1
|
Huang Z, Li Y, Xie Y, Fu H, Weng Z, Yuan J, Wu L, Lin W, Cao Y, Ding B. Jiawei Erzhiwan Ameliorates Androgenetic Alopecia by Regulating the SIRT1/JNK/p38 MAPK Pathway. Drug Des Devel Ther 2025; 19:2393-2409. [PMID: 40190813 PMCID: PMC11971974 DOI: 10.2147/dddt.s501823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose Androgenetic alopecia (AGA) is a type of hair loss. Our previous study showed AGA ameliorating capability of water extract of an herbal prescription, "Jiawei Erzhiwan" (WJWE), which was derived from the traditional formula "Erzhiwan". However, the underlying mechanisms is still unknown. Patients and Methods In this study, the phytochemical ingredients in WJWE were characterized via UPLC‒MS/MS analysis. The dihydrotestosterone (DHT)-induced murine model and dermal papilla cells (DPCs) assays were used to evaluate and elucidate the beneficial effects and mechanisms of WJWE on AGA. Results WJWE promoted hair growth and hair follicle regeneration in AGA mice, improved DPCs growth and dose-dependently protected DHT-reduced DPCs viability in vitro by stimulating the Wnt5A/β-Catenin pathway. Additionally, WJWE reduced DHT-induced oxidative stress in AGA model murine skin and DHT-treated DPCs. To elucidate the regulative mechanism, we found that WJWE treatment significantly and dose-dependently increased the expression of SIRT1 and reduced the phosphorylation of JNK and p38 MAPK in both DHT-treated DPCs and AGA model mice. And the application of EX527 (a SIRT1 inhibitor) could the effect of WJWE. Conclusion Our study provided some evidence of WJWE on AGA treatment, by which SIRT1/JNK/p38 MAPK signaling pathway might be the major target.
Collapse
Affiliation(s)
- Zhiguang Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuanyuan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yixin Xie
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hangjie Fu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhiwei Weng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jianchang Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lan Wu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Weizhou Lin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bin Ding
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Jiaxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, People’s Republic of China
| |
Collapse
|
2
|
Salazar J, Ortega Á, Pérez JL, Garrido B, Santeliz R, Galbán N, Díaz MP, Cano R, Cano G, Contreras-Velasquez JC, Chacín M. Role of Polyphenols in Dermatological Diseases: Exploring Pharmacotherapeutic Mechanisms and Clinical Implications. Pharmaceuticals (Basel) 2025; 18:247. [PMID: 40006060 PMCID: PMC11859979 DOI: 10.3390/ph18020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Although not frequently lethal, dermatological diseases represent a common cause of consultation worldwide. Due to the natural and non-invasive approach of phytotherapy, research for novel alternatives, such as polyphenols, to treat skin disorders is a subject of interest in modern medicine. Polyphenols, in particular, have been considered because of their anti-inflammatory, antitumoral, antimicrobial, and antioxidant properties, low molecular weight, and lipophilic nature that enables the passage of these compounds through the skin barrier. This review discusses the treatment of common dermatological diseases such as acne vulgaris, fungal infections, dermatitis, alopecia, and skin cancer, using polyphenols as therapeutic and prophylactic options. The specific molecules considered for each disorder, mechanisms of action, current clinical trials, and proposed applications are also reviewed.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - Néstor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - Maria Paula Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (J.S.); (Á.O.); (J.L.P.); (B.G.); (R.S.); (N.G.); (M.P.D.)
| | - Raquel Cano
- Clínica General del Norte, Grupo de Estudio e Investigación en Salud, Barranquilla 080002, Colombia;
| | - Gabriel Cano
- Institut für Pharmazie Königin-Luise, Freie Universität Berlin, Strasse 2-4, 14195 Berlin, Germany;
| | | | - Maricarmen Chacín
- Centro de Investigaciones en Ciencias de la Vida (CICV), Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
3
|
Teka T, Wu J, Oduro PK, Li Z, Wang C, Chen H, Zhang L, Wang H, Wang L, Han L. Integrated multi-omics analyses combined with western blotting discovered that cis-TSG alleviated liver injury via modulating lipid metabolism. Front Pharmacol 2024; 15:1485035. [PMID: 39635428 PMCID: PMC11614611 DOI: 10.3389/fphar.2024.1485035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Polygonum multiflorum shows dual hepatoprotective and hepatotoxic effects. The bioactive components responsible for these effects are unknown. This study investigates whether cis-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (cis-TSG), a stilbene glycoside, has hepatoprotective and/or hepatotoxic effects in a liver injury model. Methods: C57BL/6J mice were administered α-naphthylisothiocyanate (ANIT) to induce cholestasis, followed by treatment with cis-TSG. Hepatoprotective and hepatotoxic effects were assessed using serum biomarkers, liver histology, and metabolomic and lipidomic profiling. Transcriptomic analysis were conducted to explore gene expression changes associated with lipid and bile acid metabolism, inflammation, and oxidative stress. Results and Discussion: ANIT administration caused significant liver injury, evident from elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and dysregulated lipid metabolism. cis-TSG treatment markedly reduced ALT and AST levels, normalized lipid profiles, and ameliorated liver damage, as seen histologically. Metabolomic and lipidomic analyses revealed that cis-TSG influenced key pathways, notably glycerophospholipid metabolism, sphingolipid metabolism, and bile acid biosynthesis. The treatment with cis-TSG increased monounsaturated and polyunsaturated fatty acids (MUFAs and PUFAs), enhancing peroxisome proliferator-activated receptor alpha (PPARα) activity. Transcriptomic data confirmed these findings, showing the downregulation of genes linked to lipid metabolism, inflammation, and oxidative stress in the cis-TSG-treated group. The findings suggest that cis-TSG has a hepatoprotective effect through modulation of lipid metabolism and PPARα activation.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmacy, Wollo University, Dessie, Ethiopia
| | - Jiang Wu
- Shenzhen Technology University, Shenzhen, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haitao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Zhou Q, Wu F, Chen Y, Fu J, Zhou L, Xu Y, He F, Gong Z, Yuan F. Reynoutria multiflora (Thunb.) Moldenke and its ingredient suppress lethal prostate cancer growth by inducing CDC25B-CDK1 mediated cell cycle arrest. Bioorg Chem 2024; 152:107731. [PMID: 39180863 DOI: 10.1016/j.bioorg.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb, PM) is a medicinal plant that was an element of traditional Chinese medicine (TCM) for centuries as a treatment for a wide range of conditions. Recent studies reported that PM suppressed prostate cancer growth in an AR-dependent manner. However, its role and mechanism in the treatment of advanced prostate cancer remain to be explored. This study aims to explore the anti-tumor role and potential mechanism of PM on prostate cancer. METHODS Cell viability, colony formation, fluorescence-activated cell sorting (FACS), and wound-healing assays were conducted to evaluate the tumor suppression effect of PM on lethal prostate cancer models in vitro. A xenograft mice model was established to detect the impact of PM on tumor growth and evaluate its biosafety in vivo. Integrative network pharmacology, RNA-seq, and bioinformatics were applied to determine the mechanisms of PM in prostate cancer. Molecular docking, cellular thermal shift assay (CETSA), CRISPR-Cas13, RT-qPCR, and WB were collaboratively employed to identify the potential anti-tumor ingredient derived from PM and its corresponding targets. RESULTS PM significantly suppressed the growth of prostate cancer and sensitized prostate cancer to AR antagonists. Mechanistically, PM induced G2/M-phase cell-cycle arrest by modulating the phosphorylation of CDK1. Additionally, polygalacic acid derived from PM and its structural analog suppress prostate cancer growth by targeting CDC25B, a master regulator of the cell cycle that governs CDK1 phosphorylation. CONCLUSION PM and its ingredient polygalacic acid suppress lethal prostate cancer growth by regulating the CDC25B-CDK1 axis to induce cell cycle arrest.
