 is the target of rhein improving tissue fibrosis, while NF-κB is the main target of its anti-inflammatory effect. Additionally, we reviewed the current research status of the pharmacokinetics, toxicology, structural optimization, and potential drug applications of rhein and found that the coupling and combination therapy of rhein and other active ingredients exhibit a synergistic effect, significantly enhancing therapeutic efficacy. Finally, we emphasize the necessity of further studying rhein's pharmacological mechanisms, toxicology, and development of analogs, aiming to lay the foundation for its widespread clinical application as a natural product and elucidate its prospects in modern medicine.
Collapse
Affiliation(s)
- Yuqi Fu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Lei Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| |
Collapse
|
4
|
Chen Y, Tu Y, Cao J, Wang Y, Ren Y. Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. Cardiovasc Toxicol 2024; 24:1139-1150. [PMID: 39240427 DOI: 10.1007/s12012-024-09917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Collapse
Affiliation(s)
- Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Jin Cao
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yigang Wang
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, No.6, Panxi 7th Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
5
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
6
|
Gu N, Yan J, Tang W, Zhang Z, Wang L, Li Z, Wang Y, Zhu Y, Tang S, Zhong J, Cheng C, Sun X, Huang Z. Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury. J Neuroinflammation 2024; 21:147. [PMID: 38835057 DOI: 10.1186/s12974-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.
Collapse
Affiliation(s)
- Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Emergency Department, Chengdu First People's Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Zheng Y, Zhao Y, Li Z, Xu M, Lu Y, Li X. Puerarin-containing rhein-crosslinked tyramine-modified hyaluronic acid hydrogel for antibacterial and anti-inflammatory wound dressings. Int J Biol Macromol 2024; 271:132527. [PMID: 38777027 DOI: 10.1016/j.ijbiomac.2024.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Wound infections, posing a grave risk of severe physical consequences and even mortality, exact a substantial financial toll on society, rendering them among the most formidable challenges confronting our world today. A critical imperative is the development of hydrogel dressings endowed with immune-regulating and antibacterial properties. This study is founded upon the symbiotic physical and efficacious attributes of two small natural molecules. An injectable hydrogel is meticulously crafted by encapsulating puerarin (PUE) into tyramine-modified hyaluronic acid, subsequently introducing rhein (RHE), and catalyzing the formation of inter-phenol crosslinks with H2O2/horseradish peroxidase (HA-Tyr-R@P). Exhibiting a favorable microenvironmental impact the developed hydrogel attains an antibacterial efficacy exceeding 95 %, coupled with a wound closure rate twice that of the control group. HA-Tyr-R@P hydrogels not only inhibit bacterial growth but also mitigate inflammation, fostering wound healing, owing to their harmonized physicochemical characteristics and synergistic therapeutic effects. This work underscores the creation of a singular, versatile hydrogel platform, negating the complexities and side effects associated with pharmaceutical preparations. Furthermore, it offers new ideas for the formulation of RHE-based hydrogels for wound healing, emphasizing the pivotal role of natural small molecules in advancing biological materials.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongping Lu
- Science and Technologv Innovation Center Guangyuan Central Hospital, Guangyuan 628000, China; Guangyuan Key Laboratory of Multifunctional Medical Hydrogel Guangyuan Central Hospital, Guangyuan 628000, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Zhong D, Jin K, Wang R, Chen B, Zhang J, Ren C, Chen X, Lu J, Zhou M. Microalgae-Based Hydrogel for Inflammatory Bowel Disease and Its Associated Anxiety and Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312275. [PMID: 38277492 DOI: 10.1002/adma.202312275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Patients diagnosed with inflammatory bowel disease (IBD) exhibit a notable prevalence of psychiatric disorders, such as anxiety and depression. Nevertheless, the etiology of psychiatric disorders associated with IBD remains uncertain, and an efficacious treatment approach has yet to be established. Herein, an oral hydrogel strategy (SP@Rh-gel) is proposed for co-delivery of Spirulina platensis and rhein to treat IBD and IBD-associated anxiety and depression by modulating the microbiota-gut-brain axis. SP@Rh-gel improves the solubility, release characteristics and intestinal retention capacity of the drug, leading to a significant improvement in the oral therapeutic efficacy. Oral administration of SP@Rh-gel can reduce intestinal inflammation and rebalance the disrupted intestinal microbial community. Furthermore, SP@Rh-gel maintains intestinal barrier integrity and reduces the release of pro-inflammatory factors and their entry into the hippocampus through the blood-brain barrier, thereby inhibiting neuroinflammation and maintaining neuroplasticity. SP@Rh-gel significantly alleviates the colitis symptoms, as well as anxiety- and depression-like behaviors, in a chronic colitis mouse model. This study demonstrates the significant involvement of the microbiota-gut-brain axis in the development of IBD with psychiatric disorders and proposes a safe, simple, and highly efficient therapeutic approach for managing IBD and comorbid psychiatric disorders.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Kangyu Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Chaojie Ren
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, P. R. China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, 314400, P. R. China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Erdos Etuoke Joint Research Center, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310029, P. R. China
| |
Collapse
|
9
|
Chen C, Liang CS, Wang T, Shen JL, Ling F, Jiang HF, Li PF, Wang GX. Antiviral, antioxidant, and anti-inflammatory activities of rhein against white spot syndrome virus infection in red swamp crayfish ( Procambarus clarkii). Microbiol Spectr 2023; 11:e0104723. [PMID: 37855526 PMCID: PMC10714825 DOI: 10.1128/spectrum.01047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Aquaculture is essential for ensuring global food security by providing a significant source of animal protein. However, the spread of the white spot syndrome virus (WSSV) has resulted in considerable economic losses in crustacean industries. In this study, we evaluated the antiviral activity of rhein, the primary bioactive component of Rheum palmatum L., against WSSV infection, and many pathological aspects of WSSV were also described for the first time. Our mechanistic studies indicated that rhein effectively arrested the replication of WSSV in crayfish by modulating innate immunity to inhibit viral gene transcription. Furthermore, we observed that rhein attenuated WSSV-induced oxidative and inflammatory stresses by regulating the expression of antioxidant and anti-inflammatory-related genes while enhancing innate immunity by reducing total protein levels and increasing phosphatase activity. Our findings suggest that rhein holds great promise as a potent antiviral agent for the prevention and treatment of WSSV in aquaculture.
