1
|
Zhang D, Yuan Y, Zeng Q, Xiong J, Gan Y, Jiang K, Xie N. Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design. Front Pharmacol 2025; 15:1468977. [PMID: 39898323 PMCID: PMC11783187 DOI: 10.3389/fphar.2024.1468977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Breast cancer causes the deaths of approximately 685,000 women annually, posing a severe threat to women's health. Consequently, there is an urgent need for low-cost, low-toxicity and effective therapeutic methods to prevent or mitigate breast cancer progression. PDBP are natural, non-toxic, and affordable substances and have demonstrated excellent anti-breast cancer activities in inhibiting proliferation, migration, and invasion, and promoting apoptosis both in vitro and in vivo, thus effectively preventing or inhibiting breast cancer. However, there are no comprehensive reviews summarizing the effects and mechanisms of PDBP on the treatment of breast cancer. Therefore, this review described the inhibitory effects and mechanisms of active peptides from different plant protein sources on breast cancer. Additionally, we summarized the advantages and preparation methods of plant protein-derived anticancer peptide-encapsulated nanoparticles and their effects in inhibiting breast cancer. This review provides a scientific basis for understanding the anti-breast cancer mechanisms of PDBP and offers guidance for the development of therapeutic adjuvants enriched with these peptides.
Collapse
Affiliation(s)
- Deju Zhang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Yuan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingdong Zeng
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Xiong
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiming Gan
- Plant Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kai Jiang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Kurowska N, Madej M, Strzalka-Mrozik B. Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer. Curr Issues Mol Biol 2023; 46:121-139. [PMID: 38248312 PMCID: PMC10814900 DOI: 10.3390/cimb46010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and is responsible for approximately one million deaths each year. The current standard of care is surgical resection of the lesion and chemotherapy with 5-fluorouracil (5-FU). However, of concern is the increasing incidence in an increasingly younger patient population and the ability of CRC cells to develop resistance to 5-FU. In this review, we discuss the effects of thymoquinone (TQ), one of the main bioactive components of Nigella sativa seeds, on CRC, with a particular focus on the use of TQ in combination therapy with other chemotherapeutic agents. TQ exhibits anti-CRC activity by inducing a proapoptotic effect and inhibiting proliferation, primarily through its effect on the regulation of signaling pathways crucial for tumor progression and oxidative stress. TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development. These data appear to be most relevant for co-treatment with 5-FU. We believe that TQ is a suitable candidate for consideration in the chemoprevention and adjuvant therapy for CRC, but further studies, including clinical trials, are needed to confirm its safety and efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Natalia Kurowska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| |
Collapse
|
3
|
Shahraki S, Hosseinian S, Shahraki E, Kheirandish M, Khajavirad A. Effects of Dichloromethane and N-Butanol Fractions of Nigella sativa on ACHN and GP-293 Cell Line Morphology, Viability, and Apoptosis. Adv Biomed Res 2023; 12:200. [PMID: 37694244 PMCID: PMC10492620 DOI: 10.4103/abr.abr_394_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/12/2023] Open
Abstract
Background Renal cell carcinoma (RCC) is among the top death-causing cancers. Medicinal herbs can also have beneficial effects on RCC treatment. In this project, we aimed to study the antitumor effect of dichloromethane and N-butanol fractions of hydroalcoholic extract of Nigella sativa (N. sativa) on the morphology, viability, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. Materials and Methods In this experimental study, N-butanol and dichloromethane fractions of N. sativa were obtained, and ACHN and GP293 cell lines were treated with various concentrations of dichloromethane (0-100 μg/mL) and N-butanol (0-12.5 μg/mL) fractions for 24, 48, and 72 hours. Then, morphological changes, viability, and apoptosis were investigated. Results Our results indicated that dichloromethane and N-butanol fractions cause morphological changes and significant decreases in the percentage of live cells in the ACHN cell line, in a dose- and time-dependent manner. In the GP-293 cell line, however, a lower toxicity was observed in comparison with that found for ACHN. The results of flow cytometry showed an apoptotic effect of dichloromethane and N-butanol fractions on the ACHN cell line but a higher rate of apoptosis induction for the total extract compared to the two fractions in the renal cancer cell line compared to the normal cell line. Conclusion Our findings demonstrated that these two fractions of N. sativa induce inhibitory effects on the ACHN cell line morphology and viability. These effects were lower than those induced by the total extract. In addition, the two fractions caused more marked effects in the renal cancer cell line compared with the GP-293 cell line.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Shahraki
- Department of Nephrology, Internal Medicine, Ali Ibne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Kheirandish
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Khajavirad
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Ciesielska-Figlon K, Wojciechowicz K, Wardowska A, Lisowska KA. The Immunomodulatory Effect of Nigella sativa. Antioxidants (Basel) 2023; 12:1340. [PMID: 37507880 PMCID: PMC10376245 DOI: 10.3390/antiox12071340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND For thousands of years till nowadays, Nigella sativa (NS) has served as a common spice and food preservative. Its seed extracts, seed oil, and essential oil in traditional medicine have been used to remedy many ailments such as headaches, fever, gastric complaints, and even rheumatism. In addition, the antibacterial, virucidal, fungicidal, and antiparasitic properties of NS are well known. However, studies on the possible immunomodulatory effects of black cumin are relatively scarce. This article discusses in vitro and in vivo research supporting the immunomodulatory role of NS. METHODS The review is based on articles, books, and conference papers printed until September 2022, found in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases. RESULTS Experimental findings were reported concerning the ability of NS to modulate inflammation and immune responses or cytotoxic activity. CONCLUSIONS All results suggest that NS can potentially be employed in developing effective therapeutic agents for regulating immune reactions.