Collapse
MESH Headings
- Male
- cdc25 Phosphatases/metabolism
- cdc25 Phosphatases/antagonists & inhibitors
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/metabolism
- Humans
- CDC2 Protein Kinase/metabolism
- CDC2 Protein Kinase/antagonists & inhibitors
- Cell Proliferation/drug effects
- Animals
- Mice
- Cell Cycle Checkpoints/drug effects
- Structure-Activity Relationship
- Molecular Structure
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Cell Survival/drug effects
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Qianqian Zhou
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fanchen Wu
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yanhua Chen
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianguo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feng He
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhangbin Gong
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fuwen Yuan
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Urology and Andrology, Gongli Hospital, Shanghai 200135, China.
| |
Collapse
|
5
|
Martin-Biggers J, Barbosa Bueno de Campos ME. A Randomized, Placebo-controlled Clinical Study Evaluating a Dietary Supplement for Hair Growth. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:34-38. [PMID: 39758217 PMCID: PMC11694638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Objective The desire for improved hair appearance, hair growth and strength are common drivers of supplementation for women experiencing thinning hair. This study examined the effect and safety of a gummy supplement containing B vitamins, zinc and botanical ingredients to improve hair growth, strength and perceived hair quality outcomes. Methods Healthy females (n=65) ages 18 to 60 with thinning hair were enrolled. After obtaining consent, subjects were evaluated for hair density and tensile strength, then randomized to either a placebo or test product. The test product consisted of two gummies consumed daily. Subjects returned after six months and were again evaluated using phototrichogram for hair density and tensile strength assessment and completed a Self-Assessment Questionnaire reporting hair quality outcomes. Results Subjects who consumed the test product showed increased hair density between baseline and 6 months (10.1% increase, p<0.001) as well as compared to placebo (2% decrease) (p<0.001). Hair strength tensile measurements were improved in the test group from baseline (10.2% improvement, p<0.002) compared to placebo (9.3% improvement), yet the difference was not statistically significant between groups. Self-assessed improvements in shedding, strength, breakage and brightness were noted compared to the placebo group (p<0.05). There were no adverse events or reactions. Limitations This study did not assess hair for longer than a six-month period and utilized subject perception for outcomes that differ from clinical assessments. Conclusion Daily use of a dietary supplement gummy was associated with significant improvement in hair growth as well as self-assessed improvements in hair strength, shedding, and appearance.
Collapse
|
6
|
Kim J, Joo JH, Kim J, Rim H, Shin JY, Choi YH, Min K, Lee SY, Jun SH, Kang NG. Platycladus orientalis Leaf Extract Promotes Hair Growth via Non-Receptor Tyrosine Kinase ACK1 Activation. Curr Issues Mol Biol 2024; 46:11207-11219. [PMID: 39451545 PMCID: PMC11505925 DOI: 10.3390/cimb46100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. In this study, we investigated the hair-growth-promoting effect of PO in cultured human dermal papilla cells (hDPCs). Platycladus orientalis leaf extract (POLE) was found to stimulate the proliferation of hDPCs. POLE with higher quercitrin concentration, especially, showed a high level of cellular viability. In the context of cellular senescence, POLE decreased the expression of p16 (CDKN2A) and p21(CDKN1A), which resulted in enhanced proliferation. In addition, growth factor receptors, FGFR1 and VEGFR2/3, and non-receptor tyrosine kinases, ACK1 and HCK, were significantly activated. In addition, LEF1, a transcription factor of Wnt/β-catenin signaling, was enhanced, but DKK1, an inhibitor of Wnt/β-catenin signaling, was downregulated by POLE treatment in cultured hDPCs. As a consequence, the expression of growth factors such as bFGF, KGF, and VEGF were also increased by POLE. We further investigated the hair-growth-promoting effect of topically administered POLE over a 12-week period. Our data suggest that POLE could support terminal hair growth by stimulating proliferation of DPCs and that enhanced production of growth factors, especially KGF, occurred as a result of tyrosine kinase ACK1 activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nae-Gyu Kang
- Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.H.J.); (J.K.); (H.R.); (J.y.S.); (Y.-H.C.); (K.M.); (S.Y.L.); (S.-H.J.)