Collapse
Affiliation(s)
- Cheng Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chang-Shuai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing-Lei Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Cores Á, Carmona-Zafra N, Clerigué J, Villacampa M, Menéndez JC. Quinones as Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1464. [PMID: 37508002 PMCID: PMC10376830 DOI: 10.3390/antiox12071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q10, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q10 analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Noelia Carmona-Zafra
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
11
|
Josifovska S, Panov S, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Stojchevski R, Avtanski D, Mladenov M. Positive Tetrahydrocurcumin-Associated Brain-Related Metabolomic Implications. Molecules 2023; 28:3734. [PMID: 37175144 PMCID: PMC10179939 DOI: 10.3390/molecules28093734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR's beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated. This paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease in various animal or cell culture models. In addition to its strong antioxidant properties, the effects of THC on the reduction of amyloid β aggregates are also well documented. The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction is also addressed and thoroughly reviewed, as is evidence from experimental studies about the mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal models of different brain disorders suggest that THC can be used as a dietary supplement to protect against traumatic brain injury and even improve brain function in Alzheimer's and Parkinson's diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective, anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently reviewed studies would be useful and should help define doses and methods of THC administration in different disease conditions.
Collapse
Affiliation(s)
- Slavica Josifovska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Sasho Panov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| |
Collapse
|
12
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
13
|
Liangxue Tongyu Prescription Alleviates Brain Damage in Acute Intracerebral Hemorrhage Rats by Regulating Intestinal Mucosal Barrier Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2197763. [PMID: 36573082 PMCID: PMC9789913 DOI: 10.1155/2022/2197763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Background Liangxue Tongyu prescription (LTP) is a commonly used formula for acute intracerebral hemorrhage (AICH) in clinical practice that has significant ameliorative effects on neurological deficits and gastrointestinal dysfunction, yet the mechanism remains elusive. The aim of this study was to investigate the pathway by which LTP alleviates brain damage in AICH rats. Methods The AICH rat models were established by autologous caudal arterial blood injection. The neurological function scores were evaluated before and after treatment. The water content and the volume of Evans blue staining in the brain were measured to reflect the degree of brain damage. RT-PCR was used to detect the inflammatory factors of the brain. Western blotting was used to detect the expression of the tight junction proteins zonula occludens 1 (ZO-1), occludin (OCLN), and claudin (CLDN) in the brain and colon, followed by mucin 2 (MUC2), secretory immunoglobulin A (SIgA), and G protein-coupled receptor 43 (GPR43) in the colon. Flow cytometry was used to detect the ratios of helper T cells 17 (Th17) and regulatory T cells (Treg) in peripheral blood, and the vagus nerve (VN) discharge signals were collected. Results LTP reduced the brain damage of the AICH rats. Compared with the model group, LTP significantly improved the permeability of the colonic mucosa, promoted the secretion of MUC2, SigA, and GPR43 in the colon, and regulated the immune balance of peripheral T cells. The AICH rats had significantly faster VN discharge rates and lower amplitudes than normal rats, and these abnormalities were corrected in the LTP and probiotics groups. Conclusion LTP can effectively reduce the degree of brain damage in AICH rats, and the mechanism may be that it can play a neuroprotective role by regulating the function of the intestinal mucosal barrier.
Collapse
|
14
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
15
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
Trybus W, Król T, Trybus E. Rhein induces changes in the lysosomal compartment of HeLa cells. J Cell Biochem 2022; 123:1506-1524. [PMID: 35901236 DOI: 10.1002/jcb.30311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
Rhein is an anthraquinone found in Rheum palmatum, used in Chinese medicine. Due to potential anticancer properties, the study assessed its effect on the lysosomal compartment, which indirectly influences cell death. The experiment was performed on HeLa cells by treating them with rhein at concentrations of 100-300 µM. LC3-II protein and caspase 3/7 activity, level of apoptosis, the concentration of reactive oxide species (ROS), and mitochondrial potential (Δψm) were evaluated by the cytometric method. To evaluate the permeability of the lysosomal membrane (LMP), staining with acridine orange and the assessment of activity of cathepsin D and L in the lysosomal and extralysosomal fractions were used. Cell viability was assessed by -(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) and neutral red (NR) assays. Changes in cells were also demonstrated at the level of electron, optical, confocal, and fluorescence microscopy. Inhibition of autophagy was done using chloroquine. Rhein-induced degradation processes were confirmed by an increase in the number of primary lysosomes, autophagosomes, and autolysosomes. At high concentrations, rhein caused the generation of ROS, which induced LMP expressed by quenching of acridine orange fluorescence. These results correlated with a reduction of lysosomes, as visualized in graphical modeling, with the decreased uptake of NR by lysosomes, and increased activity of cathepsin D and L in the extralysosomal fraction. The studies also showed an increase in the activity of caspase 3/7 and a decrease in the expression of Bcl-2 protein, indicative of rhein-stimulated apoptosis. At the same time, we demonstrated that preincubation of cells with chloroquine inhibited rhein-induced autophagy and contributed to increased cytotoxicity to HeLa cells. Rhein also induced DNA damage and led to cycle arrest in the S phase. Our results indicate that rhein, by inducing changes in the lysosomal compartment, indirectly affects apoptosis of HeLa cells and in combination with autophagy inhibitors may be an effective form of anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Teodora Król
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
17
|
Rhein Ameliorates Cognitive Impairment in an APP/PS1 Transgenic Mouse Model of Alzheimer's Disease by Relieving Oxidative Stress through Activating the SIRT1/PGC-1 α Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2524832. [PMID: 35360200 PMCID: PMC8964225 DOI: 10.1155/2022/2524832] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/08/2022] [Indexed: 01/05/2023]
Abstract
Mitochondrial oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). Recently, antioxidant therapy has been considered an effective strategy for the treatment of AD. Our previous work discovered that rhein relieved mitochondrial oxidative stress in β-amyloid (Aβ) oligomer-induced primary neurons by improving the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha- (PGC-1α-) regulated mitochondrial biogenesis. While encouraging results have been provided, mechanisms underlying the beneficial effect of rhein on AD are yet to be elucidated in vivo. In this study, we evaluated the therapeutic effect of rhein on an APP/PS1 transgenic (APP/PS1) mouse model of AD and explored its antioxidant mechanisms. As a result, rhein significantly reduced Aβ burden and neuroinflammation and eventually ameliorated cognitive impairment in APP/PS1 mice. Moreover, rhein reversed oxidative stress in the brain of APP/PS1 mice and protected neurons from oxidative stress-associated apoptosis. Further study revealed that rhein promoted mitochondrial biogenesis against oxidative stress by upregulating SIRT1 and its downstream PGC-1α as well as nuclear respiratory factor 1. Improved mitochondrial biogenesis not only increased the activity of superoxide dismutase to scavenge excess reactive oxygen species (ROS) but also repaired mitochondria by mitochondrial fusion to inhibit the production of ROS from the electron transport chain. Notably, the exposure of rhein in the brain analyzed by tissue distribution study indicated that rhein could permeate into the brain to exert its therapeutic effects. In conclusion, these findings drive rhein to serve as a promising therapeutic antioxidant for the treatment of AD. Our research highlights the therapeutic efficacy for AD through regulating mitochondrial biogenesis via the SIRT1/PGC-1α pathway.
