1
|
Lai JC, Chang GRL, Tu MY, Cidem A, Chen IC, Chen CM. Potential of Kefir-Derived Peptides, Probiotics, and Exopolysaccharides for Osteoporosis Management. Curr Osteoporos Rep 2025; 23:18. [PMID: 40192921 PMCID: PMC11976759 DOI: 10.1007/s11914-025-00910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Osteoporosis is a prevalent skeletal disorder in postmenopausal women and older adults. Kefir has gained attention for its potent antioxidative, anti-inflammatory, and immunomodulatory properties. This review consolidates findings on kefir-derived peptides' interventions in osteoporosis models and evaluates the therapeutic potential of kefir components in preventing osteoporosis, thereby enhancing its application in clinical nutrition strategies for osteoporosis management. RECENT FINDINGS Kefir-derived peptides exhibit osteoprotective potential in various animal models of osteoporosis, in which several antioxidative and ACE-inhibitory peptides have been shown to promote osteoblast differentiation and mineralization. In addition, emerging evidence supports the role of kefir-derived probiotics and exopolysaccharides (kefiran) in mitigating bone loss. Kefir holds significant promise in the management of osteoporosis due to its unique composition of bioactive components promoting bone health. While research is still in its early stages, evidence suggests kefir's potential as a natural approach to osteoporosis prevention and management.
Collapse
Affiliation(s)
- Jen-Chieh Lai
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Gary Ro-Lin Chang
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Abdulkadir Cidem
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - I-Chien Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Rong Hsing Research Center for Translational Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan.
- Center for General Educational, National Quemoy University, Kinmen, 892, Taiwan.
| |
Collapse
|
2
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
3
|
Khani N, Shakeri AH, Houshmandi S, Ziavand M, Abedi-Soleimani R, Hosseinzadeh N, Homayouni-Rad A. The Promising Biological Role of Postbiotics in Treating Human Infertility. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10458-w. [PMID: 39883398 DOI: 10.1007/s12602-025-10458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
Infertility poses a global challenge that impacts a significant proportion of the populace. Presently, there is a substantial emphasis on investigating the potential of probiotics and their derivatives, called postbiotics, as an alternative therapeutic strategy for addressing infertility. The term of "postbiotics" refers to compounds including peptides, enzymes, teichoic acids, and muropeptides derived from peptidoglycans, polysaccharides, proteins, and organic acids that are excreted by living bacteria or released after bacterial lysis. Postbiotics exhibit the capacity to enhance fertility in both men and women, with their impact on male reproductive function (specifically testicular function, semen quality, and prostate health) and female reproductive health (including modulation of vaginal microbiota and restoration thereof) being posited as potential mechanisms by which postbiotics may enhance fertility. This review highlights definitions of postbiotics, as well as their biological role in treatment of infertility.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Amir Hesam Shakeri
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammadreza Ziavand
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Roya Abedi-Soleimani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran.
| |
Collapse
|
4
|
Saki F, Rahimikashkooli N, Masjedi M, Dastghaib S, Koohpeyma F. Gender-Specific effects of L-arginine supplementation on bone mineral density and trabecular bone volume in Sprague-Dawley rats; stereological study. BMC Complement Med Ther 2024; 24:425. [PMID: 39725944 DOI: 10.1186/s12906-024-04736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND L-arginine (Arg) is a semi-essential amino acid that can be used as a key mediator for the release of growth hormone (GH), insulin-like growth factor-1(IGF-1), and other growth factors. In this study, we comprehensively evaluated the effect of Arg intake on bone growth and associated markers. METHODS The study involved 24 Sprague-Dawley rats (12 males, 12 females) divided into two groups (Age = 24 days). One group received a standard diet, while the other was injected with 10 mg/kg of Arg daily for 90 days. Serum bone markers like calcium (Ca), phosphorous(P), and alkaline phosphatase (ALP) were analyzed via colorimetric assays. stereological study and bone mineral density (BMD) were conducted via dissector method and Hologic Dual-energy x-ray absorptiometry (DXA) system; respectively. RESULTS Biochemical assays showed no significant differences in Ca, P, and ALP levels between groups. Male rats in the case group exhibited lower testosterone levels (p.value = 0.009). Stereological and bone mineral density (BMD) analyses revealed contrasting gender-specific outcomes. Female rats in the case group had higher BMD (p.value = 0.001), while males had lower BMD compared to controls (p.value = 0.018). Arg consumption affects trabecula volume values differently in females compared to males (p.value = 0.022). Furthermore, the study observed decreased osteocytes and osteoblasts in male case rats. The gender-based differences in BMD were attributed to Arg's paradoxical impact on testosterone levels in males. CONCLUSION Overall, Arg supplementation was found to influence BMD and trabecular bone volume, with outcomes varying depending on gender. The study highlights the intricate interplay between Arg, sex hormones, and bone health, offering insights into these complex relationships.