| |
Collapse
|
7
|
Kim J, An J, Lee YK, Ha G, Ban H, Kong H, Lee H, Song Y, Lee CK, Kim SB, Kim K. Hair Growth Promoting Effects of Solubilized Sturgeon Oil and Its Correlation with the Gut Microbiome. Pharmaceuticals (Basel) 2024; 17:1112. [PMID: 39338277 PMCID: PMC11434952 DOI: 10.3390/ph17091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Androgenetic alopecia is a common disease that occurs in both men and women. Several approved medications have been used to treat this condition, but they are associated with certain side effects. Therefore, use of extracts derived from natural products, such as Siberian sturgeon (Acipenser baerii), and the regulation of the gut microbiota have become important topics of research. Sturgeon is known for its high nutritional value and anti-inflammatory properties; however, its effects on androgenetic alopecia and gut microbiota remain uncharacterized. Here, we aimed to investigate whether solubilized sturgeon oil (SSO) promotes hair growth and regulates the gut microbiome. C57BL/6 mice were divided into four groups. Three groups received topical applications of distilled water, SSO, or minoxidil, and one group was orally administered SSO. Each treatment was administered over 4 weeks. Histopathological analysis revealed a significant increase in follicle number (p < 0.001) and follicle diameter (p < 0.05). Immunohistochemical analysis revealed upregulation of β-catenin and ERK-1, markers involved in hair growth-promoting pathways. Furthermore, microbiome analysis revealed that the reduced gut microbiota was negatively correlated with these markers. Our findings indicate that oral administration of SSO promotes hair growth and regulates the abundance of hair growth-promoting gut microbiota.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Jinho An
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Yong-kwang Lee
- Sturgeon Bio Co., Ltd., Cheongju 28581, Republic of Korea;
| | - Gwangsu Ha
- Department of Animal Life Resources, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Hamin Ban
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Hyunseok Kong
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Heetae Lee
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Youngcheon Song
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Chong-kil Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Sang Bum Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| | - Kyungjae Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea; (J.K.); (J.A.); (H.K.); (H.L.); (Y.S.)
| |
Collapse
|
8
|
Ying M, Zhou J, Zeng Z, Li S, Yang X. Effects of Nannochloropsis salina Fermented Oil on Proliferation of Human Dermal Papilla Cells and Hair Growth. Int J Mol Sci 2024; 25:8231. [PMID: 39125802 PMCID: PMC11312048 DOI: 10.3390/ijms25158231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024] Open
Abstract
The hair follicle is the basis of hair regeneration, and the dermal papilla is one of the most important structures in hair regeneration. New intervention and reversal strategies for hair loss may arise due to the prevention of oxidative stress. GC/MS analysis was used to determine the compounds contained in NSO. Then, NSO was applied to DPC for cell proliferation and oxidative stress experiments. RNA-seq was performed in cells treated with NSO and minoxidil. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify the gene expression. The effects of NSO on hair length, weight, the number and depth of hair follicles, and the dermal thickness were also studied. GC/MS analysis showed that the main components of NSO were eicosapentaenoic acid, palmitic acid, and linoleic acid. NSO promotes DPC proliferation and reduces H2O2-mediated oxidative damage. NSO can also activate hair growth-related pathways and upregulate antioxidant-related genes analyzed by gene profiling. The topical application of NSO significantly promotes hair growth and increases hair length and weight in mice. NSO extract promotes hair growth and effectively inhibits oxidative stress, which is beneficial for the prevention and treatment of hair loss.
Collapse
Affiliation(s)
| | | | | | | | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.Y.); (J.Z.); (Z.Z.); (S.L.)
| |
Collapse
|
9
|
Lim HW, Kim HJ, Jeon CY, Lee Y, Kim M, Kim J, Kim SR, Lee S, Lim DC, Park HD, Park BC, Shin DW. Hair Growth Promoting Effects of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor in Human Follicle Dermal Papilla Cells. Int J Mol Sci 2024; 25:7485. [PMID: 39000592 PMCID: PMC11242524 DOI: 10.3390/ijms25137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.
Collapse
Affiliation(s)
- Hye Won Lim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Hak Joong Kim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Chae Young Jeon
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Yurim Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Mujun Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Jinsick Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Soon Re Kim
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
| | - Sanghwa Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Dong Chul Lim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Hee Dong Park
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Byung Cheol Park
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
- Department of Dermatology, Dankook University Hospital, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| |
Collapse
|
10
|
Zhou SY, Giang NN, Kim H, Chien PN, Le LTT, Trinh TT, Nga PT, Kwon HJ, Ham JR, Lee WK, Gu YJ, Zhang XR, Jin YX, Nam SY, Heo CY. Assessing the efficacy of mesotherapy products: Ultra Exo Booster, and Ultra S Line Plus in hair growth: An ex vivo study. Skin Res Technol 2024; 30:e13780. [PMID: 39031929 PMCID: PMC11259544 DOI: 10.1111/srt.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
In this study, scalp tissues from Korean adults between 20 and 80 without skin disease were used. Scalp tissues were processed, and hair follicles were isolated and cultured with different treatments (including Bioscalp, Ultra Exo Booster, and Ultra S Line Plus) from Ultra V company. Over 12 days, observations and measurements of hair follicle characteristics were recorded at intervals (Days 0, 3, 6, 9, and 12). The study assessed the impact of these substances on hair follicle growth and morphology. Bioscalp, combined with Ultra Exo Booster and Ultra S Line Plus, showed significant hair elongation in ex vivo. Preservation of hair bulb diameter was observed, indicating potential for sustained hair growth by exosome-based products. The hair growth cycle analysis suggested a lower transition to the catagen stage in test products from Ultra V compared to non-treated groups. The research findings indicated that the tested formulations, especially the combination of Bioscalp, Ultra Exo Booster, and Ultra S Line Plus, demonstrated significant effectiveness in promoting hair growth, maintaining the integrity of the hair bulb, and reducing the transition to the catagen stage. The study suggests promising alternative treatments for hair loss, illustrating results that were as good as those of the conventional testing product groups.