Collapse
|
18
|
Huang H, Liu Z, Qi X, Gao N, Chang J, Yang M, Na S, Liu Y, Song R, Li L, Chen G, Zhou H. Rhubarb granule promotes diethylnitrosamine-induced liver tumorigenesis by activating the oxidative branch of pentose phosphate pathway via G6PD in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114479. [PMID: 34343647 DOI: 10.1016/j.jep.2021.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a natural herbal medicine widely used clinically with numerous pharmacological activities including anti-cancer. Specifically, several studies reported that free anthraquinones from Rhubarb suppressed the proliferation of hepatoma cells. Nonetheless, recent studies revealed that Rhubarb caused hepatotoxicity in vivo, confirming its "two-way" effect on the liver. Therefore, the efficacy and safety of Rhubarb in the in vivo treatment of liver cancer should be further elucidated. AIM OF THE STUDY This study investigated the presence of hepatoprotection or hepatotoxicity of Rhubarb in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. MATERIAL AND METHODS A total of 112 male Sprague-Dawley rats weighing 190-250 g were enrolled. The rats were induced hepatocarcinogenesis using diethylnitrosamine (0.002 g/rat) until 17 weeks. Starting at week 11, Rhubarb granules (4 g/kg and 8 g/kg) were intragastrically administered daily for 7 weeks. All rats were euthanized at week 20 and the livers were analyzed via non-targeted metabolomics analysis. We established hepatic glucose 6 phosphate (6PG) levels and glucose 6 phosphate dehydrogenase (G6PD) activities to assess the pentose phosphate pathway (PPP). And the liver injuries of rats were analyzed via histological changes, hepatic function, as well as hepatic protein levels of alpha-fetoprotein (AFP), pyruvate kinase isozyme type M2 (PKM2), and proliferating cell nuclear antigen (PCNA). Furthermore, polydatin (0.1 g/kg/d) as a specific inhibitor of G6PD was used to treat rats. Notably, their histological changes, hepatic function, hepatic 6PG levels, hepatic G6PD activities, PCNA levels, and PKM2 levels were recorded. RESULTS Non-targeted metabolomics revealed that Rhubarb regulated the PPP in the liver of Rhubarb-DEN-treated rats. Besides, Rhubarb activated the oxidative branch of the PPP by activating G6PD (a rate-limiting enzyme in the oxidative PPP) in the liver of Rhubarb-DEN-treated rats. Meanwhile, Rhubarb promoted DEN-induced hepatocarcinogenesis. Moreover, polydatin attenuated the promoting effect of Rhubarb on DEN-induced hepatocarcinogenesis. CONCLUSIONS Rhubarb promoted DEN-induced hepatocarcinogenesis by activating the PPP, indicating that the efficacy and safety of Rhubarb in the treatment of liver cancer deserve to be deliberated.
Collapse
Affiliation(s)
- Hongwu Huang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Xiaoru Qi
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Jianguo Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, PR China
| | - Miaomiao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province, PR China; Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Rui Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Guangliang Chen
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, PR China.
| |
Collapse
|
19
|
Li GM, Chen JR, Zhang HQ, Cao XY, Sun C, Peng F, Yin YP, Lin Z, Yu L, Chen Y, Tang YL, Xie XF, Peng C. Update on Pharmacological Activities, Security, and Pharmacokinetics of Rhein. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4582412. [PMID: 34457021 PMCID: PMC8387172 DOI: 10.1155/2021/4582412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Rhein, belonging to anthraquinone compounds, is one of the main active components of rhubarb and Polygonum multiflorum. Rhein has a variety of pharmacological effects, such as cardiocerebral protective effect, hepatoprotective effect, nephroprotective effect, anti-inflammation effect, antitumor effect, antidiabetic effect, and others. The mechanism is interrelated and complex, referring to NF-κB, PI3K/Akt/MAPK, p53, mitochondrial-mediated signaling pathway, oxidative stress signaling pathway, and so on. However, to some extent, its clinical application is limited by its poor water solubility and low bioavailability. Even more, rhein has potential liver and kidney toxicity. Therefore, in this paper, the pharmacological effects of rhein and its mechanism, pharmacokinetics, and safety studies were reviewed, in order to provide reference for the development and application of rhein.