Collapse
Affiliation(s)
- Forough Saki
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran
| | - Nima Rahimikashkooli
- Internal Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Biochemistry in Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farhad Koohpeyma
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
- Medical Physiology, Shiraz Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Asoudeh-Fard A, Beygi MY, Parsaei A, Mohkam M, Asoudeh-Fard M, Gholami A. Postbiotic metabolites derived from lactobacillus fermentum as potent antiproliferative bioresources on HeLa cells with promising biocompatibility. BMC Complement Med Ther 2024; 24:420. [PMID: 39707317 DOI: 10.1186/s12906-024-04730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Chemotherapy administrations for cervical malignancy possess a variety of unfavorable influences on the human body. Scientists are interested in microbial-derived biomolecules or postbiotics as an alternative therapeutic strategy in malignant patients. This research investigated the mechanisms related to the function of two potential postbiotic Lactobacillus isolates, Lactobacillus fermentum CH and L. fermentum KH, isolated from indigenous Iranian dairy products. The Lactobacillus isolates were recognized through 16S rDNA sequence analysis followed by characterization using morphological and biochemical assays. The bioactivity of postbiotics on the cervical cancer model was also assessed through a cytotoxic study and apoptosis analysis. In addition, the anticancer activity was evaluated by qPCR, followed by a confirmation of the flow cytometry. The results of the bioactivity assay revealed that these postbiotics had suitable anticancer influences on the cervical cancer model (HeLa cells) by increasing BAX, caspase8, and caspase9, followed by a decrease in BCl-2, iKB (Inhibitor of nuclear factor kappa-B), and RelA gene expressions. Thus, the findings of this study signify that the postbiotic derivate from Lactobacillus strains isolated from indigenous Iranian dairy products could be regarded as a topical treatment with a promising curative index due to their effectiveness on cervical malignancy cells.
Collapse
Affiliation(s)
- Abbas Asoudeh-Fard
- INSERM U1148, Laboratory for Vascular Translation Science (LVTS), University Sorbonne Paris North, Cardiovascular Bioengineering, Paris, France
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moein Yeylagh Beygi
- Department of Microbiology & Immunology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Quality Control, Microbiology Laboratory, Sobhan Oncology Pharmaceutical Company, Rasht, Iran
| | - Asghar Parsaei
- Biotechnology Incubator, Niko Gene Saba Company, Rayan Novin Pajoohan Pars, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Ansari Z, Maleki MH, Roohy F, Ebrahimi Z, Shams M, Mokaram P, Zamanzadeh Z, Hosseinzadeh Z, Koohpeyma F, Dastghaib S. "Protective effects of artichoke extract and Bifidobacterium longum on male infertility in diabetic rats". Biochem Biophys Rep 2024; 40:101834. [PMID: 39386078 PMCID: PMC11462217 DOI: 10.1016/j.bbrep.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Diabetes is a major global health concern and plays a significant role in male infertility and hormonal abnormalities by altering the tissue structure of spermatogenic tubes and decreasing the number of spermatogonia. This study investigated the effect of artichoke (Cynara scolymus L) hydroalcoholic extract and Bifidobacterium longum probiotic on sexual hormones, oxidative stress, apoptosis pathway, and histopathological changes in testicular tissues of diabetic rats to find an adjuvant therapy to manage the infertility complications of diabetes. Methods In this experiment, 96 male-rats were randomly selected from eight groups. Control, Sham (normal saline), DM group (IP injected with 60 mg/kg STZ), Cynara (400 mg/kg hydroalcoholic extract of Cynara scolymus L), BBL (received 1 × 109 CFU/ml/day Bifidobacterium longum), DM + Cynara, DM + BBL, and DM + Cynara + BBL groups. After 48 