Collapse
Affiliation(s)
- Shu Yi Zhou
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Hyunjee Kim
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Biomedical ScienceCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Faculty of Medical TechniqueHai Phong University of Medicine and PharmacyHaiphongVietnam
| | - Thuy‐Tien Thi Trinh
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | | | | | - Won Ku Lee
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Yeon Ju Gu
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Xin Rui Zhang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Yong Xun Jin
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Chan Yeong Heo
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| |
Collapse
|
11
|
Kim J, Shin JY, Choi YH, Joo JH, Kwack MH, Sung YK, Kang NG. Hair Thickness Growth Effect of Adenosine Complex in Male-/Female-Patterned Hair Loss via Inhibition of Androgen Receptor Signaling. Int J Mol Sci 2024; 25:6534. [PMID: 38928239 PMCID: PMC11204140 DOI: 10.3390/ijms25126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aging (senescence) is an unavoidable biological process that results in visible manifestations in all cutaneous tissues, including scalp skin and hair follicles. Previously, we evaluated the molecular function of adenosine in promoting alopecia treatment in vitro. To elucidate the differences in the molecular mechanisms between minoxidil (MNX) and adenosine, gene expression changes in dermal papilla cells were examined. The androgen receptor (AR) pathway was identified as a candidate target of adenosine for hair growth, and the anti-androgenic activity of adenosine was examined in vitro. In addition, ex vivo examination of human hair follicle organ cultures revealed that adenosine potently elongated the anagen stage. According to the severity of alopecia, the ratio of the two peaks (terminal hair area/vellus hair area) decreased continuously. We further investigated the adenosine hair growth promoting effect in vivo to examine the hair thickness growth effects of topical 5% MNX and the adenosine complex (0.75% adenosine, 1% penthenol, and 2% niacinamide; APN) in vivo. After 4 months of administration, both the MNX and APN group showed significant increases in hair density (MNX + 5.01% (p < 0.01), APN + 6.20% (p < 0.001)) and thickness (MNX + 5.14% (p < 0.001), APN + 10.32% (p < 0.001)). The inhibition of AR signaling via adenosine could have contributed to hair thickness growth. We suggest that the anti-androgenic effect of adenosine, along with the evaluation of hair thickness distribution, could help us to understand hair physiology and to investigate new approaches for drug development.
Collapse
Affiliation(s)
- Jaeyoon Kim
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Jae young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Yun-Ho Choi
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Jang Ho Joo
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (M.H.K.); (Y.K.S.)
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (M.H.K.); (Y.K.S.)
| | - Nae Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| |
Collapse
|
12
|
Xiong J, Liu Z, Jia L, Sun Y, Guo R, Xi T, Li Z, Wu M, Jiang H, Li Y. Bioinspired engineering ADSC nanovesicles thermosensitive hydrogel enhance autophagy of dermal papilla cells for androgenetic alopecia treatment. Bioact Mater 2024; 36:112-125. [PMID: 38440324 PMCID: PMC10911949 DOI: 10.1016/j.bioactmat.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Androgenic alopecia (AGA) is a highly prevalent form of non-scarring alopecia but lacks effective treatments. Stem cell exosomes have similar repair effects to stem cells, suffer from the drawbacks of high cost and low yield yet. Cell-derived nanovesicles acquired through mechanical extrusion exhibit favorable biomimetic properties similar to exosomes, enabling them to efficiently encapsulate substantial quantities of therapeutic proteins. In this study, we observed that JAM-A, an adhesion protein, resulted in a significantly increased the adhesion and resilience of dermal papilla cells to form snap structures against damage caused by dihydrotestosterone and macrophages, thereby facilitating the process of hair regrowth in cases of AGA. Consequently, adipose-derived stem cells were modified to overexpress JAM-A to produce engineered JAM-A overexpressing nanovesicles (JAM-AOE@NV). The incorporation of JAM-AOE@NV into a thermosensitive hydrogel matrix (JAM-AOE@NV Gel) to effectively addresses the limitations associated with the short half-life of JAM-AOE@NV, and resulted in the achievement of a sustained-release profile for JAM-AOE@NV. The physicochemical characteristics of the JAM-AOE@NV Gel were analyzed and assessed for its efficacy in promoting hair regrowth in vivo and vitro. The JAM-AOE@NV Gel, thus, presents a novel therapeutic approach and theoretical framework for promoting the treatment of low cell adhesion diseases similar to AGA.
Collapse
Affiliation(s)
- Jiachao Xiong
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Zhixiao Liu
- Department of Histology and Embryology, Naval Medical University, Shanghai, 200433, China
| | - Lingling Jia
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yulin Sun
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Medical College, Tongji University, Shanghai, 200331, China
| | - Rong Guo
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Tingting Xi
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zihan Li
- St Hugh's College, University of Oxford, OX2 6LE, United Kingdom
| | - Minjuan Wu
- Department of Histology and Embryology, Naval Medical University, Shanghai, 200433, China
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yufei Li
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
13
|
Du F, Li J, Zhang S, Zeng X, Nie J, Li Z. Oxidative stress in hair follicle development and hair growth: Signalling pathways, intervening mechanisms and potential of natural antioxidants. J Cell Mol Med 2024; 28:e18486. [PMID: 38923380 PMCID: PMC11196958 DOI: 10.1111/jcmm.18486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.
Collapse
Affiliation(s)
- Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Xuemei Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
14
|
Tang X, Zhang T, Wang B, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Biotransformation of Cacumen platycladi Extract by Lactiplantibacillus plantarum CCFM1348 Promotes Hair Growth in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11493-11502. [PMID: 38738816 DOI: 10.1021/acs.jafc.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/β-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated β-catenin, a major factor of the Wnt/β-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/β-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Tongtong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Botao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Bloomage Biotechnology Co., Ltd, Jinan 250000, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
15
|
Jin X, Song X. Autophagy Dysfunction: The Kernel of Hair Loss? Clin Cosmet Investig Dermatol 2024; 17:1165-1181. [PMID: 38800357 PMCID: PMC11122274 DOI: 10.2147/ccid.s462294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Autophagy is recognized as a crucial regulatory process, instrumental in the removal of senescent, dysfunctional, and damaged cells. Within the autophagic process, lysosomal digestion plays a critical role in the elimination of impaired organelles, thus preserving fundamental cellular metabolic functions and various biological processes. Mitophagy, a targeted autophagic process that specifically focuses on mitochondria, is essential for sustaining cellular health and energy balance. Therefore, a deep comprehension of the operational mechanisms and implications of autophagy and mitophagy is vital for disease prevention and treatment. In this context, we examine the role of autophagy and mitophagy during hair follicle cycles, closely scrutinizing their potential association with hair loss. We also conduct a thorough review of the regulatory mechanisms behind autophagy and mitophagy, highlighting their interaction with hair follicle stem cells and dermal papilla cells. In conclusion, we investigate the potential of manipulating autophagy and mitophagy pathways to develop innovative therapeutic strategies for hair loss.