Collapse
Affiliation(s)
- Gang-Min Li
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun-Ren Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hui-Qiong Zhang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao-Yu Cao
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chen Sun
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fu Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Peng Yin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ziwei Lin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lei Yu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yan Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun-Li Tang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Xiao-Fang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
20
|
Thabet NM, Rashed ER, Abdel-Rafei MK, Moustafa EM. Modulation of the Nitric Oxide/BH4 Pathway Protects Against Irradiation-Induced Neuronal Damage. Neurochem Res 2021; 46:1641-1658. [PMID: 33755856 DOI: 10.1007/s11064-021-03306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The kynurenine pathway (KP, IDO/Kyn pathway) is an important metabolic pathway related to many diseases. Although cranial radiotherapy is the mainstay in metastatic tumors management, its efficacy is limited owing to the associated neuropsychiatric disorders. Sildenafil (SD) and simvastatin (SV) were reported to have antioxidant/anti-inflammatory effects and to serve as NO donor/BH4 regulator, respectively. Fluoxetine (Fx) is an FDA-approved anti-depressant agent and one of the selective serotonin reuptake inhibitor drugs (SSRI), used in neurological disorder treatment. The study objective was to investigate the role of cranial irradiation (C-IR) on KP signaling impairment and the possible intervention by SD and/or SV (as nitric oxide (NO) donor/Tetrahydrobiopterin (BH4) regulatory) on KP following C-IR-induced disruption compared with Fx (as standard drug).Herein, rats were exposed to C-IR at a single dose level of 25 Gy, then treated with sildenafil (SD) and/or simvastatin (SV), and fluoxetine (Fx) at doses of 75, 20, 10 mg/kg/day, respectively. The body weight gain and forced swimming test (FST) were used for evaluation along with the biochemical quantifications of KP intermediates and histopathological examination of cortex and hippocampus. The results indicated a significant activation of KP following C-IR as manifested by decreased Trp content and increased activities of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) with a rise in kynurenine (KYN) and quinolinic acid (QA) hippocampal contents. In addition, a state of C-IR-induced oxidative stress, inflammation, NO-pathway dysregulation and neuronal apoptosis were observed as compared to the control group. However, significant modulations were recorded after the combined administration of SD and SV than those offered by each of them alone and by Fx. The biochemical assessment results were supported by the histopathological tissue examination. It could be concluded that the co-administration of SV and SD offers a neuroprotective effect against irradiation-induced brain injury due to its NO donor/BH4 regulatory activities, anti-inflammatory and antioxidant properties that modulate IDO/KYN pathway.
Collapse
Affiliation(s)
- Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Enas Mahmoud Moustafa
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
21
|
Zhu X, Long Z, Bao T, Liu L, Yang K. Exploring the mechanism of Radix Rhei Et Rhizome intervention in intracerebral hemorrhage based on systematic pharmacology and proteomics strategy. Biosci Rep 2021; 41:226101. [PMID: 32803256 PMCID: PMC7955106 DOI: 10.1042/bsr20201910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To explore the mechanism of Radix Rhei Et Rhizome (Dahuang, DH) intervention in intracerebral hemorrhage (ICH) based on systematic pharmacology and proteomics strategy. METHODS The systematic pharmacological strategies were utilized to find the bioactive compounds of Radix Rhei Et Rhizome, predict its potential targets, and collect ICH's disease genes; then, the Cytoscape 3.7.1 software was applied for network construction and network topology analysis. After that, in-depth analysis of the proteomics data of Radix Rhei Et Rhizome intervention in ICH was performed to complement and validate the results of systematic pharmacological predictions. RESULTS A total of three major networks were constructed in the present study: (1) compound-compound target network of Radix Rhei Et Rhizome, (2) DH-ICH PPI network, (3) proteomics proteins' PPI network. These three major networks have been analyzed by network topology, and several small networks derived (such as signaling pathway networks). The enrichment analysis showed that Radix Rhei Et Rhizome can intervene in several biological process (such as inflammation, smooth muscle proliferation, platelet activation, blood pressure regulation, angiogenesis, hypoxia, and inflammatory response of leukocytes), signaling pathway (such as FoxO signaling pathway, complement and coagulation cascades, cGMP-PKG signaling pathway, and Rap1 signaling pathway), and reactome pathway (such as signaling by interleukins, interleukin-4 and interleukin-13 signaling, nuclear receptor transcription pathway, and platelet activation). CONCLUSION Radix Rhei Et Rhizome may intervene in ICH-related biological process, signaling pathway, and reactome pathway found in this research so as to achieve the effect of treating ICH related injuries.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Physical Medicine and Rehabilitation, Guangdong General Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Tingting Bao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine (Xiyuan Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Liang Liu
- People’s Hospital of Ningxiang City, Ningxiang 410600, Hunan Province, China
- Correspondence: Liang Liu (, ) or Kailin Yang ()
| | - Kailin Yang
- Graduate College, Capital Medical University, Beijing, China
- Correspondence: Liang Liu (, ) or Kailin Yang ()
| |
Collapse
|
22
|
Du D, Tang W, Zhou C, Sun X, Wei Z, Zhong J, Huang Z. Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5816837. [PMID: 33628361 PMCID: PMC7894052 DOI: 10.1155/2021/5816837] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can induce persistent fluctuation in the gut microbiota makeup and abundance. The present study is aimed at determining whether fecal microbiota transplantation (FMT) can rescue microbiota changes and ameliorate neurological deficits after TBI in rats. METHODS A controlled cortical impact (CCI) model was used to simulate TBI in male Sprague-Dawley rats, and FMT was performed for 7 consecutive days. 16S ribosomal RNA (rRNA) sequencing of fecal samples was performed to analyze the effects of FMT on gut microbiota. Modified neurological severity score and Morris water maze were used to evaluate neurobehavioral functions. Metabolomics was used to screen differential metabolites from the rat serum and ipsilateral brains. The oxidative stress indices were measured in the brain. RESULTS TBI induced significance changes in the gut microbiome, including the alpha- and beta-bacterial diversity, as well as the microbiome composition at 8 days after TBI. On the other hand, FMT could rescue these changes and relieve neurological deficits after TBI. Metabolomics results showed that the level of trimethylamine (TMA) in feces and the level of trimethylamine N-oxide (TMAO) in the ipsilateral brain and serum was increased after TBI, while FMT decreased TMA levels in the feces, and TMAO levels in the ipsilateral brain and serum. Antioxidant enzyme methionine sulfoxide reductase A (MsrA) in the ipsilateral hippocampus was decreased after TBI but increased after FMT. In addition, FMT elevated SOD and CAT activities and GSH/GSSG ratio and diminished ROS, GSSG, and MDA levels in the ipsilateral hippocampus after TBI. CONCLUSIONS FMT can restore gut microbiota dysbiosis and relieve neurological deficits possibly through the TMA-TMAO-MsrA signaling pathway after TBI.