days of orally gavage, serum level of FBS (fasting blood sugar), Malondi-aldehyde (MDA), Total-Anti-Oxidant Capacity (TAC), FSH (Follicle-stimulating hormone), LH (Luteinizing hormone), Testosterone, Testis mRNA-expressions of Protamin (prm1), BCL2, and Caspase-9 genes, as well as stereological changes were measured. Results In comparison to the diabetic group, the hydroalcoholic extract of Cynara scolymus L combined with the probiotic Bifidobacterium longum resulted in a substantial decrease in FBS (p < 0.001) and MDA(p < 0.05) concentrations, and the expression of the Caspase-9 gene (1.33-fold change). In addition, serum levels of TAC, LH, FSH, Testosterone were significantly increased (p < 0.05). mRNA expression of protamine (p = 0.016) and BCL2 (0.72-fold change) were detected. Furthermore, in comparison with diabetic rats, the Cynara scolymus L-and Bifidobacterium longum-treated groups showed a significant increase in the number of sexual lineage cells, total weight, sperm count, motility, normal morphology, volume of the testis, and volume and length of seminiferous tubules (p < 0.05). Conclusion The findings demonstrated that Cynara scolymus L extract and Bifidobacterium longum supplement had great therapeutic potential, including antioxidant, anti-apoptotic, anti-diabetic, fertility index improvement, and sex hormone modulators.
Collapse
Affiliation(s)
- Zahra Ansari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| |
Collapse
|
7
|
Karimi F, Montazeri-Najafabady N, Mohammadi F, Azadi A, Koohpeyma F, Gholami A. A potential therapeutic strategy of an innovative probiotic formulation toward topical treatment of diabetic ulcer: an in vivo study. Nutr Diabetes 2024; 14:66. [PMID: 39164243 PMCID: PMC11335896 DOI: 10.1038/s41387-024-00320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The probiotic potential of Lacticacid bacteria has been studied in various medical complications, from gastrointestinal diseases to antibiotic resistance infections recently. Moreover, diabetic ulcer (DU) is known as one of the most significant global healthcare concerns, which comprehensively impacts the quality of life for these patients. Given that the conventional treatments of DUs have failed to prevent later complications completely, developing alternative therapies seems to be crucial. METHODS We designed the stable oleogel-based formulation of viable probiotic cells, including Lactobacillus rhamnosus (L. rhamnosus), Lactobacillus casei (L. casei), Lactobacillus fermentum (L. fermentum), and Lactobacillus acidophilus (L. acidophilus) individually to investigate their effect on wound healing process as an in vivo study. The wound repair process was closely monitored regarding morphology, biochemical, and histopathological changes over two weeks and compared it with the effects of topical tetracycline as an antibiotic approach. Furthermore, the antibiofilm activity of probiotic bacteria was assessed against some common pathogens. RESULTS The findings indicated that all tested lactobacillus groups (excluded L. casei) included in the oleogel-based formulation revealed a high potential for repairing damaged skin due to the considerably more levels of hydroxyproline content of tissue samples along with the higher numerical density of mature fibroblasts cell and volume density of hair follicles, collagen fibrils, and neovascularization in comparison with antibiotic and control groups. L. acidophilus and L. rhamnosus showed the best potential of wound healing among all lactobacillus species, groups treated by tetracycline and control groups. Besides, L. rhamnosus showed a significant biofilm inhibition activity against tested pathogens. CONCLUSIONS This experiment demonstrated that the designed formulations containing probiotics, particularly L. acidophilus and L. rhamnosus, play a central role in manipulating diabetic wound healing. It could be suggested as an encouraging nominee for diabetic wound-healing alternative approaches, though further studies in detailed clinical trials are needed.