Collapse
Affiliation(s)
- Xiaofan Jin
- Zhejiang University School of Medicine, Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Hangzhou, People’s Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Choi JY, Boo MY, Boo YC. Can Plant Extracts Help Prevent Hair Loss or Promote Hair Growth? A Review Comparing Their Therapeutic Efficacies, Phytochemical Components, and Modulatory Targets. Molecules 2024; 29:2288. [PMID: 38792149 PMCID: PMC11124163 DOI: 10.3390/molecules29102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-β or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Min Young Boo
- Ppeum Clinic Daegu, 39 Dongseong-ro, Jung-gu, Daegu 41937, Republic of Korea;
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Lapivu Co., Ltd., 115 Dongdeok-ro, Jung-gu, Daegu 41940, Republic of Korea
| |
Collapse
|
17
|
Park S, Lim YJ, Kim HS, Shin HJ, Kim JS, Lee JN, Lee JH, Bae S. Phloroglucinol Enhances Anagen Signaling and Alleviates H 2O 2-Induced Oxidative Stress in Human Dermal Papilla Cells. J Microbiol Biotechnol 2024; 34:812-827. [PMID: 38480001 DOI: 10.4014/jmb.2311.11047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/16/2024]
Abstract
Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Jae Shin
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Seon Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Nam Lee
- Department of Cosmetology, Graduate School of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
18
|
Kang HY, Woo MJ, Paik SJ, Choi HJ, Bach TT, Quang BH, Eum SM, Paik JH, Jung SK. Recovery Effects of Nephelium lappaceum var. pallens (Hiern) Leenh. Extract on Testosterone-Induced Inhibition of Hair Growth in C57BL/6 Mice and Human Follicular Dermal Papilla Cells. J Med Food 2024; 27:167-175. [PMID: 38174988 DOI: 10.1089/jmf.2023.k.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Although various hair health medicines have been developed and are used today, additional safe and effective natural hair growth therapies still need to be developed. Nephelium lappaceum var. pallens (Hiern) Leenh. extract (NLE) reportedly exhibits anticancer, antidiabetic, and antioxidant effects, which could be linked to androgenic processes; however, there are no reports of its effects on testosterone (TS)-inhibited hair growth. The present study investigated the effects of NLE on TS-induced inhibition of hair growth in C57BL/6 mice and human follicular dermal papilla cells. Oral administration of NLE restored hair growth that was suppressed following subcutaneous injection of TS more effectively than finasteride, a drug used for treating hair loss. Histological analysis demonstrated that oral NLE administration increased the number and diameter of hair follicles in the dorsal skin of C57BL/6 mice. In addition, western blot and immunofluorescence assays showed that the oral NLE administration restored TS-induced suppression of cyclin D1, proliferating cell nuclear antigen, and loricrin expression in the skin cells of the mice. Finally, TS suppression of cell proliferation in human follicular dermal papilla cells was significantly reversed by NLE pretreatment. The results suggest that NLE is a promising nutraceutical for hair growth because it promotes hair growth in androgenetic alopecia-like models.
Collapse
Affiliation(s)
- Ha Yeong Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Min Jeong Woo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Hee Jung Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Bui Hong Quang
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Korea
| |
Collapse
|
19
|
Wu S, Kou X, Niu Y, Liu Y, Zheng B, Ma J, Liu M, Xue Z. Progress on the mechanism of natural products alleviating androgenetic alopecia. Eur J Med Chem 2024; 264:116022. [PMID: 38086191 DOI: 10.1016/j.ejmech.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/β-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China.
| |
Collapse
|
20
|
Liu D, Xu Q, Meng X, Liu X, Liu J. Status of research on the development and regeneration of hair follicles. Int J Med Sci 2024; 21:80-94. [PMID: 38164355 PMCID: PMC10750333 DOI: 10.7150/ijms.88508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
Hair loss, or alopecia, is a prevalent condition in modern society that imposes substantial mental and psychological burden on individuals. The types of hair loss, include androgenetic alopecia, alopecia areata, and telogen effluvium; of them, androgenetic alopecia is the most common condition. Traditional treatment modalities mainly involve medical options, such as minoxidil, finasteride and surgical interventions, such as hair transplantation. However, these treatments still have many limitations. Therefore, exploring the pathogenesis of hair loss, specifically focusing on the development and regeneration of hair follicles (HFs), and developing new strategies for promoting hair regrowth are essential. Some emerging therapies for hair loss have gained prominence; these therapies include low-level laser therapy, micro needling, fractional radio frequency, platelet-rich plasma, and stem cell therapy. The aforementioned therapeutic strategies appear promising for hair loss management. In this review, we investigated the mechanisms underlying HF development and regeneration. For this, we studied the structure, development, cycle, and cellular function of HFs. In addition, we analyzed the symptoms, types, and causes of hair loss as well as its current conventional treatments. Our study provides an overview of the most effective regenerative medicine-based therapies for hair loss.
Collapse
Affiliation(s)
| | | | | | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Qian Y, Zhu L, Wu L, Chen J, Ding B, Li Y, Cao Y. Favorable effect of herbal extract on androgenic alopecia: A case report. Medicine (Baltimore) 2023; 102:e34524. [PMID: 37773795 PMCID: PMC10545014 DOI: 10.1097/md.0000000000034524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/07/2023] [Indexed: 10/01/2023] Open
Abstract
RATIONALE Androgenic alopecia (AGA) is a prevalent condition with progressive miniaturization of hair follicles. Currently, reliable treatments have remained limited, and complementary medications for AGA are still being investigated. Traditional Chinese medicine formulas have conspicuous advantages in the treatment of AGA with good development prospects. Zimmer aqueous spray (ZAS) is a water spray containing Zimmer herbal extract powder (ZMWP), which consists of Ligustri lucidi Fructus, Ecliptae Herba, Fallopia multiflora (Thunb.) Harald. and Polygonatum sibiricum Delar. ex Redoute, etc. ZMWP is an active ingredient in the prevention of hair loss. Our aim is to provide evidence for the effectiveness of ZAS in the treatment of AGA. PATIENT CONCERNS A 41-year-old man had suffered from hair loss for 8 years. INTERVENTIONS The patient with moderate AGA received 3 to 4 mL ZAS daily or every other day for 3 months. OUTCOMES The hair density obviously increased after 3 months of therapy. The improvement of hair diameter, vellus hair rate, and 1 hair pilosebaceous unit rate were observed with a trichoscopy and quantitatively analyzed. Besides, honeycomb pigment pattern mitigated and arborized red lines. LESSONS The results suggested that ZMWP might have the capability of improving hair growth and attenuating AGA, which can be a promising alternative treatment of AGA.