Collapse
Affiliation(s)
- Donglin Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Wu G, Yuan T, Zhu H, Zhang H, Su J, Guo L, Zhou Q, Xiong F, Yu Q, Yang P, Zhang S, Mo B, Zhao J, Cai J, Wang CY. Chrysophanol protects human bronchial epithelial cells from cigarette smoke extract (CSE)-induced apoptosis. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2020; 11:39-45. [PMID: 33488953 PMCID: PMC7811954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by the persistent airflow obstruction. Chrysophanol, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, has been reported to be protective for some inflammatory diseases. The present report aimed to dissect its effect on cigarette smoke extract (CSE)-induced apoptosis in 16HBECs, a human bronchial epithelial cell line. METHODS CCK8 cell viability assay was conducted to evaluate the protective effect of chrysophanol on 16HBECs after CSE induction. Western blot analysis, Annexin V/PI staining and TUNEL assay were conducted to test the effect of chrysophanol on 16HBECs apoptosis induced by CSE. Then the western blot assay measured associated molecular pathways to dissect the mechanisms underlying protective effect of chrysophanol on 16HBECs. RESULTS Chrysophanol protects 16HBECs against CSE-induced apoptosis in a dose dependent manner. Specifically, pre-treatment of 16HBECs with 20 mmol/l of chrysophanol, reduced CSE-induced apoptosis by almost 10%. Mechanistically, chrysophanol manifested high potency to attenuate CSE-induced expression of apoptotic markers, Bax and cleaved caspase 3. In particular, chrysophanol not only represses CSE-induced oxidative stress by inhibiting CYP1A1 expression, but also suppresses CSE-induced ER stress by inhibiting pPERK, ATF4 and ATF6 expression. CONCLUSION Chrysophanol showed protective effect on CSE-induced epithelial injuries in cell line 16HBECs. And our data support that chrysophanol could be employed to reduce the toxicity of cigarette smoke in bronchial epithelial cells, which may have the potential to decrease the risk for developing COPD in smoking subjects.
Collapse
Affiliation(s)
- Guorao Wu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology1095 Jiefang Ave, Wuhan 430030, China
| | - Ting Yuan
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University15 Lequn Road, Guilin, Guangxi, China
| | - He Zhu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Huilan Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology1095 Jiefang Ave, Wuhan 430030, China
| | - Jiakun Su
- China Tobacco Jiangxi Industrial Co., Ltd.Nanchang High Technology Development Valley, Nanchang 330096, China
| | - Lei Guo
- China Tobacco Jiangxi Industrial Co., Ltd.Nanchang High Technology Development Valley, Nanchang 330096, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University15 Lequn Road, Guilin, Guangxi, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology1095 Jiefang Ave, Wuhan 430030, China
| | - Jibao Cai
- China Tobacco Jiangxi Industrial Co., Ltd.Nanchang High Technology Development Valley, Nanchang 330096, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
24
|
The Great Healing Potential Hidden in Plant Preparations of Antioxidant Properties: A Return to Nature? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8163868. [PMID: 33101592 PMCID: PMC7569450 DOI: 10.1155/2020/8163868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
The application of chemicals in industry and agriculture has contributed to environmental pollution and exposure of living organisms to harmful factors. The development of new pharmaceutical agents enabled successful therapy of various diseases, but their administration may be connected with side effects. Oxidative stress has been found to be involved into etiology of numerous diseases as well as harmful action of drugs and chemicals. For some time, plant origin substances have been studied as potential protective agents alleviating toxicity of various substances and symptoms of diseases. The aim of the current review was to present the diversity of the research performed during the last five years on animal models. The outcomes showed a huge protective potential inherent in plant preparations, including alleviating prooxidative processes, strengthening antioxidant defence, ameliorating immune parameters, and reversing histopathological changes. In many cases, plant origin substances were proved to be comparable or even better than standard drugs. Such findings let us suggest that in the future the plant preparations could make adjuvants or a replacement for pharmaceutical agents. However, the detailed research regarding dose and way of administration as well as the per se effects needs to be performed. In many studies, the last issue was not studied, and in some cases, the deleterious effects have been observed.
Collapse
|
25
|
Tang Y, Dong X, Chen G, Ye W, Kang J, Tang Y, Feng Z. Vagus Nerve Stimulation Attenuates Early Traumatic Brain Injury by Regulating the NF-κB/NLRP3 Signaling Pathway. Neurorehabil Neural Repair 2020; 34:831-843. [PMID: 32772884 DOI: 10.1177/1545968320948065] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Oxidative stress, inflammation, and apoptosis are vital pathophysiological features post-TBI. OBJECTIVES Research has shown that vagus nerve stimulation (VNS) can attenuate oxidative stress in various diseases. However, the critical role of VNS in TBI is still not completely understood. This study investigated the protective effects and potential mechanism of VNS on TBI. METHODS Male Sprague-Dawley rats were randomized into 3 groups: sham, TBI, and TBI + VNS. The TBI model was induced in rats by the free-fall drop method. The vagal nerve trunk was separated, and VNS was performed after establishing the TBI model. RESULTS The results showed that VNS significantly ameliorated tissue damage, neurological deficits, and cerebral edema, compared with the sham VNS group. Additionally, VNS alleviated oxidative stress, inflammation, and apoptosis in the pericontusive cortex of rats after TBI. VNS also significantly suppressed expression of the nuclear factor-κB (NF-κB) protein in the nucleus and activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. CONCLUSIONS Taken together, the present study indicates that VNS may attenuate brain damage after TBI by inhibiting oxidative stress, inflammation, and apoptosis, possibly through the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Gengfa Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wen Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Junwei Kang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhen Feng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
26
|
