1
|
Chen B, Chen J, Wu H, Zhang F, Chen L, Zhang W, Yang J, Yuan L, Jiang Y, Deng Y. Volvariella volvacea Polypeptide Mitigates Alcohol-Induced Liver Injury: A Multi-Omics Study. Foods 2025; 14:1557. [PMID: 40361639 PMCID: PMC12071262 DOI: 10.3390/foods14091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
This study investigated the hepatoprotective mechanisms of Volvariella volvacea fruiting body polypeptide (VVFP, 1-3 kDa) against acute alcohol-induced liver injury using multi-omics approaches. Male ICR mice pretreated with VVFP (100-400 mg/kg) showed significantly prolonged alcohol tolerance latency (p < 0.05) and accelerated sobriety recovery compared to controls. Integrated transcriptomics and metabolomics revealed VVFP's dual regulatory effects: (1) transcriptional regulation of 36 endoplasmic reticulum stress genes (e.g., ERP57, Derl) through protein processing pathways (KEGG:04141), and (2) metabolic modulation of 23 hepatic metabolites, particularly phosphatidylcholines and organic acids, via amino acid biosynthesis and glycerophospholipid metabolism. Cross-omics analysis identified eight coregulated genes (Got1, Arg2, Srm, etc.) interacting with key metabolites (4-guanidinobutyric acid, GABA) through linoleic acid metabolism. These findings demonstrate VVFP's therapeutic potential as a functional food ingredient by highlighting its ability to simultaneously target hepatic stress responses and metabolic homeostasis during alcohol detoxification.
Collapse
Affiliation(s)
- Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Juanqin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Huihua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Fangyi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Lili Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Weibin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Jing Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Li Yuan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (J.C.); (H.W.); (F.Z.); (L.C.); (W.Z.); (J.Y.); (L.Y.)
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Youjin Deng
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Cen X, Wang W, Hong S, Wang Q, Wang N, Mo L, Li J, Li J. Integrated microbiome and metabolomic analyses revealed the antifibrotic effect of vanillic acid on thioacetamide-induced liver fibrosis in mice. Food Funct 2024; 15:11780-11794. [PMID: 39545308 DOI: 10.1039/d4fo02309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Vanillic acid (VA) is a natural phenolic acid compound that is widely found in various foods and medicinal plants, with a remarkable antifibrotic effect observed in animal studies, but its exact antifibrotic mechanism remains unclear. Herein, hepatic function, fibrotic index, and histopathological, microbiome, and metabolomic methods were used to investigate the potential mechanisms behind the improvement effect of vanillic acid against thioacetamide (TAA)-induced liver fibrosis in mice. Our results showed that VA reversed TAA-induced liver fibrosis manifested a decrease in collagen fiber deposition, serum transaminase, serum hepatic fibrotic index, and liver inflammation indicator levels. When analyzed, TAA injection mainly increased the abundance of Akkermansia and Roseburia and significantly reduced the abundance of Anaerotruncus. VA reversed these changes back to normal levels to varying degrees. Metabolomic profiling demonstrated that VA treatment was efficacious in modulating several key liver metabolites involved in neuroactive ligand-receptor interaction, prolactin signaling pathway, estrogen signaling pathway, and glutathione metabolism. Conclusively, VA may ameliorate liver damage and suppress the fibrogenesis caused by thioacetamide by correcting intestinal microbiota disorders and promoting normal hepatic metabolism. This research provides a novel perspective on vanillic acid as a dietary supplement for hepatic fibrosis improvement.