Collapse
Affiliation(s)
- Yuxin Qian
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lijian Zhu
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lan Wu
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jingya Chen
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bin Ding
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuanyuan Li
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
22
|
Zeng Z, Wang B, Ibrar M, Ying M, Li S, Yang X. Schizochytrium sp. Extracted Lipids Prevent Alopecia by Enhancing Antioxidation and Inhibiting Ferroptosis of Dermal Papilla Cells. Antioxidants (Basel) 2023; 12:1332. [PMID: 37507872 PMCID: PMC10375984 DOI: 10.3390/antiox12071332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia has gradually become a problem that puzzles an increasing number of people. Dermal papilla cells (DPCs) play an important role in hair follicle (HF) growth; thus, exploring the effective chemicals or natural extracts that can remediate the growth of DPCs is vital. Our results showed that Schizochytrium sp.-extracted lipids (SEL) significantly promoted proliferation (up to 1.13 times) and survival ratio (up to 2.45 times) under oxidative stress. The treatment with SEL can protect DPCs against oxidative stress damage, reducing the reactive oxygen species (ROS) level by 90.7%. The relative gene transcription and translation were thoroughly analyzed using RNA-Seq, RT-qPCR, and Western blot to explore the mechanism. Results showed that SEL significantly inhibited the ferroptosis pathway and promoted the expression of antioxidant genes (up to 1.55-3.52 times). The in vivo application of SEL improved hair growth, with the length of new hair increasing by 16.7% and the length of new HF increasing by 92.6%, and the period of telogen shortening increased by 40.0%. This study proposes a novel therapeutic option for alopecia, with the effect and regulation mechanism of SEL on DPC systematically clarified.
Collapse
Affiliation(s)
- Zuye Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Boyu Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Innova Bay (Shenzhen) Technology Co., Ltd., Shenzhen 518118, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
23
|
Bio-Pulsed Stimulation Effectively Improves the Production of Avian Mesenchymal Stem Cell-Derived Extracellular Vesicles That Enhance the Bioactivity of Skin Fibroblasts and Hair Follicle Cells. Int J Mol Sci 2022; 23:ijms232315010. [PMID: 36499339 PMCID: PMC9740660 DOI: 10.3390/ijms232315010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (exosomes) possess regeneration, cell proliferation, wound healing, and anti-senescence capabilities. The functions of exosomes can be modified by preconditioning MSCs through treatment with bio-pulsed reagents (Polygonum multiflorum Thunb extract). However, the beneficial effects of bio-pulsed small extracellular vesicles (sEVs) on the skin or hair remain unknown. This study investigated the in vitro mechanistic basis through which bio-pulsed sEVs enhance the bioactivity of the skin fibroblasts and hair follicle cells. Avian-derived MSCs (AMSCs) were isolated, characterized, and bio-pulsed to produce AMSC-sEVs, which were isolated, lyophilized, characterized, and analyzed. The effects of bio-pulsed AMSC-sEVs on cell proliferation, wound healing, and gene expression associated with skin and hair bioactivity were examined using human skin fibroblasts (HSFs) and follicle dermal papilla cells (HFDPCs). Bio-pulsed treatment significantly enhanced sEVs production by possibly upregulating RAB27A expression in AMSCs. Bio-pulsed AMSC-sEVs contained more exosomal proteins and RNAs than the control. Bio-pulsed AMSC-sEVs significantly augmented cell proliferation, wound healing, and gene expression in HSFs and HFDPCs. The present study investigated the role of bio-pulsed AMSC-sEVs in the bioactivity of the skin fibroblasts and hair follicle cells as mediators to offer potential health benefits for skin and hair.
Collapse
|
24
|
The Molecular Mechanism of Natural Products Activating Wnt/β-Catenin Signaling Pathway for Improving Hair Loss. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111856. [PMID: 36430990 PMCID: PMC9693075 DOI: 10.3390/life12111856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Hair loss, or alopecia, is a dermatological disorder that causes psychological stress and poor quality of life. Drug-based therapeutics such as finasteride and minoxidil have been clinically used to treat hair loss, but they have limitations due to their several side effects in patients. To solve this problem, there has been meaningful progress in elucidating the molecular mechanisms of hair growth and finding novel targets to develop therapeutics to treat it. Among various signaling pathways, Wnt/β-catenin plays an essential role in hair follicle development, the hair cycle, and regeneration. Thus, much research has demonstrated that various natural products worldwide promote hair growth by stimulating Wnt/β-catenin signaling. This review discusses the functional role of the Wnt/β-catenin pathway and its related signaling molecules. We also review the molecular mechanism of the natural products or compounds that activate Wnt/β-catenin signaling and provide insights into developing therapeutics or cosmeceuticals that treat hair loss.
Collapse
|
25
|
Zhang ZL, Li YZ, Wu GQ, Zhang DD, Deng C, Wang ZM, Song XM, Wang W. A comprehensive review of traditional uses, phytochemistry and pharmacology of Reynoutria genus. J Pharm Pharmacol 2022; 74:1718-1742. [DOI: 10.1093/jpp/rgac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The genus Reynoutria belonging to the family Polygonaceae is widely distributed in the north temperate zone and used in folk medicine. It is administered as a sedative, tonic and digestive, also as a treatment for canities and alopecia. Herein, we reported a review on traditional uses, phytochemistry and pharmacology reported from 1985 up to early 2022. All the information and studies concerning Reynoutria plants were summarized from the library and digital databases (e.g. ScienceDirect, SciFinder, Medline PubMed, Google Scholar, and CNKI).
Key findings
A total of 185 articles on the genus Reynoutria have been collected. The phytochemical investigations of Reynoutria species revealed the presence of more than 277 chemical components, including stilbenoids, quinones, flavonoids, phenylpropanoids, phospholipids, lactones, phenolics and phenolic acids. Moreover, the compounds isolated from the genus Reynoutria possess a wide spectrum of pharmacology such as anti-atherosclerosis, anti-inflammatory, antioxidative, anticancer, neuroprotective, anti-virus and heart protection.
Summary
In this paper, the traditional uses, phytochemistry and pharmacology of genus Reynoutria were reviewed. As a source of traditional folk medicine, the Reynoutria genus have high medicinal value and they are widely used in medicine. Therefore, we hope our review can help genus Reynoutria get better development and utilization.
