1
|
Li B, Guo Y, Jia X, Cai Y, Zhang Y, Yang Q. Luteolin alleviates ulcerative colitis in rats via regulating immune response, oxidative stress, and metabolic profiling. Open Med (Wars) 2023; 18:20230785. [PMID: 37693835 PMCID: PMC10487402 DOI: 10.1515/med-2023-0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease and associated with metabolic imbalance. Luteolin (LUT) reportedly exhibits anti-inflammatory activity. However, its regulatory effects on metabolites remain indistinct. Here, the effects of LUT on immune response and oxidative stress in UC were determined. Serum metabolomics profiles of UC rats treated with LUT were obtained utilizing liquid chromatography-mass spectrometry. The results revealed that LUT treatment alleviated colon tissue injury, colon shortening, weight loss, and inflammatory response in UC rats. Additionally, the levels of superoxide dismutase and total antioxidant capacity were elevated, but malondialdehyde content was reduced in serum of UC rats, while these changes were abrogated by LUT. Metabolomics analysis unveiled that l-malic acid, creatinine, l-glutamine, and l-lactic acid levels were remarkably decreased, while dimethyl sulfone, 5-methylcytosine, cysteine-S-sulfate, and jasmonic acid levels were notably increased after LUT treatment. Furthermore, differential metabolites primarily participated in d-glutamine and d-glutamate metabolism, glutathione metabolism, and citrate cycle pathways. In summary, these results demonstrated that LUT improved immune response, alleviated oxidative stress, and altered metabolites in UC rats. This study lays the root for further exploring the mechanism of LUT in the treatment of UC.
Collapse
Affiliation(s)
- Bolin Li
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
| | - Yuxi Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xuemei Jia
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanru Cai
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yunfeng Zhang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, 389 Zhongshan East Road, Chang’an District, Shijiazhuang, Hebei, China
| | - Qian Yang
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, 389 Zhongshan East Road, Chang’an District, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
3
|
Kong D, Wang L, Niu Y, Cheng L, Sang B, Wang D, Tian J, Zhao W, Liu X, Chen Y, Wang F, Zhou H, Jia R. Dendrophthoe falcata (L.f.) Ettingsh. and Dendrophthoe pentandra (L.) Miq.: A review of traditional medical uses, phytochemistry, pharmacology, toxicity, and applications. Front Pharmacol 2023; 14:1096379. [PMID: 36817117 PMCID: PMC9934394 DOI: 10.3389/fphar.2023.1096379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Dendrophthoe falcata (L.f.) Ettingsh. (DF) and Dendrophthoe pentandra (L.) Miq. (DP) have been traditionally used for the treatment of various ailments, such as cancer, ulcers, asthma, paralysis, skin diseases, tuberculosis, and menstrual troubles, in the ethnomedicinal systems of India and Indonesia. Currently, the chemical structures of 46 compounds have been elucidated from DF and DP, including flavonoids, triterpenes, tannins, steroids, open-chain aliphatics, benzyl derivates, and cyclic chain derivatives. In vitro assays have revealed their anti-tumor and anti-microbial activities. In vivo studies have unraveled their pharmacological properties against tumors, depression, fertility disorders, inflammatory responses, and so on. Additionally, their weak toxicity to rats and brine shrimp, as well as their promising applications for pharmaceutical preparations and combined medication, were also revealed. Herein, we not only recapitulated traditional medical uses, phytochemistry, pharmacology, toxicity, and applications of DF and DP but also discussed current research limitations and future perspectives, which are instructive for those interested in them and are committed to advancing parasitic plants to the Frontier of phytomedicine. We highlighted that DF and DP will become promising medical plants rather than being discarded as notorious pests, provided that more and deeper research is undertaken.
Collapse
Affiliation(s)
- Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yingshuo Niu
- Jinan Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingmei Cheng
- Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Bo Sang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Wang
- Taian City Central Hospital, Taian, Shandong, China
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruyi Jia
- Jinan Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Handono K, Pratama MZ, Sermoati IA, Yuniati MG, Haryati NPS, Norahmawati E, Endharti AT, Irwanto Y, Solikhin MB, Hidayat S. The Effect of Mango Mistletoes (Dendrophthoe pentandra) Leaves Extract on Percentage of CD4+CD28+, CD8+CD28+, and interleukin-2 Levels of Aged Balb/c Mice. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Population aging is considered to be a global phenomenon today. Age-associated immune system dysfunction or “immunosenescence” is indicated by increased susceptibility to infections and chronic diseases, such as hypertension, diabetes mellitus, autoimmune diseases, heart disease, and atherosclerosis. One of the immunosenescence markers is a significant drop in CD28 and reduced proinflammatory cytokine interleukin-2 (IL-2). The mango mistletoes are deemed to have a better affinity for docking the CD28 and IL-2R receptors of α and β subunits than other plants.
