1
|
Liu G, Tang J, Tu J, Guo X. Solvent Fractionation and LC-MS Profiling, Antioxidant Properties, and α-Glucosidase Inhibitory Activity of Bombyx batryticatus. Molecules 2025; 30:1021. [PMID: 40076247 PMCID: PMC11901607 DOI: 10.3390/molecules30051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Bombyx batryticatus is the dried body of silkworm (Bombyx mori Linnaeus) larvae infected with Beauveria bassiana. It is widely used in traditional Chinese medicine for treating convulsions, epilepsy, and hyperglycemia. In this study, Bombyx batryticatus and its extract were prepared. The total reducing power, hydroxyl radical scavenging and superoxide anion radical scavenging activities, as well as the α-glucosidase inhibitory activity of Bombyx batryticatus extract were superior to those of normal silkworm larvae extract. Among them, the IC50 value of Bombyx batryticatus extract for α-glucosidase was 5.76 mg/mL, while that of normal silkworm larvae extract was 7.0 mg/mL. Untargeted metabolomic analysis was employed to compare the material composition of normal silkworm larvae and Bombyx batryticatus. The results revealed 101 metabolic differences between the two groups, including a significant increase in fatty acids and their derivatives in the Bombyx batryticatus extract. Further separation and purification of the Bombyx batryticatus extract were performed using solvents of varying polarity. The chloroform fraction exhibited the highest inhibitory activity against α-glucosidase, with an IC50 value of 0.217 mg/mL. LC-MS further identified compounds in the chloroform fraction, suggesting that those alkaloids, fatty acids, and their derivatives may be responsible for its strong α-glucosidase inhibitory activity. This study elucidates the material basis underlying the pharmacological effects of Bombyx batryticatus, particularly its hypoglycemic components, thereby providing critical experimental support for its future development and application in medicine.
Collapse
Affiliation(s)
- Guanhui Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.L.); (J.T.)
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Jingni Tang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Jie Tu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.L.); (J.T.)
| | - Xijie Guo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.L.); (J.T.)
| |
Collapse
|
2
|
Hafez LO, Brito-Casillas Y, Abdelmageed N, Alemán-Cabrera IM, Morad SA, Abdel-Raheem MH, Wägner AM. The Acacia ( Vachellia nilotica (L.) P.J.H. Hurter & Mabb.): Traditional Uses and Recent Advances on Its Pharmacological Attributes and Potential Activities. Nutrients 2024; 16:4278. [PMID: 39770900 PMCID: PMC11678605 DOI: 10.3390/nu16244278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
For thousands of years, Vachellia nilotica has been widely used as an herbal medicine to treat some diseases and symptoms, including respiratory, gastrointestinal and urogenital ailments. The present study was adapted to document and assemble existing information about V. nilotica and its evidence-based ethnopharmacological activities, with brief reviews on the description, geographical distribution, ecology, medical uses and phytochemistry. A literature review and information up to 2024 was performed in various scientific databases, including PubMed, Science Direct and Google Scholar. The keywords were "Acacia nilotica", "Botany", "ecology", "Traditional uses", "Phytochemistry", "Polyphenols", "Molecular docking", "Ethnopharmacological activities" and "toxicity", among others. V. nilotica has a wide range of uses, with low toxicity, reported in different countries. It can be infused into oils or tea or incorporated into paste, poultice and biscuits, used as an emollient, antidiarrheal, astringent and as an antidote for bite poisons. Glucose and lipid-lowering, anti-inflammatory, analgesic, antipyretic, antioxidant, antihypertensive, antibacterial, antifungal, antiviral and anthelmintic activities are the most prominent. Over 150 chemical components have been identified from V. nilotica that could be associated with its potential actions. Quercetin, rutin, kaempferol, naringenin, catechin, epicatechin, gallic acid, ellagic acid, lupeol and niloticane are its main active constituents. From the research data, and despite the fact that human clinical trials and detailed methodological studies are scarce, V. nilotica has shown wide-ranging activities, though the most robust evidence is related to the treatment of microbial infections, diarrhea, wound and ulcer healing and for topical application. More pharmacological and toxicological studies are required to further elucidate the mechanisms of action, potential side effects, and optimal dosages for these treatments. Additionally, more clinical trials are needed to validate these traditional uses in human populations and to ensure the safety and efficacy of V. nilotica for these applications. This article offers an overview of therapeutic applications by utilizing traditional uses and recent findings on phytochemical studies, and clinical and pharmacological research.
Collapse
Affiliation(s)
- Lamiaa O. Hafez
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt; (L.O.H.); (N.A.)
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt; (L.O.H.); (N.A.)
| | - Isabel M. Alemán-Cabrera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Samy A.F. Morad
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | | | - Ana M. Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
3
|
Fitriyati L, Widyaningsih W, Hayu Nurani L, Utami D. Potential uses of Teki Grass (Cyperus rotundus L.) Tubers as Antioxidants in Diabetes Mellitus: In vitro Studies. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2024:3169-3176. [DOI: 10.52711/0974-360x.2024.00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder characterized by hyperglycemia. The antioxidant activity in plants can be related to antidiabetic. Teki grass tuber (Cyperus rotundus L) is a part of a plant that contains flavanone compounds which have anticancer and antioxidant activity. Objective of this study was to investigate the potential of extracts and fractions of taki grass tuber as a source of natural antioxidants based on total quantities of phenolics, flavonoids, and antioxidant activity. Collect data in this study using qualitative and quantitative research methods by obtaining data obtained from the results of manufacturing simplicia, the extraction process using solvents with different concentrations, screening of phytochemicals for secondary metabolites, and measurement data from the treatment of test animals in the study. Results showed that the ethanol extract of teki grass tuber (EETG) contained alkaloids, tannins, terpenoids and saponins while the fraction of teki grass tuber contained alkaloids, tannins, terpenoid saponins and flavanoids. The total flavonoid content in the ethanol extract and ethanol fraction of teki grass tuber was 8.14 mg quercetin equivalent (QE)/g and 13.25 mg QE/g, respectively. The IC50 values of teki grass tuber ethanol extract and ethanol fraction with 5 times replications were 49.55 ± 0.0002 µg/ml and 43.18 ± 0.00088 µg/ml, respectively, indicating very significant antioxidant activity. The ethanol extract and ethanol fraction of teki grass (Cyperus rotundus L) tubers contain flavonoids and have antioxidant activity.