Collapse
Affiliation(s)
- Zi-Long Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Guo-Qing Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Zhi-Min Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , BeiJing 100700 , China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine , Xian Yang, Shaanxi 712046 , China
| |
Collapse
|
26
|
Sheep IGFBP2 and IGFBP4 promoter methylation regulates gene expression and hair follicle development. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Jang WY, Kim DS, Park SH, Yoon JH, Shin CY, Huang L, Nang K, Kry M, Byun HW, Lee BH, Lee S, Lee J, Cho JY. Connarus semidecandrus Jack Exerts Anti-Alopecia Effects by Targeting 5α-Reductase Activity and an Intrinsic Apoptotic Pathway. Molecules 2022; 27:molecules27134086. [PMID: 35807332 PMCID: PMC9268327 DOI: 10.3390/molecules27134086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
There is a growing demand for hair loss treatments with minimal side effects and recurrence potential. Connarus semidecandrus Jack has been used as a folk medicine for fever in tropical regions, but its anti-alopecia effects remain unclear. In this study, the anti-androgenic alopecia effect of an ethanol extract of Connarus semidecandrus Jack (Cs-EE) was demonstrated in a testosterone-induced androgenic alopecia (AGA) model, in terms of the hair–skin ratio, hair type frequency, and hair thickness. The area of restored hair growth and thickened hair population after Cs-EE treatment showed the hair-growth-promoting effect of Cs-EE. Histological data support the possibility that Cs-EE could reduce hair loss and upregulate hair proliferation in mouse skin by shifting hair follicles from the catagen phase to the anagen phase. Western blotting indicated that Cs-EE reduced the expression of the androgenic receptor. Cs-EE treatment also inhibited programmed cell death by upregulating Bcl-2 expression at the mRNA and protein levels. The anti-alopecia effect of Cs-EE was confirmed by in vitro experiments showing that Cs-EE had suppressive effects on 5-α reductase activity and lymph node carcinoma of the prostate proliferation, and a proliferative effect on human hair-follicle dermal papilla (HDP) cells. Apoptotic pathways in HDP cells were downregulated by Cs-EE treatment. Thus, Cs-EE could be a potential treatment for AGA.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (D.S.K.)
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (D.S.K.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (J.H.Y.); (C.Y.S.); (L.H.)
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (J.H.Y.); (C.Y.S.); (L.H.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (J.H.Y.); (C.Y.S.); (L.H.)
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (J.H.Y.); (C.Y.S.); (L.H.)
| | - Ket Nang
- Forestry Administration, Phnom Penh 120206, Cambodia; (K.N.); (M.K.)
| | - Masphal Kry
- Forestry Administration, Phnom Penh 120206, Cambodia; (K.N.); (M.K.)
| | - Hye-Woo Byun
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (H.-W.B.); (B.-H.L.)
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (H.-W.B.); (B.-H.L.)
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (H.-W.B.); (B.-H.L.)
- Correspondence: (S.L.); (J.L.); (J.Y.C.); Tel.: +82-31-290-7868 (J.Y.C.); +82-31-290-7861 (J.L.); +82-10-8602-7827 (S.L.)
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (D.S.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (J.H.Y.); (C.Y.S.); (L.H.)
- Correspondence: (S.L.); (J.L.); (J.Y.C.); Tel.: +82-31-290-7868 (J.Y.C.); +82-31-290-7861 (J.L.); +82-10-8602-7827 (S.L.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (D.S.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (J.H.Y.); (C.Y.S.); (L.H.)
- Correspondence: (S.L.); (J.L.); (J.Y.C.); Tel.: +82-31-290-7868 (J.Y.C.); +82-31-290-7861 (J.L.); +82-10-8602-7827 (S.L.)
| |
Collapse
|
28
|
Kim BH, Kim MG, Choi BY. Lagerstroemia indica extract regulates human hair dermal papilla cell growth and degeneration via modulation of β-catenin, Stat6 and TGF-β signaling pathway. J Cosmet Dermatol 2022; 21:2763-2773. [PMID: 35596731 DOI: 10.1111/jocd.15081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lagerstroemia indica (L. indica) is reported to have diverse biological activities including anti-inflammatory, anti-cancer, neuro-regulatory, antidiabetic and antioxidant activity. AIMS The purpose of the present study is to examine the potential of hair growth promotion and/or hair loss prevention by L. indica extract. PATIENTS/METHODS The effects of L. indica on hair growth have been studied in human hair follicle dermal papillary (hHFDP) cells and follicular organ culture ex vivo by cell proliferation assay, PCR, western blot analysis and reporter gene activity assay. Moreover, a clinical trial was conducted in healthy volunteers. RESULTS L. indica significantly promoted the proliferation of hHFDP cells, which was associated with increased expression of TCF/LEF, VEGF and Gli1 mRNA, and inhibition of STAT6 and Smad2 mRNA. Treatment with L. indica also increased the TCF/LEF reporter gene activity but downregulated the SBE- and STAT6-luciferase activities. The expression of total β-catenin, CDK4 and CDK2 were elevated, while that of STAT6 and SMAD2/3 was suppressed upon treatment with L. indica. In human hair follicles organ culture, L. indica significantly inhibited hair follicular degeneration. The clinical trial showed a statistically significant rise in total hair count in test group (n=24) after 24 weeks of applying the hair tonic enriched with L. indica (141.46 ± 21.27 number/cm2 , p < 0.05). CONCLUSION We suggest that L. indica extract prevents hair loss as well as stimulate hair growth by regulating the Wnt-β-catenin, JAK3-STAT6 and TGF-β1-Smad signaling pathways, and may be further developed as a novel functional cosmetic for preventing hair loss.
Collapse
Affiliation(s)
- Byung Hyun Kim
- Department of Pharmaceutical Science & Engineering, Seowon University
| | - Myong Gi Kim
- Department of Food Science & Engineering, Seowon University, Cheongju, Chungbuk, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University
| |
Collapse
|
29
|
Kim J, Shin JY, Choi YH, Kang NG, Lee S. Anti-Hair Loss Effect of Adenosine Is Exerted by cAMP Mediated Wnt/β-Catenin Pathway Stimulation via Modulation of Gsk3β Activity in Cultured Human Dermal Papilla Cells. Molecules 2022; 27:molecules27072184. [PMID: 35408582 PMCID: PMC9000365 DOI: 10.3390/molecules27072184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
In the present study, we investigated the molecular mechanisms of adenosine for its hair growth promoting effect. Adenosine stimulated the Wnt/β-catenin pathway by modulating the activity of Gsk3β in cultured human dermal papilla cells. It also activated adenosine receptor signaling, increasing intracellular cAMP level, and subsequently stimulating the cAMP mediated cellular energy metabolism. The phosphorylation of CREB, mTOR, and GSK3β was increased. Furthermore, the expression of β-catenin target genes such as Axin2, Lef1, and growth factors (bFGF, FGF7, IGF-1) was also enhanced. The inhibitor study data conducted in Wnt reporter cells and in cultured human dermal papilla cells demonstrated that adenosine stimulates Wnt/β-catenin signaling through the activation of the adenosine receptor and Gsk3β plays a critical role in transmitting the signals from the adenosine receptor to β-catenin, possibly via the Gαs/cAMP/PKA/mTOR signaling cascade.