Collapse
Affiliation(s)
- Xiaofeng Cen
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Wei Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Siyan Hong
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Qin Wang
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Na Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Ling Mo
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Jingjing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| | - Jingwen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, 541199, Guilin, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, 541199, Guilin, China
| |
Collapse
|
3
|
Icer MA, Sarikaya B, Kocyigit E, Atabilen B, Çelik MN, Capasso R, Ağagündüz D, Budán F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024; 13:2437. [PMID: 39123629 PMCID: PMC11311711 DOI: 10.3390/foods13152437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The need to increase food safety and improve human health has led to a worldwide increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs). GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD), is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic, on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory effects are also being investigated. For all these reasons, it is not surprising that efforts to identify LAB strains with a high GABA productivity and to increase GABA production from LABs through genetic engineering to increase GABA yield are accelerating. However, GABA's contributions to food safety/quality and human health have not yet been fully discussed in the literature. Therefore, this current review highlights the synthesis and food applications of GABA produced from LABs, discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and regulating obesity and overeating. Still, other potential food and drug interactions (among others) remain unanswered questions to be elucidated in the future. Hence, this review paves the way toward further studies.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Buse Sarikaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu 52000, Turkey;
| | - Büşra Atabilen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey;
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun 55000, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Teng J, Yu T, Yan F. GABA attenuates neurotoxicity of zinc oxide nanoparticles due to oxidative stress via DAF-16/FoxO and SKN-1/Nrf2 pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173214. [PMID: 38754507 DOI: 10.1016/j.scitotenv.2024.173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used metal oxide nanomaterials. The increased use of ZnO-NPs has exacerbated environmental pollution and raised the risk of neurological disorders in organisms through food chains, and it is urgent to look for detoxification strategies. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter that has been shown to have anxiolytic, anti-aging and inhibitory effects on nervous system excitability. However, there are few reports on the prevention and control of the toxicity of nano-metal ions by GABA. In zebrafish, ZnO-NPs exposure led to increased mortality and behavioral abnormalities of larva, which could be moderated by GABA intervention. Similar results were investigated in Caenorhabditis elegans, showing lifespan extension, abnormal locomotor frequency and behavior recovery when worms fed with GABA under ZnO-NPs exposure. Moreover, GABA enhanced antioxidant enzyme activities by upregulating the expression of antioxidant-related genes and thus scavenged excessive O2-. In the case of ZnO-NPs exposure, inhibition of nuclear translocation of DAF-16 and SKN-1 was restored by GABA. Meanwhile, the protective effect of GABA was blocked in daf-16 (-) and skn-1 (-) mutant, suggesting that DAF-16/FoxO and SKN-1/Nrf2 pathways is the key targets of GABA. This study provides a new solution for the application of GABA and mitigation of metal nanoparticle neurotoxicity.
Collapse
Affiliation(s)
- Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Deng M, Zhang S, Wu S, Jiang Q, Teng W, Luo T, Ouyang Y, Liu J, Gu B. Lactiplantibacillus plantarum N4 ameliorates lipid metabolism and gut microbiota structure in high fat diet-fed rats. Front Microbiol 2024; 15:1390293. [PMID: 38912346 PMCID: PMC11190066 DOI: 10.3389/fmicb.2024.1390293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Lowing blood lipid levels with probiotics has good application prospects. This study aimed to isolate probiotics with hypolipidemic efficacy from homemade na dish and investigate their mechanism of action. In vitro experiments were conducted to determine the cholesterol-lowering ability of five isolates, with results showing that Lactiplantibacillus plantarum N4 exhibited a high cholesterol-lowering rate of 50.27% and significant resistance to acid (87%), bile salt (51.97%), and pepsin (88.28%) in simulated gastrointestinal fluids, indicating promising application prospects for the use of probiotics in lowering blood lipids. The findings from the in vivo experiment demonstrated that the administration of N4 effectively attenuated lipid droplet accumulation and inflammatory cell infiltration in the body weight and liver of hyperlipidemic rats, leading to restoration of liver tissue morphology and structure, as well as improvement in lipid and liver biochemical parameters. 16S analysis indicated that the oral administration of N4 led to significant alterations in the relative abundance of various genera, including Sutterella, Bacteroides, Clostridium, and Ruminococcus, in the gut microbiota of hyperlipidemia rats. Additionally, fecal metabolomic analysis identified a total of 78 metabolites following N4 intervention, with carboxylic acids and their derivatives being the predominant compounds detected. The transcriptomic analysis revealed 156 genes with differential expression following N4 intervention, leading to the identification of 171 metabolic pathways through Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Notably, the glutathione metabolism pathway, PPAR signaling pathway, and bile secretion pathway emerged as the primary enrichment pathways. The findings from a comprehensive multi-omics analysis indicate that N4 influences lipid metabolism and diminishes lipid levels in hyperlipidemic rats through modulation of fumaric acid and γ-aminobutyric acid concentrations, as well as glutathione and other metabolic pathways in the intestinal tract, derived from both the gut microbiota and the host liver. This research offers valuable insights into the therapeutic potential of probiotics for managing lipid metabolism disorders and their utilization in the development of functional foods.
Collapse
Affiliation(s)
- Manqi Deng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shuaiying Zhang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Siying Wu
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qiunan Jiang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wenyao Teng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tao Luo
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yerui Ouyang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiantao Liu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bing Gu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
6
|
Chen W, Deng YY, Yu JW, Leung YT, Bai JX, Chen YJ, Wu Y, Wang L, Fan XY, Wang XQ, Hu J, Chen WH, Dou X, Leung KSY, Fu XQ, Yu ZL. A tri-herb formulation protects against ethanol-induced mouse liver injury and downregulates mitogen-activated protein kinase phosphatase 1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154802. [PMID: 37054486 DOI: 10.1016/j.phymed.2023.154802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.