Collapse
Affiliation(s)
- Laeli Fitriyati
- Pharmacy Study Program, Faculty of Health Sciences, Muhammadiyah Gombong University, Kebumen, Indonesia
| | - Wahyu Widyaningsih
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Umbulharjo, Yogyakarta, Indonesia
| | - Laela Hayu Nurani
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Umbulharjo, Yogyakarta, Indonesia
| | - Dwi Utami
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Umbulharjo, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Salau VF, Erukainure OL, Aljoundi A, Akintemi EO, Elamin G, Odewole OA. Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:411-432. [PMID: 38764437 DOI: 10.1080/1062936x.2024.2352729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Phytochemicals are now increasingly exploited as remedial agents for the management of diabetes due to side effects attributable to commercial antidiabetic agents. This study investigated the structural and molecular mechanisms by which betulinic acid exhibits its antidiabetic effect via in vitro and computational techniques. In vitro antidiabetic potential was analysed via on α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin inhibitory assays. Its structural and molecular inhibitory mechanisms were investigated using Density Functional Theory (DFT) analysis, molecular docking and molecular dynamics (MD) simulation. Betulinic acid significantly (p < 0.05) inhibited α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin enzymes with IC50 of 70.02 μg/mL, 0.27 μg/mL, 1.70 μg/mL and 8.44 μg/mL, respectively. According to DFT studies, betulinic acid possesses similar reaction in gaseous phase and water due to close values observed for highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) and the chemical descriptors. The dipole moment indicates that betulinic acid has high polarity. Molecular electrostatic potential surface revealed the electrophilic and nucleophilic attack-prone atoms of the molecule. Molecular dynamic studies revealed a stable complex between betulinic acid and α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin. The study elucidated the potent antidiabetic properties of betulinic acid by revealing its conformational inhibitory mode of action on enzymes involved in the onset of diabetes.
Collapse
Affiliation(s)
- V F Salau
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - O L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - A Aljoundi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Attahadi, Tripoli, Libya
| | - E O Akintemi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - G Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O A Odewole
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
5
|
Rauf A, Ibrahim M, Alomar TS, AlMasoud N, Khalil AA, Khan M, Khalid A, Jan MS, Formanowicz D, Quradha MM. Hypoglycemic, anti-inflammatory, and neuroprotective potentials of crude methanolic extract from Acacia nilotica L. - results of an in vitro study. Food Sci Nutr 2024; 12:3483-3491. [PMID: 38726429 PMCID: PMC11077208 DOI: 10.1002/fsn3.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 05/12/2024] Open
Abstract
Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 μg mL-1) and α-amylase (IC50: 17 μg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 μg mL-1) and butyrylcholinesterase (BChE) (491.98 μg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 μg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Muhammad Ibrahim
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Taghrid S. Alomar
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityLahorePakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muhammad Saeed Jan
- Department of PharmacyBacha Khan UniversityCharsaddaKhyber PakhtunkhwaPakistan
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory MedicinePoznan University of Medical SciencesPoznanPoland
| | - Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunHadhramawtYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| |
Collapse
|
6
|
Liu F, Zheng Y, Hong H, Liu L, Chen X, Xia Q. Identification of Efficacy-Associated Markers to Discriminate Flos Chrysanthemum and Flos Chrysanthemi Indici Based on Fingerprint-Activity Relationship Modeling: A Combined Evaluation over Chemical Consistence and Quality Consistence. Molecules 2023; 28:6254. [PMID: 37687083 PMCID: PMC10488643 DOI: 10.3390/molecules28176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monitoring the quality consistency of traditional Chinese medicines, or herbal medicines (HMs), is the basis of assuring the efficacy and safety of HMs during clinical applications. The purpose of this work was to characterize the difference in hydrophilic antioxidants and related bioactivities between Flos Chrysanthemum (JH) and its wild relatives (Chrysanthemum indicum L.; YJH) based on the establishment of fingerprint-efficacy relationship modeling. The concentrations of the total phenolics and flavonoids of JH samples were shown to be generally higher than those of YJH, but the concentration distribution ranges of YJH were significantly greater compared to JH samples, possibly related to environmental stress factors leading to the concentration fluctuations of phytochemicals during the growth and flowering of Chrysanthemum cultivars. Correspondingly, the total antioxidant capabilities of JH were greatly higher than those of YJH samples, as revealed by chemical assays, including DPPH and ABTS radical scavenging activities and FRAP assays. In addition, cellular-based antioxidant activities confirmed the results of chemical assays, suggesting that the differences in antioxidant activities among the different types of Chrysanthemums were obvious. The extracts from YJH and JH samples showed significant α-glucosidase inhibitory activity and lipase-inhibitory activity, implying the modulatory effects on lipid and glucose metabolisms, which were also confirmed by an untargeted cell-based metabolomics approach. The selected common peaks by similarity analysis contributed to the discrimination of YJH and JH samples, and the modeling of the fingerprint-bioactivity relationship identified neochlorogenic acid, isochlorogenic acid A, and linarin as efficacy-associated chemical markers. These results have demonstrated that integrating HPLC fingerprints and the analysis of similarity indexes coupled with antioxidant activities and enzyme-inhibitory activities provides a rapid and effective approach to monitoring the quality consistency of YJH/JH samples.