AIM: This study aims to determine the effect of ethanol extract of mango mistletoes on IL-2 levels, the percentage of CD4+CD28+, and the percentage of CD8+CD28+ in aged female mice.
METHODS: The leaves of mango mistletoes were extracted using 96% ethanol solvent, and the extract was administered to aged female mice (18–20 months) orally with different doses for each group, namely 150, 300, and 600 mg/kg. Mango mistletoe leaves extract was administered once a day for 14 days. Then, the IL-2 levels of the mice were checked from their heart blood samples using Enzyme-Linked Immunosorbent Assay, while the percentages of CD4+CD28+ and CD8+CD28+ were examined from the spleen samples using flow cytometry.
RESULTS: The ethanol extract of mango mistletoe leaves was able to increase the percentage of CD4+CD28+ significantly (p < 0.05) at doses of 300 and 600 mg/kg and increase the percentage of CD8+CD28+ significantly (p < 0.05) at a dose of 600 mg/kgBW, while other various doses had a strong enough correlation (r = 0.48) to increase IL-2 levels.
CONCLUSION: The ethanol extract of mango mistletoe leaves has the good potential to inhibit the aging process in the immune system, as characterized by an increase in IL-2 levels and the percentage of CD4+CD28+ and CD8+CD28+.
Collapse
|
5
|
da Cunha VP, Preisser TM, Santana MP, Machado DCC, Pereira VB, Miyoshi A. Mycobacterial Hsp65 antigen delivered by invasive Lactococcus lactis reduces intestinal inflammation and fibrosis in TNBS-induced chronic colitis model. Sci Rep 2020; 10:20123. [PMID: 33208841 PMCID: PMC7674425 DOI: 10.1038/s41598-020-77276-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis associated with Crohn's disease (CD), which a common and serious complication of inflammatory bowel diseases. In this context, heat shock proteins (HSPs) might serve as an alternative treatment because these antigens play important roles in the regulation of effector T cells. We thus evaluated the anti-inflammatory and antifibrotic capacities of an invasive and Hsp65-producing strain-Lactococcus lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65)-in chronic intestinal inflammation to assess its potential as an alternative therapeutic strategy against fibrotic CD. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in BALB/c mice, and the mice were treated orally with L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) via intragastric gavage. The oral administration of this strain significantly attenuated the severity of inflammation and intestinal fibrosis in mice (p < 0.05). These results are mainly justified by reductions in the levels of the pro-fibrotic cytokines IL-13 and TGF-β and increases in the concentration of the regulatory cytokine IL-10. The L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain contributed to reductions in the severity of inflammatory damage in chronic experimental CD, and these findings confirm the effectiveness of this new antifibrotic strategy based on the delivery of therapeutic proteins to inside cells of the host intestinal mucosa.
Collapse
Affiliation(s)
- Vanessa Pecini da Cunha
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Tatiane Melo Preisser
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Passos Santana
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Carmona Cara Machado
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Bastos Pereira
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Miyoshi
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Coelomic Fluid of Eisenia fetida Ameliorates Cetuximab to Reduce K-Ras and Vimentin Expression through Promoting RUNX3 in an AOM/DSS-Induced Colitis Associated Colon Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9418520. [PMID: 32765634 PMCID: PMC7387963 DOI: 10.1155/2020/9418520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a major risk factor that increases the occurrence of colorectal cancer. In colorectal cancer due to colitis, intestinal inflammation plays an important role which causes DNA damage. The aim of this study is to investigate the anticancer effect of coelomic fluid of Eisenia fetida (CFEF) and cetuximab combinations. Colitis associated colon cancer was induced in BALB/c mice by DSS/AOM. The mice were randomly divided into six groups: group 1 received vehicle (control), groups 2–6 received DSS/AOM, groups 3–5 received cetuximab + CFEF (30, 60, or 120 mg/kgBW), and group 6 received CFEF only. After the 12th week of treatments, the colon tissues were removed for histological examination and immune-fluorescence. Intestinal Epithelial Cells (CECs) were analyzed by flow cytometer. Administration of CFEF significantly decreased the severity of DSS/AOM-induced CAC in a dose-dependent manner. The combinations of CFEF-cetuximab were revealed by histological change. The CFEF significantly reduced the severity scores (P < 0.05). The combinations of CFEF-cetuximab significantly inhibited K-Ras and vimentin expressions, whereas the percentage of RUNX3 significantly increased in CECs. The increasing of RUNX3 could prevent EMT, so that it can decrease K-Ras and vimentin to suppressed cell invasion and migration by CFEF. Our results suggest that CFEF has the therapeutic potential to CAC.