Collapse
Affiliation(s)
- Klaudia Ciesielska-Figlon
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | | |
Collapse
|
5
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
6
|
Swargiary A, Roy MK, Verma AK. In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district, India. J Parasit Dis 2021; 45:1123-1134. [PMID: 34789998 DOI: 10.1007/s12639-021-01410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022] Open
Abstract
Alstonia scholaris, Cardiospermum halicacabum, Hydrocotyle sibthorpioides, and Hypericum japonicum are important folk medicinal plants used by tribal communities of Bodoland region of Assam to treat helminth infections. Because of their ethnomedicinal values, the present study was designed to investigate the antioxidant, antiproliferative, and anthelmintic activities of the plants. The antioxidant activity was measured by total antioxidant capacity, total phenolics (TPC), total flavonoid (TFC), FRAP, DPPH, ABTS, and TBARS assay. Antiproliferative and apoptosis-inducing activities of plants were conducted in Dalton's lymphoma (DL) cells. Cells were treated for 24 h with different doses (25-200 mg/mL) of plant extracts. Anthelmintic study was conducted by treating the Paramphistomum sp. at different doses of plant extracts. Phytochemical and antioxidant studies showed rich TPC, TFC, and free radical scavenging activity in H. japonicum and H. sibthorpioides. Both the antiproliferative and anthelmintic bioassays showed a dose-dependent efficacy in all plants. H. japonicum showed the strongest anthelmintic activity (LC50 0.21 mg/mL) followed by H. sibthorpioides (5.36 mg/mL), C. halicacabum (13.40 mg/mL), and A. scholaris (18.40 mg/mL). Evidently, H. sibthorpioides showed the strongest antiproliferative and apoptosis-inducing activities among all the plants. The study observed a positive correlation between the antioxidant properties and antiproliferative and anthelmintic activities of the plants. We, therefore, conclude that the phytocompounds present in the crude extracts along with antioxidant molecules may have combined effects contributing to the antiproliferative and anthelmintic activities of the plants.
Collapse
Affiliation(s)
- Ananta Swargiary
- Department of Zoology, Bodoland University, Kokrajhar, Assam, 783370 India
| | | | | |
Collapse
|
7
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
8
|
Cytotoxic potential of bioactive seed proteins from Mallotus philippensis against various cancer cell lines. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01974-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Trivedi S, Wadher K, Umekar M. Development of topical thymoquinone loaded polymer-lipid hybrid vesicular gel: in-vitro and ex-vivo evaluation. J Liposome Res 2021; 32:224-236. [PMID: 34003069 DOI: 10.1080/08982104.2021.1929311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymoquinone (TH), a naturally occurring moiety shows excellent anticancer properties and in the present study, TH loaded polymer hybrid lipid vesicles (TH PLH) were formulated, and in-vitro cytotoxicity towards breast cancer cell lines (MCF-7 and MBD-MB 231 cells) was determined. TH PLH was primed by the ethanol spraying method and were characterized for various attributes like particle size, morphology, percentage drug entrapment, elasticity, rheological, zeta potential, etc. The prepared TH PLH Vesicles showed an average particle size from 344.7 ± 3.7 nm to 351.9 ± 2.3 nm and showed very narrow distribution with polydispersity index ranging from 0.245 ± 0.36 to 0.271 ± 0.66. The surface charge on the vesicles was confirmed by zeta potential (þ -21.3 ± 1.08 mV to þ -19.98 ± 3.4 mV). The globular moulded vesicles were in the nano-size range and had high flexibility and an approximately 10-fold increase in elasticity properties. TH PLH Vesicular gel was formulated by means of Carbopol 934 and was evaluated for physical appearance, pH, rheological behaviour, and skin irritation test. Cytotoxicity study reveals paramount inhibition on cells by TH vesicle-loaded gel. These results showed the high potential of TH PLH vesicles for topical anticancer application.