Collapse
Affiliation(s)
- Feng Liu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315100, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Huijie Hong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| |
Collapse
|
7
|
Alrabie A, Al-Rabie NA, Al Saeedy M, Al Adhreai A, Al-Qadsy I, Farooqui M. Martynia annua safety and efficacy: heavy metal profile, in silico and in vitro approaches on antibacterial and antidiabetic activities. Nat Prod Res 2023; 37:1016-1022. [PMID: 35801965 DOI: 10.1080/14786419.2022.2097227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of methanol extract of Martynia annua seed revealed the presence of haploperozide and austricine. For safety, heavy metals content investigation of plant powder using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) technique showed that the toxic metals (Pb: 2.07 mg/kg; Cd: 0.07 mg/kg; and As: 0.18 mg/kg) concentrations were found to be below the permissible limit. The extract demonstrated significant antibacterial activity against E. coli (MIC value 125 g/mL). Furthermore, it was effective in inhibiting both α-glucosidase and α-amylase enzymes with a high percentage and IC50 values were 42.28 ± 0.39 µg/mL and 34.11 ± 0.31 µg/mL, respectively. These findings were supported by a molecular docking study, some of the phytochemicals showed higher docking score values than references. However, Martynia annua seeds are safe to consume because they contain low levels of toxic heavy metals and possess antibacterial and anti-diabetic properties.
Collapse
Affiliation(s)
- Ali Alrabie
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India.,Department of Chemistry, Faculty of Education-Albaydha, Albaydha University, Albaydha, Yemen
| | - Nabeel Abdullah Al-Rabie
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohammed Al Saeedy
- Department of Chemistry, Faculty of Education-Albaydha, Albaydha University, Albaydha, Yemen
| | - Arwa Al Adhreai
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India.,Department of Chemistry, College of Applied Science, Dhamar University, Yemen
| | - Inas Al-Qadsy
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India.,Department of Chemistry, Hodeidah University, Al-Hodeidah, Yemen
| | - Mazahar Farooqui
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| |
Collapse
|
8
|
Naseri M, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran & School of Persian Medicine, Shahed University, Tehran, Iran, Iranzadasl M, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran & School of Persian Medicine, Shahed University, Tehran, Iran, Ghaffari F, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Naseri V, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran, Emadi F, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran, Alijaniha F, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran, Behfar A, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran, Bahaeddin Z, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran. Persian medicine anti-dandruff topical remedies: a narrative review. JOURNAL OF MEDICINAL PLANTS 2022; 21:1-12. [DOI: 10.52547/jmp.21.84.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
|
9
|
Guardiola-Márquez CE, Jacobo-Velázquez DA. Potential of enhancing anti-obesogenic agriceuticals by applying sustainable fertilizers during plant cultivation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1034521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Overweight and obesity are two of the world's biggest health problems. They are associated with excessive fat accumulation resulting from an imbalance between energy consumed and energy expended. Conventional therapies for obesity commonly include synthetic drugs and surgical procedures that can lead to serious side effects. Therefore, developing effective, safe, and readily available new treatments to prevent and treat obesity is highly relevant. Many plant extracts have shown anti-obesogenic potential. These plant extracts are composed of different agriceuticals such as fibers, phenolic acids, flavonoids, anthocyanins, alkaloids, lignans, and proteins that can manage obesity by suppressing appetite, inhibiting digestive enzymes, reducing adipogenesis and lipogenesis, promoting lipolysis and thermogenesis, modulating gut microbiota and suppressing obesity-induced inflammation. These anti-obesogenic agriceuticals can be enhanced in plants during their cultivation by applying sustainable fertilization strategies, improving their capacity to fight the obesity pandemic. Biofertilization and nanofertilization are considered efficient, eco-friendly, and cost-effective strategies to enhance plant growth and development and increase the content of nutrients and bioactive compounds, representing an alternative to overproducing the anti-obesogenic agriceuticals of interest. However, further research is required to study the impact of anti-obesogenic plant species grown using these agricultural practices. This review presents the current scenario of overweight and obesity; recent research work describing different plant species with significant effects against obesity; and several reports exhibiting the potential of the biofertilization and nanofertilization practices to enhance the concentrations of bioactive molecules of anti-obesogenic plant species.