Collapse
|
7
|
da Cunha VP, Preisser TM, Santana MP, Machado DCC, Pereira VB, Miyoshi A. Invasive Lactococcus lactis producing mycobacterial Hsp65 ameliorates intestinal inflammation in acute TNBS-induced colitis in mice by increasing the levels of the cytokine IL-10 and secretory IgA. J Appl Microbiol 2020; 129:1389-1401. [PMID: 32473073 DOI: 10.1111/jam.14695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
AIMS To investigate the anti-inflammatory activity of an invasive and Hp65-producing strain Lactococcus lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) in acute 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis in mice as an innovative therapeutic strategy against Crohn's disease (CD). METHODS AND RESULTS The pXYCYT:Hsp65 plasmid was transformed into the L. lactis NCDO2118 FnBPA+ strain, resulting in the L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain. Then, the functionality of the strain was evaluated in vitro for Hsp65 production by Western blotting and for invasion into Caco-2 cells. The results demonstrated that the strain was able to produce Hsp65 and efficiently invade eukaryotic cells. Subsequently, in vivo, the anti-inflammatory capacity of the recombinant strain was evaluated in colitis induced with TNBS in BALB/c mice. Oral administration of the recombinant strain was able to attenuated the severity of colitis by mainly reducing IL-12 and IL-17 levels and increasing IL-10 and secretory immunoglobulin A levels. CONCLUSIONS The L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain contributed to a reduction in inflammatory damage in experimental CD. SIGNIFICANCE AND IMPACT OF THE STUDY This study, which used L. lactis for the production and delivery of Hsp65, has scientific relevance because it shows the efficacy of this new strategy based on therapeutic protein delivery into mammalian enterocytes.
Collapse
Affiliation(s)
- V P da Cunha
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - T M Preisser
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M P Santana
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - D C C Machado
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - V B Pereira
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A Miyoshi
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, Tang C, Chatterjee S, Singh UP, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight 2020; 5:127551. [PMID: 31941837 PMCID: PMC7030851 DOI: 10.1172/jci.insight.127551] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Colitis, an inflammatory bowel disease, is caused by a variety of factors, but luminal microbiota are thought to play crucial roles in disease development and progression. Indole is produced by gut microbiota and is believed to protect the colon from inflammatory damage. In the current study, we investigated whether indole-3-carbinol (I3C), a naturally occurring plant product found in numerous cruciferous vegetables, can prevent colitis-associated microbial dysbiosis and attempted to identify the mechanisms. Treatment with I3C led to repressed colonic inflammation and prevention of microbial dysbiosis caused by colitis, increasing a subset of gram-positive bacteria known to produce butyrate. I3C was shown to increase production of butyrate, and when mice with colitis were treated with butyrate, there was reduced colonic inflammation accompanied by suppression of Th17 and induction of Tregs, protection of the mucus layer, and upregulation in Pparg expression. Additionally, IL-22 was increased only after I3C but not butyrate administration, and neutralization of IL-22 prevented the beneficial effects of I3C against colitis, as well as blocked I3C-mediated dysbiosis and butyrate induction. This study suggests that I3C attenuates colitis primarily through induction of IL-22, which leads to modulation of gut microbiota that promote antiinflammatory butyrate.
Collapse
Affiliation(s)
- Philip B. Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Lorenzo Menzel
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Chaunbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia, South Carolina, USA
| | - Udai P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Coelomic Fluid of Lumbricus rubellus Synergistically Enhances Cytotoxic Effect of 5-Fluorouracil through Modulation of Focal Adhesion Kinase and p21 in HT-29 Cancer Cell Line. ScientificWorldJournal 2019; 2019:5632859. [PMID: 31097925 PMCID: PMC6487099 DOI: 10.1155/2019/5632859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Coelomic fluid of Lumbricus rubellus (CFL) has attracted interest due to its pharmacological properties, including antitumor effect. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. This study aims to investigate whether the combination of CFL and 5-fluorouracil could reduce FAK protein level and iCa2+ and enhance p21 level. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. After 24 hours of treatment, it was necessary to assess the percentage of apoptosis, FAK, and p21 protein expression by flow cytometry. iCa2+ concentration was measured using immunofluorescence. The combination therapy of CFL with 5-fluorouracil potently suppressed six treatment groups were included in this study. HT-29 cell lines were cultured and divided into six groups: group 1 was treated with vehicle (negative control), groups 2-5 were treated with 5-fluorouracil, groups 3-5 were treated with either CFL 5, 10, or 20 µg/ml immediately after 5-fluorouracil, and group 6 was treated with CFL 20 µg/ml, the progression of colorectal cancer. Combination of CFL and 5-fluorouracil significantly decreased FAK expression (p<0.05), iCa2+ (p<0.05), and increased p21 expression (p<0.05) in HT-29 cells. Our results suggest that CFL has an anticancer potential in colorectal cancer when combined with 5-fluorouracil.