Collapse
Affiliation(s)
- Sagar Trivedi
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Kamlesh Wadher
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Milind Umekar
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| |
Collapse
|
10
|
Ansary J, Giampieri F, Forbes-Hernandez TY, Regolo L, Quinzi D, Gracia Villar S, Garcia Villena E, Tutusaus Pifarre K, Alvarez-Suarez JM, Battino M, Cianciosi D. Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies. Molecules 2021; 26:molecules26082108. [PMID: 33916916 PMCID: PMC8067617 DOI: 10.3390/molecules26082108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, have showed potent anticancer and chemosensitizing effects against various types of cancer, such as liver, colon, breast, renal, cervical, lung, ovarian, pancreatic, prostate and skin tumors, through the modulation of various molecular signaling pathways. Herein, the purpose of this review was to highlight the anticancer activity of Nigella sativa and it constitutes, focusing on different in vitro, in vivo and clinical studies and projects, in order to underline their antiproliferative, proapoptotic, cytotoxic and antimetastatic effects. Particular attention has been also given to the synergistic effect of Nigella sativa and it constitutes with chemotherapeutic drugs, and to the synthesized analogs of thymoquinone that seem to enhance the chemo-sensitizing potential. This review could be a useful step towards new research on N. sativa and cancer, to include this plant in the dietary treatments in support to conventional therapies, for the best achievement of therapeutic goals.
Collapse
Affiliation(s)
- Johura Ansary
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tamara Y. Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Denise Quinzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Santos Gracia Villar
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Eduardo Garcia Villena
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
| | - Kilian Tutusaus Pifarre
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - José M. Alvarez-Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170157, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| |
Collapse
|
11
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
12
|
Biotechnological Potential of Araucaria angustifolia Pine Nuts Extract and the Cysteine Protease Inhibitor AaCI-2S. PLANTS 2020; 9:plants9121676. [PMID: 33266031 PMCID: PMC7760129 DOI: 10.3390/plants9121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Protease inhibitors are involved in the regulation of endogenous cysteine proteases during seed development and play a defensive role because of their ability to inhibit exogenous proteases such as those present in the digestive tracts of insects. Araucaria angustifolia seeds, which can be used in human and animal feed, were investigated for their potential for the development of agricultural biotechnology and in the field of human health. In the pine nuts extract, which blocked the activities of cysteine proteases, it was detected potent insecticidal activity against termites (Nasutitermes corniger) belonging to the most abundant termite genus in tropical regions. The cysteine inhibitor (AaCI-2S) was purified by ion-exchange, size exclusion, and reversed-phase chromatography. Its functional and structural stability was confirmed by spectroscopic and circular dichroism studies, and by detection of inhibitory activity at different temperatures and pH values. Besides having activity on cysteine proteases from C. maculatus digestive tract, AaCI-2S inhibited papain, bromelain, ficin, and cathepsin L and impaired cell proliferation in gastric and prostate cancer cell lines. These properties qualify A. angustifolia seeds as a protein source with value properties of natural insecticide and to contain a protease inhibitor with the potential to be a bioactive molecule on different cancer cells.