Collapse
|
10
|
Qian H, Wang L, Li Y, Wang B, Li C, Fang L, Tang L. The traditional uses, phytochemistry and pharmacology of Abrus precatorius L.: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115463. [PMID: 35714881 DOI: 10.1016/j.jep.2022.115463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abrus precatorius L. (AP) is a folk medicine with a long-term medicinal history worldwide, which is extensively applied to various ailments, such as bronchitis, jaundice, hepatitis, contraception, tumor, abortion, malaria, etc. Meanwhile, its leaves are also served as tea in China, and its roots are employed as a substitute for Glycyrrhiza uralensis or as a raw material for the extraction of glycyrrhizin in India. Thus, AP is considered to be a plant with dual values of medicine and economy as well as its chemical composition and biological activity, which are of growing interest to the scientific community. AIM OF REVIEW In the review, the traditional application, botany, chemical constituents, pharmacological activities, and toxicity are comprehensively and systematically summarized. MATERIALS AND METHODS An extensive database retrieval was conducted to gather the specific information about AP from 1871 to 2022 using online bibliographic databases Web of Science, PubMed, SciFinder, Google Scholar, CNKI, and Baidu Scholar. The search terms comprise the keywords "Abrus precatorius", "phytochemistry", "pharmacological activity", "toxicity" and "traditional application" as a combination. RESULTS To date, AP is traditionally used to treat various diseases, including sore throat, cough, bronchitis, jaundice, hepatitis, abdominal pain, contraception, tumor, abortion, malaria, and so on. More than 166 chemical compounds have been identified from AP, which primarily cover flavonoids, phenolics, terpenoids, steroids, alkaloids, organic acids, esters, proteins, polysaccharides, and so on. A wide range of in vitro and in vivo pharmacological functions of AP have been reported, such as antitumor, antimicrobial, insecticidal, antiprotozoal, antiparasitic, anti-inflammatory, antioxidant, immunomodulatory, antifertility, antidiabetic, other pharmacological activities. The crushed seeds in powder or paste form were comparatively toxic to humans and animals by oral administration. Interestingly, the methanolic extracts were non-toxic to adult Wistar albino rats at various doses (200 and 400 mg/kg) daily. CONCLUSIONS The review focuses on the traditional application, botany, phytochemistry, pharmacological activities, and toxicity of AP, which offers a valuable context for researchers on the current research status and a reference for further research and applications of this medicinal plant.
Collapse
Affiliation(s)
- Huiqin Qian
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| | - Lu Wang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bailing Wang
- College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chunyan Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Like Fang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Lijie Tang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| |
Collapse
|
11
|
Farooq Wali A, Ramakrishna Pillai J, Beigh S, Mushtaq A, Arafah A, Rehman MU, Jabnoun S, Razmpoor M, Al Dibsawi A, Alshehri Resource S, Ghoneim MM, Sarim Imam S. Ethnopharmacological Uses, Phytochemistry, Pharmacological Properties and Clinical Trials of Ziziphus Spina-Christi: A Comprehensive Review. Saudi Pharm J 2022. [DOI: 10.1016/j.jsps.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Wongchum N, Dechakhamphu A, Panya P, Pinlaor S, Pinmongkhonkul S, Tanomtong A.
Hydroethanolic Cyperus rotundus L. extract exhibits anti-obesity property and increases lifespan expectancy in Drosophila melanogaster fed a high-fat diet. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Cyperus rotundus L. is suspected of having anti-obesity properties. The purpose of this study was to determine the anti-obesity property of hydroethanolic C. rotundus extract (HECE) using Drosophila as a model organism. Methods: In vitro inhibition of lipase activity by C. rotundus extract was investigated. The effects of C. rotundus extract on obesity-related characteristics, including body weight, triglyceride content, and lifespan extension were evaluated in Drosophila fed a high-fat diet (HFD). The effect of the extract on the reduction of oxidative stress associated with obesity was assessed in vivo using antioxidant assays in Drosophila. Results: HECE inhibited lipase activity in vitro with an IC50 of 128.24 ± 3.65 μg/mL. In vivo lipase inhibition experiments demonstrated that feeding Drosophila 10 mg/mL HECE or 2 μM orlistat lowered lipase activity by 21.51 (P < 0.05) and 42.86% (P < 0.01) and triglyceride levels by 20.67 (P < 0.05) and 28.39% (P < 0.01), respectively, compared to those of the untreated group. After 10 mg/mL HECE or 2 μM orlistat supplementation, an increase in the mean survival rate (10.54 (P < 0.05) and 13.90% (P < 0.01), respectively) and climbing ability (25.03 (P < 0.01) and 28.44% (P < 0.01), respectively) was observed compared to those of flies fed a HFD. The paraquat and H2O2 challenge tests revealed that flies fed HECE in a mixed HFD showed increased survival on flies fed a HFD. Conclusion: This study demonstrates the beneficial effects of dietary HECE supplementation on suppressing pancreatic lipase activity and lowering triglyceride levels and oxidative stress, leading to increased lifespan in Drosophila fed a HFD.