Collapse
Affiliation(s)
- Wei Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yu-Yi Deng
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jun-Wen Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuk-Tung Leung
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jing-Xuan Bai
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying-Jie Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Wu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Yun Fan
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Qi Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
7
|
Hou D, Tang J, Feng Q, Niu Z, Shen Q, Wang L, Zhou S. Gamma-aminobutyric acid (GABA): a comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit Rev Food Sci Nutr 2023; 64:8852-8874. [PMID: 37096548 DOI: 10.1080/10408398.2023.2204373] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a naturally occurring potential bioactive compound present in plants, microorganisms, animals, and humans. Especially, as a main inhibitory neurotransmitter in the central nervous system, GABA possesses a broad spectrum of promising bioactivities. Thus, functional foods enriched with GABA have been widely sought after by consumers. However, the GABA levels in natural foods are usually low, which cannot meet people's demand for health effects. With the increasing public awareness on the food securities and naturally occurring processes, using enrichment technologies to elevate the GABA contents in foods instead of exogenous addition can enhance the acceptability of health-conscious consumers. Herein, this review provides a comprehensive insight on the dietary sources, enrichment technologies, processing effects of GABA, and its applications in food industry. Furthermore, the various health benefits of GABA-enriched foods, mainly including neuroprotection, anti-insomnia, anti-depression, anti-hypertensive, anti-diabetes, and anti-inflammatory are also summarized. The main challenges for future research on GABA are related to exploring high GABA producing strains, enhancing the stability of GABA during storage, and developing emerging enrichment technologies without affecting food quality and other active ingredients. A better understanding of GABA may introduce new windows for its application in developing functional foods.
Collapse
Affiliation(s)
- Dianzhi Hou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qiqian Feng
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhitao Niu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sumei Zhou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
de Godoi RS, Garcia ALH, Borges MS, George HK, Ferraz ADBF, Corrêa DS, da Silva FR, da Silva J. Protective effect of Hovenia dulcis Thunb. leaf extracts against ethanol-induced DNA damage in SH-SY5Y cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116042. [PMID: 36529249 DOI: 10.1016/j.jep.2022.116042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hovenia dulcis Thunb. has been used as a medicinal herb for the treatment of hepatic diseases and alcohol intoxication. AIM OF THE STUDY The genotoxic effect and the antigenotoxic potential of ethanolic extract of H. dulcis leaves and its methanolic fraction were evaluated against ethanol-induced damages in SH-SY5Y cells. MATERIALS AND METHODS The phytochemical analysis and antioxidant activity of H. dulcis extracts were also assessed. In addition, a systems biology analysis was performed to investigate the molecular pathway of action of the H. dulcis leaves compounds. RESULTS The ethanolic extract and its methanolic fraction presented genotoxicity through comet assay at 0.5 and 0.25 mg/mL. On the other hand, both extracts showed protective action against ethanol at all concentrations. Additionally, an NBT assay was performed and demonstrated an ability of the extracts to reduce superoxide anion formation when SH-SY5Y cells were challenged with ethanol. HPLC analysis indicated the presence of quercitrin, isoquercitrin, and rutin. Further, system biology assays indicated a molecular action pathway, where the compounds from the leaves of H. dulcis, in addition to performing free radical scavenging activity, activate PP2A, and may inhibit the apoptosis pathway activated by ethanol-induced oxidative stress. CONCLUSIONS This work is important to indicate potential antigenotoxic and antioxidant properties of H. dulcis leaves, and its use can be investigated against DNA damage induced by ethanol.
Collapse
Affiliation(s)
- Rafael Souza de Godoi
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Letícia Hilario Garcia
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, Postgraduate Program in Health and Human Development (PPGSDH), La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil.
| | - Malu Siqueira Borges
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Hellen Kaiane George
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | | | - Dione Silva Corrêa
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Fernanda Rabaioli da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Health and Human Development (PPGSDH), La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, Postgraduate Program in Health and Human Development (PPGSDH), La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil.