Collapse
|
13
|
Anticancer and antimicrobial peptides from medicinal plants of Borneo island in Sarawak. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00504-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Maiti S, Banerjee A, Nazmeen A, Kanwar M, Das S. Active-site Molecular docking of Nigellidine with nucleocapsid- NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats. J Drug Target 2020; 30:511-521. [PMID: 32875925 DOI: 10.1080/1061186x.2020.1817040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent outbreak of SARS CoV-2 has changed the global scenario of human lives/economy. A significant number of the non-survivors showed cardiac-renal-vasculature dysfunction. A 'cytokine storm' namely, interleukin IL6-IL1 receptors i.e. IL6R-IL1R over-functioning was reported. Here, nigellidine, an indazole-alkaloid and key-component of Nigella Sativa L. (NS) commonly known as black-cumin-seed was analyzed for COVID-19 protein-targeting and IL1R-IL6R inhibition through molecular-docking-study and biochemical-study in experimental-rat to evaluate antioxidative-capacity. The NMR/X-ray-crystallographic/Electron-microscopic structures of COVID-19 Main-protease (6LU7)/Spike-glycoprotein(6vsb)/NSP2(QHD43415_2)/Nucleocapsid(QHD43423), Human IL1R(1itb)-IL6R(1pm9) from PDB were retrieved-analyzed for receptor-ligand interaction. Then those structures were docked with nigellidine using Autodock and Patchdock-server. A brief comparison was made with nigellicine-thymoquinone from N. sativa. Where nigellidine showed highest binding-energy of -6.6 (kcal/mol), ligand-efficiency of -0.3 with COVID19 Nsp2 forming bonds with amino acid CYS240 present in binding-pocket. Nigellidine showed strong interaction with main-protease (BE:-6.38/LE:-0.29). Nigellidine showed affinity to IL1R (-6.23). The NS treated rat showed marked decline in ALP-SGPT-SGOT-malondialdehyde(MDA) than the basal-levels. From the Western-blot and activity-analysis it was observed that Nigellidine (sulfuryl-group-drug) showed no impact on Phenol-catalyzing ASTIV and Steroid-catalyzing estrogen-sulfotransferase expressions and activities in liver-tissue and thus has no influence in sulfation-mediated adverse metabolic-processes. Conclusively, nigellidine has hepato-reno-protective/antioxidant-immunomodulatory/anti-inflammatory activities with inhibit-potentials of COVID-19 proteins. Further validation is necessary.
Collapse
Affiliation(s)
- Smarajit Maiti
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India.,Founder and Secretary, Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore-721101, India
| | - Amrita Banerjee
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Aarifa Nazmeen
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Mehak Kanwar
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Shilpa Das
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| |
Collapse
|
15
|
Recent Progress on Chemical Constituents and Pharmacological Effects of the Genus Nigella. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6756835. [PMID: 32655665 PMCID: PMC7321528 DOI: 10.1155/2020/6756835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/04/2022]
Abstract
Seeds of the genus Nigella plants as folk medicine are often used to prevent and treat asthma, diarrhea, dyslipidemia, and other diseases around the world. Pharmacological researches showed that seed extract and seed oil have antibacterial, antioxidant, hypoglycemic, and hepatoprotective effects which attributed to their bioactive constituents such as alkaloids, saponins, flavones, and phenols. This paper has covered recent progresses on chemical and pharmacological researches on these plants, including their compounds and pharmacological effects. It was found that the chemical component researches were focused on the seed oil. Therefore, more attention should be paid to the profile of the whole constituents in the seeds.
Collapse
|
16
|
Evaluation of Anti-Cytotoxic and Anti-Genotoxic Effects of Nigella sativa through a Micronucleus Test in BALB/c Mice. Nutrients 2020; 12:nu12051317. [PMID: 32384595 PMCID: PMC7284975 DOI: 10.3390/nu12051317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Nigella sativa (N. sativa) is a medicinal plant used for its therapeutic pharmacological effects such as anti-inflammatory, antioxidant, anticancer, antidiabetic, and immunomodulation. This study explored the anti-cytotoxic and anti-genotoxic effect of N. sativa through a micronucleus test (MNT) of BALB/c mice peripheral blood. Using 6-to-8-week-old healthy male BALB/c mice, four groups were formed: (1) Control (sterile water), single-dose 2 mg/kg/intraperitoneal (i.p); (2) N. sativa oil, 500 mg/kg/24 h/7 days/i.p; (3) Cisplatin (CP), single-dose 2 mg/kg/subcutaneous (s.c); (4) N. sativa + CP with their respective dosage. When evaluating polychromatic erythrocytes (PCE), a biomarker of cytotoxicity, the group treated with N. sativa + CP experienced an increase in the frequency of PCE, which demonstrated the recovery of bone marrow and modulation of cell proliferation. The analysis of micronucleated polychromatic erythrocytes (MNPCE), an acute genotoxicity biomarker, showed similar frequency of MNPCE within the groups except in CP, but, in the N. sativa + CP group, the frequency of MNPCE decreased and then regulated. Finally, the frequency of micronucleated erythrocytes (MNE), a biomarker of genotoxicity, the supplementation of N. sativa oil did not induce genotoxic damage in this model. Thus, we conclude that N. sativa has both cytoprotective, genoprotective effects and modulates cell proliferation in BALB/c mice.
Collapse
|