Collapse
Affiliation(s)
- Nattapong Wongchum
- Biology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Biology Program, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Ananya Dechakhamphu
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Panatda Panya
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Alongklod Tanomtong
- Biology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
14
|
Boye A, Barku VYA, Acheampong DO, Ofori EG. Abrus precatorius Leaf Extract Reverses Alloxan/Nicotinamide-Induced Diabetes Mellitus in Rats through Hormonal (Insulin, GLP-1, and Glucagon) and Enzymatic ( α-Amylase/ α-Glucosidase) Modulation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9920826. [PMID: 34341763 PMCID: PMC8325591 DOI: 10.1155/2021/9920826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Abrus precatorius is used in folk medicine across Afro-Asian regions of the world. Earlier, glucose lowering and pancreato-protective effects of Abrus precatorius leaf extract (APLE) was confirmed experimentally in STZ/nicotinamide-induced diabetic rats; however, the underlying mechanism of antidiabetic effect and pancreato-protection remained unknown. OBJECTIVE This study elucidated antidiabetic mechanisms and pancreato-protective effects of APLE in diabetic rats. MATERIALS AND METHODS APLE was prepared by ethanol/Soxhlet extraction method. Total phenols and flavonoids were quantified calorimetrically after initial phytochemical screening. Diabetes mellitus (DM) was established in adult Sprague-Dawley rats (weighing 120-180 g) of both sexes by daily sequential injection of nicotinamide (48 mg/kg; ip) and Alloxan (120 mg/kg; ip) over a period of 7 days. Except control rats which had fasting blood glucose (FBG) of 4.60 mmol/L, rats having stable FBG (16-21 mmol/L) 7 days post-nicotinamide/Alloxan injection were considered diabetic and were randomly reassigned to one of the following groups (model, APLE (100, 200, and 400 mg/kg, respectively; po) and metformin (300 mg/kg; po)) and treated daily for 18 days. Bodyweight and FBG were measured every 72 hours for 18 days. On day 18, rats were sacrificed under deep anesthesia; organs (kidney, liver, pancreas, and spleen) were isolated and weighed. Blood was collected for estimation of serum insulin, glucagon, and GLP-1 using a rat-specific ELISA kit. The pancreas was processed, sectioned, and H&E-stained for histological examination. Effect of APLE on enzymatic activity of alpha (α)-amylase and α-glucosidase was assessed. Antioxidant and free radical scavenging properties of APLE were assessed using standard methods. RESULTS APLE dose-dependently decreased the initial FBG by 68.67%, 31.07%, and 4.39% compared to model (4.34%) and metformin (43.63%). APLE (100 mg/kg) treatment restored weight loss relative to model. APLE increased serum insulin and GLP-1 but decreased serum glucagon relative to model. APLE increased both the number and median crosssectional area (×106 μm2) of pancreatic islets compared to that of model. APLE produced concentration-dependent inhibition of α-amylase and α-glucosidase relative to acarbose. APLE concentration dependently scavenged DPPH and nitric oxide (NO) radicals and demonstrated increased ferric reducing antioxidant capacity (FRAC) relative to standards. CONCLUSION Antidiabetic effect of APLE is mediated through modulation of insulin and GLP-1 inversely with glucagon, noncompetitive inhibition of α-amylase and α-glucosidase, free radical scavenging, and recovery of damaged/necro-apoptosized pancreatic β-cells.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Victor Yao Atsu Barku
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Gyamerah Ofori
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
15
|
Shanmugam KR, Shanmugam B, Subbaiah GV, Ravi S, Reddy KS. Medicinal Plants and Bioactive Compounds for Diabetes Management: Important Advances in Drug Discovery. Curr Pharm Des 2021; 27:763-774. [PMID: 32988345 DOI: 10.2174/1381612826666200928160357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress is made in the field of herbal medicine and diabetic research. OBJECTIVES Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. METHODS Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds was collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. RESULTS Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries, herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, gymnea, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possess anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in the prevention and management of diabetes. CONCLUSION Moreover, our review suggests that bioactive compounds have the therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.
Collapse
Affiliation(s)
- Kondeti R Shanmugam
- Department of Zoology, T.R.R. Government Degree College, Kandukur, A.P, India
| | - Bhasha Shanmugam
- Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati - 517 502, India
| | - Ganjikunta V Subbaiah
- Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati - 517 502, India
| | - Sahukari Ravi
- Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati - 517 502, India
| | - Kesireddy S Reddy
- Division of Molecular Biology and Ethanopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati - 517 502, India
| |
Collapse
|
16
|
Hong H, Lim JM, Kothari D, Kwon SH, Kwon HC, Han SG, Kim SK. Antioxidant Properties and Diet-Related α-Glucosidase and Lipase Inhibitory Activities of Yogurt Supplemented with Safflower ( Carthamus tinctorius L.) Petal Extract. Food Sci Anim Resour 2021; 41:122-134. [PMID: 33506222 PMCID: PMC7810396 DOI: 10.5851/kosfa.2020.e88] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/11/2020] [Accepted: 11/04/2020] [Indexed: 01/23/2023] Open
Abstract
Recently, yogurt has been extensively studied to further enhance its functions using edible plant extracts. This study was conducted to investigate whether safflower petal (SP) as a natural food additive can be used to develop functional yogurt with improved health benefits. SPs were extracted with ethanol (SPE) and hot water (SPW), and then safflower yogurt was prepared by adding 0%-1.0% of those extracts to plain yogurt. With an increase in the fermentation duration, the pH of SPE and SPW yogurt samples was decreased, whereas titratable acidity and microbial counts were increased. The concentration of total polyphenols and total flavonoids, the activity of antioxidants, and the inhibitory effect on reactive oxygen species (ROS) were higher in SPW yogurt than SPE yogurt. Furthermore, α-glucosidase and lipase activity inhibitory effects of SPW yogurt were higher than those of SPE yogurt. In particular, free radical-scavenging activities, ROS inhibitory effect, and α-glucosidase activity inhibitory effects were significantly increased in SPW yogurt in a dose-dependent manner. Overall, these results suggest that SP extract possesses antioxidant activities and that it can downregulate α-glucosidase and lipase activities. The SP extract may have potential benefits as a natural food additive for the development of functional yogurt.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jeong Min Lim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - So Hee Kwon