Zhou L, Wang D, Qiu X, Zhang W, Gong Z, Wang Y, Xu X. DHZCP Modulates Microglial M1/M2 Polarization via the p38 and TLR4/NF-κB Signaling Pathways in LPS-Stimulated Microglial Cells. Front Pharmacol 2020; 11:1126. [PMID: 32848745 PMCID: PMC7406685 DOI: 10.3389/fphar.2020.01126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a disease with a significantly high rate of morbidity, mortality and disability. Inhibition of inflammation is considered a potential strategy for improving the clinical symptoms induced by ICH. The hallmark of neuroinflammation is microglial activation. Microglia can polarize into either the classically activated M1 (proinflammatory) phenotype, exacerbating neuronal damage, or the alternatively activated M2 (antiinflammatory) phenotype, exerting neuroprotection and promoting neuronal recovery. Promoting microglial polarization to the M2 phenotype may be a viable strategy for treating neuroinflammation. Several studies have indicated that promoting blood circulation and removing blood stasis exhibits therapeutic effects on intracerebral hemorrhage. Dahuang Zhechong Pill (DHZCP), a classical recipe that promotes blood circulation and removes blood stasis, has been reported to improve the clinical outcome of ICH. DHZCP has been shown to exert antiinflammatory effects. However, the detailed antiinflammatory mechanism of DHZCP in ICH has rarely been investigated. In this study, DHZCP inhibited lipopolysaccharide (LPS)-induced M1 microglial activation. DHZCP exerted antiinflammatory effects, by inhibiting LPS-induced M1 proinflammatory cytokine (TNF-α and IL-6), and iNOS production and increasing M2 antiinflammatory cytokine (IL-10) production. DHZCP also switched microglial polarization from M1 to M2, as indicated by significantly increased expression of M2 polarization markers (CD209, and CD206) and markedly decreased expression of an M1 polarization marker (CD54). In addition, DHZCP inhibited p38 and TLR4/NF-κB signaling activation, as demonstrated by inhibition of LPS-induced increases in p-p38, TLR4 and nuclear factor kappa B p-65 (NF-κB p-65) protein expression. Taken together, DHZCP modulates microglial M1/M2 polarization via the p38 and TLR4/NF-κB signaling pathways to confer antiinflammatory effects.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xinjian Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Weiru Zhang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Xu
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Salman M, Tabassum H, Parvez S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol Neurobiol 2020; 57:2870-2885. [PMID: 32399817 DOI: 10.1007/s12035-020-01924-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
Abstract
The present research was conducted to elucidate a possible molecular mechanism related to neuromodulatory effects of tannic acid (TA) supplementation against traumatic brain injury (TBI) in a rodent model. Oxidative damage and neuroinflammation play a critical role in TBI and lead to behavioral alterations and neuronal dysfunction and death. These changes suggest a potential avenue in neurotherapeutic intervention. The aim of the present study was to investigate the neuroprotective effects of TA and potential mechanism of these effects in a controlled cortical impact injury model of TBI in Wistar rats that were treated with TA (50 mg/kg body weight. i.p.) before 30 min and 6 and 18 h after TBI. TBI-induced rats were examined after 24 h for behavioral dysfunction, Nissl stain, lipid peroxidation rate, glutathione level, activities of antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), the expression level of 4-hydroxynonenal, pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1 beta, as well as brain edema and immunoreactivity of glial fibrillary acidic protein. Results indicated that TA supplementation significantly modulated above mentioned alterations. Moreover, TA treatment effectively upregulated the protein expression of peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) and nuclear factor-E2-related factor-2 (Nrf2) as well as mitochondrial transcription factor A and heme oxygenase-1 (HO-1) following TBI. Overall, our results suggest that TA effectively ameliorates the behavioral alterations, oxidative damage, mitochondrial impairment, and inflammation against TBI that may be attributed to activation of PGC-1α/Nrf-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
28
|
Keshavarzi Z, Shakeri F, Barreto GE, Bibak B, Sathyapalan T, Sahebkar A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors 2019; 45:517-535. [PMID: 31206893 DOI: 10.1002/biof.1516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) is the most prevalent health problem affecting all age groups, and leads to many secondary problems in other organs especially kidneys, gastrointestinal tract, and heart function. In this review, the search terms were TBI, fluid percussion injury, cold injury, weight drop impact acceleration injury, lateral fluid percussion, cortical impact injury, and blast injury. Studies with Actaea racemosa, Artemisia annua, Aframomum melegueta, Carthamus tinctorius, Cinnamomum zeylanicum, Crocus sativus, Cnidium monnieri, Curcuma longa, Gastrodia elata, Malva sylvestris, Da Chuanxiong Formula, Erigeron breviscapus, Panax ginseng, Salvia tomentosa, Satureja khuzistanica, Nigella sativa, Drynaria fortune, Dracaena cochinchinensis, Polygonum cuspidatum, Rosmarinus officinalis, Rheum tanguticum, Centella asiatica, and Curcuma zedoaria show a significant decrease in neuronal injury by different mechanisms such as increasing superoxide dismutase and catalase activities, suppressing nuclear factor kappa B (NF-κB), interleukin 1 (IL-1), glial fibrillary acidic protein, and IL-6 expression. The aim of this study was to evaluate the neuroprotective effects of medicinal plants in central nervous system pathologies by reviewing the available literature.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Neuroprotective Effects of Anthraquinones from Rhubarb in Central Nervous System Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3790728. [PMID: 31223328 PMCID: PMC6541978 DOI: 10.1155/2019/3790728] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
Abstract
Rhubarb is a well-known traditional Chinese medicine; it has been used in China for thousands of years. Rhubarb anthraquinones are the major medicinal ingredients derived from rhubarb including emodin, aloe-emodin, chrysophanol, rhein, physcion, and danthron. These different anthraquinone derivatives alone or in combination play a therapeutic role in central nervous system diseases (CNSD), such as cerebral ischemic stroke, intracerebral hemorrhage, traumatic brain injury, brain tumor, Alzheimer's disease, depression, and others. We review the experimental studies on these six anthraquinones in the treatment of CNSD by consulting literature published in the last 20 years in PubMed and then give a future perspective on it. In the end of this paper some deficiencies related to these studies also have been pointed out.
Collapse
|
30
|
Zheng J, Fan R, Wu H, Yao H, Yan Y, Liu J, Ran L, Sun Z, Yi L, Dang L, Gan P, Zheng P, Yang T, Zhang Y, Tang T, Wang Y. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun 2019; 10:1604. [PMID: 30962431 PMCID: PMC6453967 DOI: 10.1038/s41467-019-09601-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/19/2019] [Indexed: 01/06/2023] Open
Abstract
Self-assembling natural drug hydrogels formed without structural modification and able to act as carriers are of interest for biomedical applications. A lack of knowledge about natural drug gels limits there current application. Here, we report on rhein, a herbal natural product, which is directly self-assembled into hydrogels through noncovalent interactions. This hydrogel shows excellent stability, sustained release and reversible stimuli-responses. The hydrogel consists of a three-dimensional nanofiber network that prevents premature degradation. Moreover, it easily enters cells and binds to toll-like receptor 4. This enables rhein hydrogels to significantly dephosphorylate IκBα, inhibiting the nuclear translocation of p65 at the NFκB signalling pathway in lipopolysaccharide-induced BV2 microglia. Subsequently, rhein hydrogels alleviate neuroinflammation with a long-lasting effect and little cytotoxicity compared to the equivalent free-drug in vitro. This study highlights a direct self-assembly hydrogel from natural small molecule as a promising neuroinflammatory therapy.