Collapse
Affiliation(s)
- Farkhonde Karimi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Nima Montazeri-Najafabady
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mohammadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
8
|
Ribeiro JL, Santos TA, Garcia MT, Carvalho BFDC, Esteves JECS, Moraes RM, Anbinder AL. Heat-killed Limosilactobacillus reuteri ATCC PTA 6475 prevents bone loss in ovariectomized mice: A preliminary study. PLoS One 2024; 19:e0304358. [PMID: 38820403 PMCID: PMC11142514 DOI: 10.1371/journal.pone.0304358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
Osteoporosis is an important health problem that occurs due to an imbalance between bone formation and resorption. Hormonal deficiency post-menopause is a significant risk factor. The probiotic Limosilactobacillus reuteri has been reported to prevent ovariectomy (Ovx)-induced bone loss in mice and reduce bone loss in postmenopausal women. Despite the numerous health benefits of probiotics, as they are live bacteria, the administration is not risk-free for certain groups (e.g., neonates and immunosuppressed patients). We evaluated the effects of L. reuteri (ATCC PTA 6475) and its heat-killed (postbiotic) form on Ovx-induced bone loss. Adult female mice (BALB/c) were randomly divided into four groups: group C-control (sham); group OVX-C-Ovx; group OVX-POS-Ovx + heat-killed probiotic; group OVX-PRO-Ovx + probiotic. L. reuteri or the postbiotic was administered to the groups (1.3x109 CFU/day) by gavage. Bacterial morphology after heat treatment was accessed by scanning electron microscopy (SEM). The treatment started one week after Ovx and lasted 28 days (4 weeks). The animals were euthanized at the end of the treatment period. Bone microarchitecture and ileum Occludin and pro-inflammatory cytokines gene expression were evaluated by computed microtomography and qPCR techniques, respectively. The Ovx groups had lower percentage of bone volume (BV/TV) and number of bone trabeculae as well as greater total porosity compared to the control group. Treatment with live and heat-killed L. reuteri resulted in higher BV/TV and trabecular thickness than the Ovx group. The heat treatment caused some cell surface disruptions, but its structure resembled that of the live probiotic in SEM analysis. There were no statistical differences in Occludin, Il-6 and Tnf-α gene expression. Both viable and heat-killed L. reuteri prevented bone loss on ovariectomized mice, independently of gut Occludin and intestinal Il-6 and Tnf-α gene expression.
Collapse
Affiliation(s)
- Jaqueline Lemes Ribeiro
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Thaís Aguiar Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Maíra Terra Garcia
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Bruna Fernandes do Carmo Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | | | - Renata Mendonça Moraes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
9
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
10
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Pugazhendhi AS, Seal A, Hughes M, Kumar U, Kolanthai E, Wei F, Schwartzman JD, Coathup MJ. Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro. Adv Healthc Mater 2024; 13:e2302835. [PMID: 38117082 DOI: 10.1002/adhm.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
Collapse
Affiliation(s)
| | - Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
12
|
Zhang L, Shi WY, Zhang LL, Sha Y, Xu JY, Shen LC, Li YH, Yuan LX, Qin LQ. Effects of selenium-cadmium co-enriched Cardamine hupingshanensis on bone damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116101. [PMID: 38359653 DOI: 10.1016/j.ecoenv.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu Sha
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Le-Cheng Shen
- Jiangxi Center of Quality Supervision and Inspection for Selenium-enriched Products/Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
13
|
Vanitchanont M, Vallibhakara SAO, Sophonsritsuk A, Vallibhakara O. Effects of Multispecies Probiotic Supplementation on Serum Bone Turnover Markers in Postmenopausal Women with Osteopenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:461. [PMID: 38337745 PMCID: PMC10857023 DOI: 10.3390/nu16030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Probiotics have been found to have beneficial effects on bone metabolism. In this randomized, double-blind, placebo-controlled trial, the effects of multispecies probiotic supplementation on bone turnover markers were evaluated after 12 weeks. Forty postmenopausal women with osteopenia were included and randomly divided into two groups. The intervention group received multispecies probiotics, while the control group received identical placebo sachets daily. The baseline characteristics of both groups were similar. Still, the median serum bone resorption marker C-terminal telopeptide of type I collagen (CTX) was slightly higher in the multispecies probiotic group than in the placebo group (0.35 (0.12, 0.53) vs. 0.16 (0.06, 0.75); p-value = 0.004). After 12 weeks, the mean difference in serum CTX at baseline versus 12 weeks was significantly different between the multispecies probiotic and placebo groups (-0.06 (-0.29, 0.05) vs. 0.04 (-0.45, 0.67); p-value < 0.001). The multispecies probiotic group showed a significant decrease in serum CTX at 12 weeks compared with baseline (p-value 0.026). However, the placebo group showed no significant change in serum CTX (p-value 0.18). In conclusion, multispecies probiotics may have a preventive effect on bone through their antiresorptive effect in osteopenic postmenopausal women.