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
17
|
Chemical composition, in vitro antioxidant, and enzymes inhibitory potential of three medicinally important plants from Nepal (Lepisorus mehrae, Pleurospermum benthamii, and Roscoea auriculata). ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00529-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Donato MT, Tolosa L. Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food Chem Toxicol 2020; 147:111872. [PMID: 33220391 DOI: 10.1016/j.fct.2020.111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 01/17/2023]
Abstract
Safety evaluation of thousands of chemicals that are directly added to or come in contact with food is needed. Due to the central role of the liver in intermediary and energy metabolism and in the biotransformation of foreign compounds, the hepatotoxicity assessment is essential. New approach methodologies have been proposed for the safety evaluation of compounds with the idea of rapidly gaining insight into effects on biochemical mechanisms and cellular processes and screening large number of compounds. In this sense, high-content screening (HCS) is the application of automated microscopy and image analysis for better understanding of complex biological functions and mechanisms of toxicity. HCS multiparametric measurements have been shown to be a useful tool in early toxicity testing during drug development, but also in assessing the impact from food chemicals and environmental toxicants. Reviewing the use of cellular imaging technology in the safety evaluation of food-relevant chemicals offers evidence about the impact of this technology in safety assessment.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
19
|
Pandey BP, Pradhan SP, Adhikari K, Nepal S. Bergenia pacumbis from Nepal, an astonishing enzymes inhibitor. BMC Complement Med Ther 2020; 20:198. [PMID: 32586304 PMCID: PMC7318538 DOI: 10.1186/s12906-020-02989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The Bergenia species are perennial herbs native to central Asia, and one of the most promising medicinal plants of the family Saxifragaceae which are popularly known as 'Pashanbheda'. The aim of this study was to evaluate antioxidant and α-amylase, α-glucosidase, lipase, tyrosinase, elastase, and cholinesterases inhibition potential of Bergenia pacumbis of Nepali origin collected from the Karnali region of Nepal. METHODS The sequential crude extracts were made in hexane, ethyl acetate, methanol, and water. Antioxidant activities were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The α-amylase, α-glucosidase, lipase, tyrosinase, elastase, acetylcholinesterase, and butyrylcholinesterase inhibition were analyzed by the 3,5-Dinitrosalicylic acid (DNSA), p-Nitrophenyl-α-D-glucopyranoside (p-NPG), 4-nitrophenyl butyrate (p-NPB), l-3,4-dihydroxyphenylalanine (L-DOPA), N-Succinyl-Ala-Ala-p-nitroanilide (AAAPVN), acetylthiocholine, and butyrylcholine as a respective substrate. The major metabolites were identified by high performance liquid chromatography with electron spray ionization- quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) profiling. RESULTS Our results revealed the great antioxidant ability of crude extract of B. pacumbis in ethyl acetate extract against both DPPH (IC50 = 30.14 ± 0.14 μg/mL) and ABTS (IC50 = 17.38 ± 1.12 μg/mL). However, the crude methanol extract of B. pacumbis showed the comparable enzymes inhibitions with standard drugs; α-amylase (IC50 = 14.03 ± 0.04 μg/mL), α-glucosidase (IC50 = 0.29 ± 0.00 μg/mL), lipase (IC50 = 67.26 ± 0.17 μg/mL), tyrosinase (IC50 = 58.25 ± 1.63 μg/mL), elastase (IC50 = 74.00 ± 3.03 μg/mL), acetylcholinesterase (IC50 = 31.52 ± 0.58 μg/mL), and butyrylcholinesterase (IC50 = 11.69 ± 0.14 μg/mL). On the basis of HPLC-ESI-QTOF-MS profiling of metabolites, we identified major compounds such as Bergenin, Catechin, Arbutin, Gallic acid, Protocatechuic acid, Syringic acid, Hyperoside, Afzelechin, Methyl gallate, Paashaanolactone, Astilbin, Quercetin, Kaempferol-7-O-glucoside, Diosmetin, Phloretin, and Morin in methanol extract which has reported beneficial bioactivities. CONCLUSION Our study provides a plethora of scientific evidence that the crude extracts of B. pacumbis from Nepalese origin in different extracting solvents have shown significant potential on inhibiting free radicals as well as enzymes involved in digestion, skin related problems, and neurological disorders compared with the commercially available drugs.
Collapse
Affiliation(s)
- Bishnu Prasad Pandey
- Department of Chemical Science and Engineering, Kathmandu University, PO Box No. 6250, Dhulikhel, Kavre, Nepal.
| | - Suman Prakash Pradhan
- Department of Chemical Science and Engineering, Kathmandu University, PO Box No. 6250, Dhulikhel, Kavre, Nepal
| | - Kapil Adhikari
- Department of Chemical Science and Engineering, Kathmandu University, PO Box No. 6250, Dhulikhel, Kavre, Nepal
| | - Saroj Nepal
- H-plant Private Limited, Sanepa, Lalitpur, Nepal
| |
Collapse
|
20
|
Prasad Pandey B, Prakash Pradhan S, Adhikari K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem Biodivers 2020; 17:e2000155. [PMID: 32304171 DOI: 10.1002/cbdv.202000155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The objective of this study was to profile the chemical components and biological activity analysis of crude extract of Bryophyllum pinnatum and Oxalis corniculata. Results revealed that the analyzed plant materials encompass the high amount of total phenolic and flavonoids content and have significant antioxidant activities. Furthermore, methanol extracts are the potential source of α-amylase, α-glucosidase, lipase, tyrosinase and elastase inhibitors. High resolution mass spectrometry revealed the presence of diverse metabolites such as quercetin 3-O-α-L-rhamnopyranoside, myricetin 3-rhamnoside, bersaldegenin 1,3,5-orthoacetate, bryophyllin C, syringic acid, caffeic acid, p-coumaric acid, and quercetin in B. pinnatum and isoorientin, swertisin, apigenin 7,4'-diglucoside, vitexin, 4-hydroxybenzoic acid, vanillic acid, ethyl gallate, 3,3',4'-trihydroxy-5,7-dimethoxyflavone, and diosmetin-7-O-β-D-glucopyranoside in O. corniculata. Our finding suggested that these two plant species have high medicinal importance and are potential source of inhibitors for modern pharmaceuticals, nutraceuticals and cosmetics industries.