Collapse
Affiliation(s)
- Jun Zheng
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Rong Fan
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Huiqiong Wu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China.,Key Laboratry of Materials Processing and Mold, Ministry of Education, Zhengzhou University, 450002, Zhengzhou, China
| | - Honghui Yao
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yujie Yan
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Jiamiao Liu
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Lu Ran
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 650500, Kunming, China
| | - Zhifang Sun
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 650500, Kunming, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063, Shantou, China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Piao Zheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Tilong Yang
- Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yi Zhang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China. .,Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, 410008, Changsha, China.
| | - Tao Tang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, 410008, Changsha, China.
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, 410008, Changsha, China.
| |
Collapse
|
31
|
Liu T, Zhou J, Cui H, Li P, Luo J, Li T, He F, Wang Y, Tang T. iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:244-254. [PMID: 30502478 DOI: 10.1016/j.jep.2018.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a traditional Chinese medicine(TCM), that possesses neuroprotective, anti-inflammatory, antibacterial, antioxidative, purgative and anticancer properties, and has been used to treat intracerebral hemorrhage (ICH) and many other diseases. AIMS OF THE STUDY This study aimed to investigate the changes of brain protein in ICH rats treated with rhubarb and to explore the multi-target mechanism of rhubarb in the treatment of ICH via bioinformatics analysis of differentially expressed proteins (DEPs). MATERIALS AND METHODS Rats were subjected to collagenase-induced ICH and then treated orally with 3 or 12 g/kg rhubarb daily for 2 days following ICH. After sacrifice, total protein of brain tissue was extracted, and isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was employed to quantitatively identify of the DEPs in two treatment groups compared with the vehicle group. The DEPs were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and STRING databases. Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was used to predict the target of rhubarb and western blotting was used for verification. RESULTS In total, 1356 proteins were identified with a 1% false discovery rate (FDR). Among them, 55 DEPs were significantly altered in the sham, vehicle, low dose rhubarb group (LDR, 3 g/kg), and high dose rhubarb group (HDR, 12 g/kg). Enrichment analysis of GO annotations indicated that rhubarb mainly regulated expression of some neuron projection proteins involved in the response to drug and nervous system development. The dopaminergic synapse pathway was found to be the most significant DEP in the combined analysis of the KEGG and BATMAN-TCM databases. Based on the results of the STRING analysis, oxidative stress (OS), calcium binding protein regulation, vascularization, and energy metabolism were important in the rhubarb therapeutic process. CONCLUSION Rhubarb achieves its effects mainly through the dopaminergic synapse pathway in ICH treatment. The ICH-treating mechanisms of rhubarb may also involve anti-OS, calcium binding protein regulation, angiogenic regulation, and energy metabolism improvement. This study adds new evidence to clinical applications of rhubarb for ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000 Urumqi, China
| | - Jing Zhou
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Pengfei Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Teng Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Feng He
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| | - Tao Tang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| |
Collapse
|
32
|
Zhuang S, Yu R, Zhong J, Liu P, Liu Z. Rhein from Rheum rhabarbarum Inhibits Hydrogen-Peroxide-Induced Oxidative Stress in Intestinal Epithelial Cells Partly through PI3K/Akt-Mediated Nrf2/HO-1 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2519-2529. [PMID: 30779558 DOI: 10.1021/acs.jafc.9b00037] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheum rhabarbarum has been widely used as a herbal medicine and food in China. The objective of this study was to investigate the cytoprotective action and underlying mechanisms of rhein, one active ingredient isolated from R. rhabarbarum, on H2O2-challenged rat small intestine epithelial cells (IEC-6 cells). H2O2-challenged IEC-6 cells were incubated in the pretreatment with or without rhein or LY294002, a PI3K/Akt inhibitor. The cell viability, apoptosis, intracellular reactive oxygen species (ROS), and antioxidants were measured. The expressions of heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), Akt, and p-Akt were evaluated by western blotting. Meanwhile, LY294002 was also used to investigate the role of PI3K/Akt in the rhein-induced cytoprotective role. The results showed that pretreatment of rhein could reverse the inhibition of cell viability and suppress the apoptosis, caspase-3 activity, and intracellular ROS induced by H2O2. Rhein also supported SOD activity catalase activity, glutathione S-transferase activity, and glutathione content. Furthermore, rhein induced the protein expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of Akt in IEC-6 cells. LY294002 inhibited increased cell viability, upregulated the lowered apoptotic rate, and enhanced the weakened ROS levels. Although the inhibition of PI3K/Akt did not inhibit the Nrf2 nuclear level under 4 μM rhein, LY294002 inhibited the Nrf2 nuclear level under 2 μM rhein and blocked HO-1 expression. These data demonstrated that rhein protected IEC-6 cells against oxidative damage partly via PI3K/Akt and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Shen Zhuang
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ping Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Zhongjie Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| |
Collapse
|
33
|
Zhao Y, Huang Y, Fang Y, Zhao H, Shi W, Li J, Duan Y, Sun Y, Gao L, Luo Y. Chrysophanol attenuates nitrosative/oxidative stress injury in a mouse model of focal cerebral ischemia/reperfusion. J Pharmacol Sci 2018; 138:16-22. [PMID: 30197059 DOI: 10.1016/j.jphs.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Nitrosative/oxidative stress plays an important role in neuronal death following cerebral ischemia/reperfusion (I/R). Chrysophanol (CHR) has been shown to afford significant neuroprotection on ischemic stroke, however, whether its mechanism is related to attenuating nitrosative/oxidative stress is not clear. In the present study, we investigated the effect of CHR on neuronal injury related to nitric oxide (NO) production by using mouse middle cerebral artery occlusion (MCAO) model. Our results revealed that nitrite plus nitrate (NOx-) and 3-nitrotyrosine (3-NT) levels increased in ischemic brain 14 days after reperfusion, and were subsequently attenuated by CHR treatment. Moreover, 3-NT is colocalized with NeuN and TUNEL, suggesting that neuronal apoptosis following I/R is associated with 3-NT and CHR suppresses NO-associated neuronal cell death. Accordingly, cleaved caspase-3 expression in ischemic brain was decreased by CHR treatment. I/R also decreased the activity of total superoxide dismutase (SOD) and manganese-dependent SOD (MnSOD), whilst increased reactive oxygen species (ROS) production significantly. Interestingly, CHR reversed this decrease in total SOD, and MnSOD activity, and inhibited ROS generation in the ischemic brain. Taken together, our results provide direct evidence suggesting that CHR attenuates nitrosative/oxidative stress injury induced by I/R, providing a novel therapeutic target in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Yongmei Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China.