| |
Collapse
|
9
|
Boby N, Abbas MA, Lee EB, Im ZE, Lee SJ, Park SC. Microbiota modulation and anti-obesity effects of fermented Pyrus ussuriensis Maxim extract against high-fat diet-induced obesity in rats. Biomed Pharmacother 2022; 154:113629. [PMID: 36058150 DOI: 10.1016/j.biopha.2022.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine due to its strong phytochemical profile and pharmacological efficacy. In this study, we evaluated the anti-obesity potential of Pyrus ussuriensis Maxim extracts (PUE) and investigated the underlying mechanisms using a combination of in vitro, in vivo, and microbiota regulation approaches. In an adipogenesis assay, the fermented (F)PUE and non-fermented (NF)PUE significantly reduced the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 85.33 and 96.67 µg/mL, respectively. In a high-fat diet (HFD)-induced obese rat model (n = 8 animals/group), oral administration of FPUE additionally reduced the total body weight gain significantly. No difference in food intake was observed, however, between the control-chow diet, FPUE, and NFPUE-treated HFD rats. Adipose tissue mass and systemic insulin resistance were markedly reduced in FPUE-treated HFD rats, in a dose-dependent manner. Treatment with FPUE also greatly improved obesity-related biomarkers, including total cholesterol, leptin, active ghrelin, Total GIP, adiponectin, and proinflammatory cytokines. Moreover, FPUE significantly suppressed HFD-induced adipogenic genes expression, while increasing fatty acid oxidation-related genes expression. Additionally, FPUE treatment attenuated the HFD-induced Firmicutes proportion within the intestinal microbiota by regulating key metabolic pathways, thus enhancing microbial population diversity (e.g., increasing Bacteroides, Bifidobacterium, Prevotella, Eubacterium, and Clostridium). Together, these results reveal a strong anti-obesity potential of FPUE through adipogenesis, lipid metabolism, weight reduction, and microbiota regulation, raising the possibility of developing FPUE as a novel therapeutic agent to control obesity and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea; Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, the Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Gukchabosang-ro 680, Jung-Gu, Daegu 41944, the Republic of Korea.
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea.
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea.
| | - Zi-Eum Im
- Institute of Forest Resources Development, Andong-si, Gyeongsangbuk-do 36605, the Republic of Korea.
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea.
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Gukchabosang-ro 680, Jung-Gu, Daegu 41944, the Republic of Korea.
| |
Collapse
|
10
|
Ethanol-Induced Hepatotoxicity and Alcohol Metabolism Regulation by GABA-Enriched Fermented Smilax china Root Extract in Rats. Foods 2021; 10:foods10102381. [PMID: 34681429 PMCID: PMC8535858 DOI: 10.3390/foods10102381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic alcohol consumption can cause hepatic injury and alcohol-induced toxicities. Extracts from Smilax china root have been widely used in traditional medicine and for their potential pharmacological benefits. We aimed to determine if fermented Smilax china extract (FSC) regulates alcoholic fatty liver and liver injury using two in vivo experiments. Sprague-Dawley rats were administered ethanol (3 g/kg b.w.; po) with or without FSC pretreatment to induce an acute hangover. In another experiment, rats were fed either a normal or Lieber-DeCarli ethanol (6.7%) diet with or without FSC pretreatment (125, 250, and 500 mg/kg b.w.; po) for 28 days. Serum biomarkers, liver histopathology, and the mRNA levels of anti-inflammatory, antioxidant, lipogenic, and lipolytic genes were analyzed. FSC pretreatment significantly reduced blood alcohol and acetaldehyde concentrations, upregulated the mRNA expression of alcohol dehydrogenase, aldehyde dehydrogenase, and superoxide dismutase, and decreased the activities of liver enzymes in a dose-dependent manner. It also downregulated SERBP-1c and upregulated PPAR-α and reduced the gene expression of the anti-inflammatory cytokine IL-6 in the liver. The final extract after fermentation had increased GABA content. Furthermore, FSC was found to be safe with no acute oral toxicity in female rats. Thus, FSC increases alcohol metabolism and exhibits antioxidant and anti-inflammatory effects to induce hepatoprotection against alcohol-induced damage. It may be used as a functional food ingredient after excess alcohol consumption.