Collapse
Affiliation(s)
- Bishnu Prasad Pandey
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, P.O. Box 6250, Dhulikhel, 44600, Kavre, Nepal
| | - Suman Prakash Pradhan
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, P.O. Box 6250, Dhulikhel, 44600, Kavre, Nepal
| | - Kapil Adhikari
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, P.O. Box 6250, Dhulikhel, 44600, Kavre, Nepal
| |
Collapse
|
21
|
El-Maksoud AAA, Korany RMS, El-Ghany IHA, El-Beltagi HS, Ambrósio F de Gouveia GM. Dietary solutions to dyslipidemia: Milk protein-polysaccharide conjugates as liver biochemical enhancers. J Food Biochem 2020; 44:e13142. [PMID: 31905423 DOI: 10.1111/jfbc.13142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
Protein-polysaccharide interactions have been a focus of scientific attention. This study aimed to improve the antioxidant and hepatoprotective effects of buffalo total milk proteins and whey protein hydrolysate (WPH) through noncovalent interactions with Psyllium husk (ispaghula) mucilage (PHM) and Nabq mucilage (NabM). Chemical composition, phenolic content, and antioxidant activities of milk protein-mucilage complexes were explored. The effects of resulting complexes on liver function, hyperlipidemia, and histopathology of the liver in rats fed high-fat diet (HFD) were investigated. The results showed that the complexes exerted significant effect on normalizing tested parameters; WPH-NabM had the most significantly decreased level of malondialdehyde content and the liver histopathological examination proved an improvement in all groups fed with these complexes. These complexes can be used as functional protection elements against the nonalcoholic fatty liver disease. PRACTICAL APPLICATIONS: PHM, NabM, and their complexes with milk proteins were proved to improve liver function, enhancing most of its measurable parameters and also diminishing the risk of cardiovascular disease. Mice with HFD achieved better health circumstances by combining these ingredients in their diet. Knowing how much these diseases proliferate in the western world and its correlation with high-fat consumption and modern lifestyle, its conjugation with PHM/NabM-MP complexes may reduce the negative impact of unhealthy food intake and, on some parameters, even improving the whole liver function. For that reason, the present study supports and pushes forward the dissemination and consumption of ispaghula or Nabq (the polysaccharides sources) or supplements originating from them. Although many interactions concerning milk proteins have already been analyzed, our study also proposes the interaction with bioactive polysaccharides as useful, opening a field of research aimed at the better application of milk proteins.
Collapse
Affiliation(s)
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hossam S El-Beltagi
- Department of Agricultural Biotechnology, Faculty of Agricultural and Food Science, King Faisal University, Alhassa, Saudi Arabia.,Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Gustavo M Ambrósio F de Gouveia
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities. MEDICINES 2019; 6:medicines6040113. [PMID: 31766752 PMCID: PMC6963822 DOI: 10.3390/medicines6040113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
Background:Blepharis linariifolia Pers. (Family: Acanthaceae) is used in traditional medicines as a general tonic and for the treatment of various health problems in Sudan. The main aim of this study was to isolate and identify the major chemical constituents from the aerial parts of B. linariifolia and evaluate their bioactivities. Methods: The dried aerial parts of the plant were extracted successively with 100% acetone and 50% acetone, and thereafter the combined extract was subjected to repeated column chromatography to isolate the main components. Free radical scavenging activity was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical method, and in vitro enzyme inhibitory activities against α-glucosidase, pancreatic lipase, and mushroom tyrosinase were evaluated. Results: From the detailed chemical analysis, verbascoside (1), vanillic acid (2), apigenin (3), and 6″-O-p-coumaroylprunin (4), were isolated and their structures were identified on the basis of their nuclear magnetic resonance (NMR) spectral data. Among the isolated compounds, verbascoside (1) showed the most potent free radical scavenging activity (IC50 = 22.03 ± 0.04 μM). Apigenin (3) and 6″-O-p-coumaroylprunin (4) showed promising inhibitory activities against all tested enzymes. Apigenin (3) showed the most potent inhibitory activity against α-glucosidase and tyrosinase (IC50 = 34.73 ± 1.78 μM and 23.14 ± 1.83 μM, respectively), whereas 6″-O-p-coumaroylprunin (4) showed potent inhibition for lipase (IC50 = 2.25 ± 0.17 μM). Conclusions: Four phenolic compounds were isolated and identified from B. linariifolia acetone extract, which are reported for the first time from this plant. All compounds showed good DPPH free radical scavenging activities, with verbascoside (1) being the most potent. Apigenin (3) was the most active as α-glucosidase and mushroom tyrosinase inhibitor, while 6″-O-p-coumaroylprunin (4) showed potent inhibitory activity for pancreatic lipase.