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China
| | - Yalan Fang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China
| | - Jincheng Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China
| | - Yunxia Duan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China
| | - Yuwei Sun
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Li Gao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, China; Beijing Institute for Brain Disorders, Beijing, 100053, China.
| |
Collapse
|
34
|
Lin X, Liu T, Li P, He Z, Zhong Y, Cui H, Luo J, Wang Y, Tang T. iTRAQ-Based Proteomics Analysis Reveals the Effect of Rhubarb in Rats with Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6920213. [PMID: 30112417 PMCID: PMC6077657 DOI: 10.1155/2018/6920213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022]
Abstract
Background. Rhubarb, a traditional Chinese medicine, promotes viscera and remove blood stasis. Rhubarb is skilled in smoothening meridians, improving blood circulation which exhibits better efficacy on cerebral ischemic stroke. In this study, we aimed to analyze the underlying mechanisms of rhubarb which treated rats of middle cerebral artery occlusion (MCAO) model according to an iTRAQ-based proteomics and bioinformatics analysis. 30 rats were randomly allocated into three groups including sham group (SG), model group (MG), and rhubarb group (RG). Rhubarb group was given a gavage of rhubarb decoction at dose of 3 g/kg and the remaining groups were prepared with normal saline by gavage. Rats from MG and RG were induced into MCAO model. The effects of rhubarb were estimated by Modified Neurological Severity Score (mNSS) and cerebral infarct volume. The brain tissues were measured via the quantitative proteomic approach of iTRAQ coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, the bioinformatics analysis of overlapping differentially expression proteins (DEPs) was conducted by DAVID, KEGG, and Cytoscape. Specific selective DEPs were validated by Western blotting. Rats treated with rhubarb after MCAO showed a significant reduction on mNSS and cerebral infarct volume compared with MG. In MG versus SG and RG versus MG, we identified a total of 4578 proteins, of which 287 were DEPs. There were 76 overlapping DEPs between MG versus SG and RG versus MG. Through bioinformatics analysis, 14 associated pathways were searched including cGMP-PKG signaling pathway, tuberculosis, synaptic vesicle cycle, amyotrophic lateral sclerosis, long-term potentiation, and so on. 76 overlapping DEPs mainly involved synaptic vesicle cycling biological processes based on GO annotation. Further, the selective overlapping DEPs were verified at the protein level by using Western blotting. Our present study reveals that rhubarb highlights promising neuroprotective effect. Rhubarb exerts novel therapeutic action via modulating multiple proteins, targets, and pathways.
Collapse
Affiliation(s)
- Xiangping Lin
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000 Urumqi, China
| | - Pengfei Li
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zehui He
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yuanyuan Zhong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Jiekun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| |
Collapse
|
35
|
Wan Y, Sun SS, Fu HY, Xu YK, Liu Q, Yin JT, Wan B. Adjuvant rhubarb alleviates organs dysfunction and inhibits inflammation in heat stroke. Exp Ther Med 2018; 16:1493-1498. [PMID: 30116399 DOI: 10.3892/etm.2018.6327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the effects of adjuvant rhubarb on the recovery of patients with heat stroke. A total of 85 patients with heat stroke were randomly assigned to two treatment groups: One group receiving conventional treatment for heat stroke (conventional group) and one group receiving rhubarb supplement in addition to conventional treatment (rhubarb group). Liver and kidney function parameters, Acute Physiology and Chronic Health Evaluation (APACHE) II scores, plasma interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP) levels and venous white blood cell count (WBC) were analyzed. The length of stay in the intensive care units (ICUs) and hospital were recorded. Kaplan-Meier curves were drawn to determine the 30-day survival of the patients. The results indicated that rhubarb supplementation significantly reduced the WBC, as well as CRP, PCT and IL-6 levels at treatment days 3-5. Furthermore, rhubarb intake was observed to limit heat stroke-induced damage to liver and kidney function by decreasing the abnormally high levels of plasma aspartate aminotransferase, alanine aminotransferase and creatinine. Finally, patients in the rhubarb group had shorter ICU and hospital stays as well as a lower APACHE II score than those in the conventional group. However, no significant difference in the 30-day mortality rate was observed between the two groups. In conclusion, rhubarb intake provided a significant benefit for patients with heat stroke by inhibiting systemic inflammation and mitigating liver and kidney injury.
Collapse
Affiliation(s)
- Ying Wan
- Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shuang-Shuang Sun
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hai-Yan Fu
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yin-Kun Xu
- Intensive Care Unit, Zhenjiang No. 2 People's Hospital, Zhenjiang, Jiangsu 212000, P.R. China
| | - Qing Liu
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiang-Tao Yin
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing Wan
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Respiratory Medicine, The Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
36
|
Wei G, Chen B, Lin Q, Li Y, Luo L, He H, Fu H. Tetrahydrocurcumin Provides Neuroprotection in Experimental Traumatic Brain Injury and the Nrf2 Signaling Pathway as a Potential Mechanism. Neuroimmunomodulation 2017; 24:348-355. [PMID: 29669346 DOI: 10.1159/000487998] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
The protective effect of tetrahydrocurcumin (THC) after experimental traumatic brain injury (TBI) has been demonstrated, as demonstrated by the inhibition of oxidative stress, mitochondrial dysfunction, and apoptosis. However, the mechanisms underlying this effect are still not well understood. This study was to investigate the neuroprotective effects of THC, and its potential mechanisms, in a rat model of TBI. To this end, rats were divided into 4 groups: the sham group, the TBI group, the TBI + vehicle (V) group, and the TBI + THC group. THC or V was administered via intraperitoneal injection to rats in the TBI + V and TBI + THC groups 30 min after TBI. After euthanasia (24 h after TBI), neurological scores, brain water content, and neuronal cell death in the cerebral cortex were recorded. Brain samples were collected after neurological scoring for further analysis. THC treatment alleviated brain edema, attenuated TBI-induced neuronal cell apoptosis, and improved neurobehavioral function. In addition, NFE2-related factor 2 (Nrf2) expression was upregulated following TBI. These results suggest that THC improves neurological outcome after TBI, possibly by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Guan Wei
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Bingji Chen
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qingjiang Lin
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yasong Li
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Liangqin Luo
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| |
Collapse
|