Collapse
|
11
|
Lee H, Hwangbo H, Ji SY, Kim MY, Kim SY, Kim DH, Hong SH, Lee SJ, Assefa F, Kim GY, Park EK, Park JH, Lee BJ, Jeon YJ, Choi YH. Gamma Aminobutyric Acid-Enriched Fermented Oyster ( Crassostrea gigas) Increases the Length of the Growth Plate on the Proximal Tibia Bone in Sprague-Dawley Rats. Molecules 2020; 25:molecules25194375. [PMID: 32977643 PMCID: PMC7582314 DOI: 10.3390/molecules25194375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Bone growth during childhood and puberty determines an adult’s final stature. Although several prior studies have reported that fermented oyster (FO) consisting of a high amount of gamma aminobutyric acid can be attributed to bone health, there is no research on the efficacy of FO on growth regulation and the proximal tibial growth plate. Therefore, in this study, we investigated the effect of FO oral administration on hepatic and serum growth regulator levels and the development of the proximal tibial growth plate in young Sprague-Dawley rats. Both oral administration of FO (FO 100, 100 mg/kg FO and FO 200, 200 mg/kg FO) and subcutaneous injection of recombinant human growth hormone (rhGH, 200 μg/kg of rhGH) for two weeks showed no toxicity. Circulating levels of growth hormone (GH) significantly increased in the FO 200 group. The expression and secretion of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) were enhanced by FO administration. FO administration promoted the expression of bone morphogenic proteins IGF-1 and IGFBP-3 in the proximal tibial growth plate. This positive effect of FO resulted in incremental growth of the entire plate length by expanding the proliferating and hypertrophic zones in the proximal tibial growth plate. Collectively, our results suggested that oral administration of FO is beneficial for bone health, which may ultimately result in increased height.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Smart Bio-Health, Dong-eui University, Busan 47340, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Su Jeong Lee
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (S.J.L.); (F.A.); (E.K.P.)
| | - Freshet Assefa
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (S.J.L.); (F.A.); (E.K.P.)
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (S.J.L.); (F.A.); (E.K.P.)
| | - Joung-Hyun Park
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
12
|
Khan MZ, Shabbir MI, Saqib Z, Gilani SA, Jogezai NU, Kiyani MM, Malik MA. Investigation of polyphenol profile, antioxidant activity and hepatoprotective potential of Aconogonon alpinum (All.) Schur roots. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractLiver plays vital role in detoxification of exogenous and endogenous chemicals. These chemicals as well as oxidative stress may cause liver disorders. This study was aimed to evaluate the hepatoprotective effects of various fractions of Aconogonon alpinum methanolic extract against carbon tetrachloride (CCl4)-induced liver toxicity in mice. First, hepatoprotective potential of various fractions of A. alpinum was assessed and then antioxidant activity and profiling of polyphenolic compounds were assessed. A total of 78 male albino mice (BALB/c) were randomly divided into 13 groups (n = 6); Group I (normal control), Group II (CCl4 only), Group III (CCl4 + silymarin 100 mg/kg) and Groups IV–XIII (CCl4 + various fractions [200 and 400 mg/kg]). Hepatic biochemistry and liver injury were assessed by analysis of serum levels of hepatic enzymes and histopathological analysis, respectively. Results showed that polar fractions (ethyl acetate, n-butanol and aqueous fractions) exhibited highly significant (P < 0.01) reduction in increased level of liver biochemical parameters in a dose-dependent manner with consistent histopathological findings. Likewise, these fractions revealed strong antioxidant potential and polyphenolic compound contents. In conclusion, the present work has revealed promising antioxidant activity, polyphenolic profiling and potential hepatoprotective efficacy. Thus, the significant results unveil the study as a step forward towards evidence-based phytomedicine.
Collapse
Affiliation(s)
- Muhammad Zakryya Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences (FBAS) International Islamic University Islamabad (IIUI), Islamabad Capital Territory, 44000, Pakistan
| | - Muhammad Imran Shabbir
- Department of Biological Sciences, Faculty of Basic and Applied Sciences (FBAS) International Islamic University Islamabad (IIUI), Islamabad Capital Territory, 44000, Pakistan
| | - Zafeer Saqib
- Department of Environmental Sciences Faculty of Basic and Applied Sciences (FBAS), International Islamic University Islamabad (IIUI), Islamabad Capital Territory, 44000, Pakistan
| | - Syed Aneel Gilani
- Botanical Science Division Pakistan Museum of Natural History (PMNH) Islamabad, Islamabad Capital Territory, 44000, Pakistan
| | - Naqeeb Ullah Jogezai
- Department of Bioengineering and Space Biosciences, Institute of Space Technology Islamabad, Islamabad Capital Territory, 44000, Pakistan
| | - Mubin Mustafa Kiyani
- Department of Medical sciences, Riphah International University Islamabad, Islamabad Capital Territory, 44000, Pakistan
| | - Muhammad Arshad Malik
- Department of Biological Sciences, Faculty of Basic and Applied Sciences (FBAS) International Islamic University Islamabad (IIUI), Islamabad Capital Territory, 44000, Pakistan
| |
Collapse
|