Collapse
|
23
|
Patil MP, Patil RH. Data on the inhibitory effect of endophytic fungi of traditional medicinal plants against pancreatic lipase (PL). Data Brief 2019; 27:104797. [PMID: 31799348 PMCID: PMC6883320 DOI: 10.1016/j.dib.2019.104797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
This article describes isolation and pancreatic lipase (PL) inhibitory potential of 18 endophytic fungi isolated from the various parts of six indigenous medicinal plants. PL catalyzes absorption and hydrolysis of triglycerides into di-glycerides into mono-glycerides and free fatty acids. PL inhibitors are well-known for the disruption of pancreatic lipase activity. The quest for novel pancreatic lipase inhibitors is crucially important owing to their therapeutic potential in the treatment of obesity and related chronic diseases. The present dataset provides information about the presence of endophytic fungi in the internal tissues of selected plants and the PL inhibitory potential of their metabolites using bioassay based screening. Absence of the yellow zone surrounding the standard Orlistat and test extract indicated PL inhibition due to the cumulative effect of metabolites present in the extract. The data suggests that TLC bio-autographic method is simple, rapid and reproducible and therefore it could be effectively used for high throughput screening of PL inhibitors from natural sources.
Collapse
Affiliation(s)
- Mohini P Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, 425 405, MS India
| | - Ravindra H Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, 425 405, MS India
| |
Collapse
|
24
|
Simeonova R, Vitcheva V, Zheleva-Dimitrova D, Balabanova V, Savov I, Yagi S, Dimitrova B, Voynikov Y, Gevrenova R. Trans-3,5-dicaffeoylquinic acid from Geigeria alata Benth. & Hook.f. ex Oliv. & Hiern with beneficial effects on experimental diabetes in animal model of essential hypertension. Food Chem Toxicol 2019; 132:110678. [PMID: 31323233 DOI: 10.1016/j.fct.2019.110678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/15/2022]
Abstract
Geigeria alata Benth. & Hook.f. ex Oliv. & Hiern (Asteraceae) is used in Sudanese folk medicine for treatment of diabetes. The study aimed to estimate the acute oral toxicity of trans-3,5-dicaffeoylquinic acid (3,5-diCQA) from G. alata roots and to assess its antihypeglycemic, antioxidant and antihypertensive effects on chemically-induced diabetic spontaneously hypertensive rats (SHRs). The structure of 3,5-diCQA was established by NMR and HRMS spectra. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin. 3,5-diCQA was slightly toxic with LD50 = 2154 mg/kg. At 5 mg/kg 3,5-diCQA reduced significantly (p < 0.05) the blood glucose levels by 42%, decreased the blood pressure by 22% and ameliorated the oxidative stress biomarkers reduced glutathione, malondialdehyde, and serum biochemical parameters. The beneficial effect on antioxidant enzymes was evidenced by the elevated glutathione peroxidase, glutathione reductase, and glutathione S-transferase activitiy in the livers of diabetic animals. 3,5-diCQA prevents the histopathological changes related to diabetes and hypertension. 3,5-diCQA was more potent α-glucosidase inhibitor (IC50 27.24 μg/mL) than acarbose (IC50 99.77 μg/mL). The antihyperglycemic action of the compound was attributed to the α-glucosidase inhibition. The beneficial effects of 3,5-diCQA on streptozotocin-induced diabetic hypertensive rats support the traditional use of G.alata for the management of diabetes.
Collapse
Affiliation(s)
- Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Vessela Vitcheva
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Ionko Savov
- Institute of Emergency Medicine "N. I. Pirogov", Bul. Totleben 21, Sofia, 1000, Bulgaria.
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Sudan.
| | - Bozhana Dimitrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria; Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| |
Collapse
|
25
|
El-Shiekh RA, Al-Mahdy DA, Mouneir SM, Hifnawy MS, Abdel-Sattar EA. Anti-obesity effect of argel (Solenostemma argel) on obese rats fed a high fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111893. [PMID: 30999011 DOI: 10.1016/j.jep.2019.111893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solenostemma argel (Argel) is a desert plant commonly used in Egyptian and Sudanese traditional medicine to suppress appetite, for treatment of diabetes, and as an antispasmodic and anti-inflammatory agent. Previously the anti-diabetic, hypolipidemic and lipase inhibitory activities of Argel were reported in animal studies and in-vitro assays. However, its specific mechanism of action as an anti-obesity agent has not been studied before. AIM OF THE STUDY Assessment of the possible anti-obesity effect of Solenostemma argel on diet-induced obesity and elucidation of its mechanism of action, as well as, standardization of the active plant extract. MATERIALS AND METHODS The ethanolic extract (EtOH-E) and its fractions (CH2Cl2-F: methylene chloride and BuOH-F: n-butanol) were prepared from the aerial parts of S. argel and studied at two dose levels; 200 and 400 mg kg-1 in a model of high fat diet (HFD) fed rats. The animals (72 Male Wister rats) were assigned into 9 groups: group (i) fed with normal diet and groups (ii-iv) fed with high fat diet (HFD) for 16 weeks and treated with orlistat, EtOH-E, CH2Cl2-F and BuOH-F in the beginning of the 8th week. At the end of the experiment, blood samples were analysed for lipid and liver biomarkers, glucose and insulin levels, as well as, adipokines and inflammatory markers. Liver and adipose tissues were examined histopathologically and their homogenates were used to determine levels of oxidative stress markers and lipogenesis-related genes. Body weight was monitored weekly during the experiment. RESULTS Our data showed that consumption of S. argel significantly controlled weight gain, attenuated liver steatosis, improved the lipid profile, modulated adipokines activities, increased β-oxidation gene expression, as well as, decreased the expression of lipogenesis-related genes and ameliorated inflammatory and lipid peroxidation derangement. The ethanolic extract was also standardized using LC-MS analysis for its content of stemmoside C. CONCLUSIONS The current study revealed that S. argel is a promising Egyptian natural drug, rich in pregnane glycosides, and could be considered a new therapeutic candidate targeting obesity.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Dalia A Al-Mahdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt.
| | | |
Collapse
|