Collapse
Affiliation(s)
| | | | | | - Nae Gyu Kang
- Correspondence: (N.G.K.); (S.L.); Tel.: +82-10-8462-7763 (S.L.)
| | - Sanghwa Lee
- Correspondence: (N.G.K.); (S.L.); Tel.: +82-10-8462-7763 (S.L.)
| |
Collapse
|
30
|
Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA. Foods 2022; 11:foods11030386. [PMID: 35159536 PMCID: PMC8834015 DOI: 10.3390/foods11030386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
A rapid and effective ultra-high performance liquid chromatography (UHPLC) method was developed for the determination of five anthraquinones (emodin, physcion, aloe-emodin, rhein, and chrysophanol) in Polygonum multiflorum. The target compounds were ultrasonically extracted with 70% methanol, followed by dispersive solid-phase extraction (d-SPE) with HC-C18 and desorption with acetonitrile. The five anthraquinones were separated on an ACQUITY UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm) and detected by a photodiode array detector (PDA) at 254 nm. Under the optimized conditions, linear relationships were achieved in the range of 0.3~100 mg/L for emodin, 0.3~40 mg/L for physcion, 0.1~20 mg/L for aloe-emodin, and 0.05~20 mg/L for rhein and chrysophanol. The limits of detection of the five analytes ranged from 0.01 to 0.08 mg/L, and the recoveries were within the range of 82.8~118.4% with an RSD (n = 6) of 1.0~10.3%. The intra-day and inter-day precision (n = 5) of the five targets were in the range of 1.0~1.8% and 3.0~3.1%, respectively. Furthermore, this method was applied to analyses of Polygonum multiflorum samples collected from different regions in China with satisfactory results. All the results indicated that this method is suitable for the detection of five anthraquinones in Polygonum multiflorum.
Collapse
|
31
|
Park S, Lee J. Modulation of Hair Growth Promoting Effect by Natural Products. Pharmaceutics 2021; 13:pharmaceutics13122163. [PMID: 34959442 PMCID: PMC8706577 DOI: 10.3390/pharmaceutics13122163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
A large number of people suffer from alopecia or hair loss worldwide. Drug-based therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have been used since ancient times and have been proven safe, with few side effects. Several studies have demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial products based on these natural ingredients have been developed for the treatment of alopecia. Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea;
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-7722
| |
Collapse
|
32
|
Wang L, Wang Z, Xing Y, Liu E, Gao X, Wang L, Fu Z. Biomarkers and Mechanism Analysis for Polygoni Multiflori Radix Preparata-Induced Liver Injury by UHPLC-Q-TOF-MS-Based Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7677392. [PMID: 34858511 PMCID: PMC8632464 DOI: 10.1155/2021/7677392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Polygonum Multiflorum Radix Preparata (PMP), prepared from Polygonum multiflorum Thunb. (PM), is traditionally valued for its liver and kidney-tonifying effects. However, the previous studies showed that PMP was hepatotoxic, which limited its clinical use. Unfortunately, the potential hepatotoxic ingredients and the molecular mechanism are still uncertain. OBJECTIVE The aim of this study was to find out potential biomarkers of hepatotoxicity using metabolomics profile. MATERIALS AND METHODS 60% ethanol extract of PMP (PMPE) was prepared. Subsequently, an untargeted metabolomics technology in combination with ROC curve analysis method was applied to investigate the alteration of plasma metabolites in rats after oral administration of PMPE (40 g/kg/d) for 28 days. RESULTS Compared to the control group, the significant difference in metabolic profiling was observed in the PMPE-induced liver injury group, and sixteen highly specific biomarkers were identified. These metabolites were mainly enriched into bile acids, lipids, and energy metabolisms, indicating that PMPE-induced liver injury could be related to cholestasis and dysregulated lipid metabolism. CONCLUSIONS This study is contributed to understand the potential pathogenesis of PMP-induced liver injury. The metabonomic method may be a valuable tool for the clinical diagnosis of PMP-induced liver injury.
Collapse
Affiliation(s)
- Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Zhida Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Linlin Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| |
Collapse
|
33
|
Hyun J, Im J, Kim SW, Kim HY, Seo I, Bhang SH. Morus alba Root Extract Induces the Anagen Phase in the Human Hair Follicle Dermal Papilla Cells. Pharmaceutics 2021; 13:pharmaceutics13081155. [PMID: 34452116 PMCID: PMC8399394 DOI: 10.3390/pharmaceutics13081155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Restoring hair follicles by inducing the anagen phase is a promising approach to prevent hair loss. Hair follicle dermal papilla cells (HFDPCs) play a major role in hair growth via the telogen-to-anagen transition. The therapeutic effect of Morus alba activates β-catenin in HFDPCs, thereby inducing the anagen phase. The HFDPCs were treated with M. alba root extract (MARE) to promote hair growth. It contains chlorogenic acid and umbelliferone and is not cytotoxic to HFDPCs at a concentration of 20%. It was demonstrated that a small amount of MARE enhances growth factor secretion (related to the telogen-to-anagen transition). Activation of β-catenin was observed in MARE-treated HFDPCs, which is crucial for inducing the anagen phase. The effect of conditioned medium derived from MARE-treated HFDPCs on keratinocytes and endothelial cells was also investigated. The findings of this study demonstrate the potency of MARE in eliciting the telogen-to-anagen transition.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.H.); (J.I.); (S.-W.K.); (I.S.)
| | - Jisoo Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.H.); (J.I.); (S.-W.K.); (I.S.)
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.H.); (J.I.); (S.-W.K.); (I.S.)
| | - Han Young Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.H.); (J.I.); (S.-W.K.); (I.S.)
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.H.); (J.I.); (S.-W.K.); (I.S.)
- Correspondence: ; Tel.: +82-31-290-7242
| |
Collapse
|
34
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|