Collapse
|
10
|
Mochamad L, Hermanto B, Hestianah EP. Determination of progesterone compounds in the crude methanol extract of benalu duku leaves. Vet World 2019; 12:358-366. [PMID: 31089303 PMCID: PMC6487250 DOI: 10.14202/vetworld.2019.358-366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dendrophthoepentandra L. Miq (benalu duku) is a parasitic herb that commonly grows on the host plant Lansium domesticum. Researchers have found that the plant contains anticancer compounds and may contain phytoandrogens, including progesterone-like compounds, in its crude methanol extract. The objective of the current study was to investigate the compound of phyto progesterone in benalu duku leaves after extracted by methanol and prepared using an analytical column of high-performance liquid chromatography (HPLC). Materials and Methods: About 400 g of benalu duku leaves were pulverized, and their compounds were isolated by the isocratic method using an RP-18 analytical column (5 µm) with a mobile phase of 70:30 (methanol: water) in a photodiode array detector adjusted to 254 nm. The phyto progesterone compound was identified at a retention time of approximately 6.01 min. Results: By LC-electrospray ionization mass spectrometry focusing on molecular fractions, the fingerprint area of the Fourier transform-infrared spectroscopy (FT-IR, cm−1) and Hnuclear magnetic resonance (NMR) spectra indicated that the phyto progesterone product isolated was identical to the certified reference material of pure progesterone, particularly the specific functional groups in the FT-IR spectrum at wavenumbers of 1317.43 cm−1 and 1386.86 cm−1 and in the proton HNMR spectrum at carbon 21 of progesterone (p<0.05). Conclusion: Each 49.888 µg/mL of crude benalu duku leaf extract dissolved in the mobile phase contained 28.515±0.713 µg/mL phyto progesterone.
Collapse
Affiliation(s)
- Lazuardi Mochamad
- Laboratory Veterinary Pharmacy, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Rd., "C" Campus Surabaya, Surabaya 60115, Indonesia
| | - Bambang Hermanto
- Department of Pharmacology, Faculty of Medical, Universitas Airlangga, Mayjen. Prof. Dr. Moestopo 47 Rd., "A" Campus Surabaya, Surabaya 60132, Indonesia
| | - E P Hestianah
- Laboratory Histology, Faculty of Veterinary Medicine, Universitas Airlangga, Mulyorejo Rd., "C" Campus Surabaya, Surabaya - 60115, Indonesia
| |
Collapse
|
11
|
Hasan M, Ali MT, Khan R, Palit P, Islam A, Seidel V, Akter R, Nahar L. Hepatoprotective, antihyperglycemic and antidiabetic effects of Dendrophthoe pentandra leaf extract in rats. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
T-Bet Is Dependent on Stat-4 Inhibiting Acute Colitis but Not Stat-1 Using L4 Somatic Antigen of Heligmosomoides polygyrus. ScientificWorldJournal 2018; 2018:8571920. [PMID: 29977172 PMCID: PMC6011060 DOI: 10.1155/2018/8571920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/25/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Helminths may alter the immunoinflammatory reactions of colitis. Proteins derived from H. polygyrus have prospective therapy for colitis. The goal of this study was to interpret the protective mechanisms of L4 somatic antigen (LSA) from Heligmosomoides polygyrus against an inflammatory response to the pathogenesis of DNBS-induced colitis. Colitis was actuated in mice by rectal instillation of DNBS. The mice were randomly divided into five groups containing control, DNBS alone, and three groups, with different doses of LSA (50, 100, and 200 μg/mL), respectively. Mice initiated colitis by rectal administration of DNBS and after that were immunized with LSA for 14 days. Mice treated with LSA inhibited wasting disease compared with DNBS only group. The percentages of cells producing IFN-γ were reduced by LSA treatment. The level of T lymphocytes CD4+IFN-γ+ cells in the LPL was significantly diminished by LSA at both 100 and 200 μg/mL groups (p<0.05). The mRNA expression of T-bet was significantly declined in LSA immunized mice, but not RORγ-T mRNA, whereas GATA-3 expression tended to increase. The activation of STAT-4 significantly reduced LSA-treated mice but not STAT-1. It can be concluded that T-bet is required for optimal production of IFN-γ in colitis.
Collapse
|