Collapse
Affiliation(s)
- Marut Vanitchanont
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (M.V.); (A.S.)
| | - Sakda Arj-Ong Vallibhakara
- Child Safety Promotion and Injury Prevention Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Areepan Sophonsritsuk
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (M.V.); (A.S.)
| | - Orawin Vallibhakara
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (M.V.); (A.S.)
| |
Collapse
|
14
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Li S, Cui Y, Li M, Zhang W, Sun X, Xin Z, Li J. Acteoside Derived from Cistanche Improves Glucocorticoid-Induced Osteoporosis by Activating PI3K/AKT/mTOR Pathway. J INVEST SURG 2023; 36:2154578. [DOI: 10.1080/08941939.2022.2154578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shumei Li
- The General Ward, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yajie Cui
- Department of Clinical Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Min Li
- Endocrine Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenting Zhang
- Department of Clinical Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xiaoxue Sun
- Drug Clinical Trial Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhaoxu Xin
- Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Li
- Drug Clinical Trial Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
16
|
Iloba I, McGarry SV, Yu L, Cruickshank D, Jensen GS. Differential Immune-Modulating Activities of Cell Walls and Secreted Metabolites from Probiotic Bacillus coagulans JBI-YZ6.3 under Normal versus Inflamed Culture Conditions. Microorganisms 2023; 11:2564. [PMID: 37894222 PMCID: PMC10609156 DOI: 10.3390/microorganisms11102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Spore-forming probiotic bacteria, including Bacillus coagulans, are resilient and produce a variety of beneficial metabolites. We evaluated the immune-modulating effects of the novel probiotic strain Bacillus coagulans JBI-YZ6.3, where the germinated spores, metabolite fraction, and cell wall fraction were tested in parallel using human peripheral blood mononuclear cell cultures under both normal and lipopolysaccharide-induced inflamed culture conditions. The expression of CD25 and CD69 activation markers was evaluated via flow cytometry. Supernatants were tested for cytokines, interferons, chemokines, and growth factors using Luminex arrays. The germinated spores were highly immunogenic; both the cell wall and metabolite fractions contributed significantly. Under normal culture conditions, increased levels of immune activation were observed as increased expressions of CD25 and CD69 relative to natural killer cells, suggesting an increased ability to attack virus-infected target cells. On monocytes, a complex effect was observed, where the expression of CD25 increased under normal conditions but decreased under inflamed conditions. This, in combination with increased interleukin-10 (IL-10) and decreased monocyte chemoattractant protein-1 (MCP-1) production under inflamed conditions, points to anti-inflammatory effects. The production of the stem cell-related growth factor granulocyte colony-stimulating Factor (G-CSF) was enhanced. Further research is warranted to characterize the composition of the postbiotic metabolite fraction and document the characteristics of immunomodulating agents secreted by this probiotic strain.
Collapse
Affiliation(s)
- Ifeanyi Iloba
- NIS Labs, 1437 Esplanade, Klamath Falls, OR 97601, USA;
| | - Sage V. McGarry
- NIS Labs, 807 St. George St., Port Dover, ON N0A 1N0, Canada; (S.V.M.); (L.Y.); (D.C.)
| | - Liu Yu
- NIS Labs, 807 St. George St., Port Dover, ON N0A 1N0, Canada; (S.V.M.); (L.Y.); (D.C.)
| | - Dina Cruickshank
- NIS Labs, 807 St. George St., Port Dover, ON N0A 1N0, Canada; (S.V.M.); (L.Y.); (D.C.)
| | | |
Collapse
|
17
|
Rahmani D, Faal B, Zali H, Tackallou SH, Niknam Z. The beneficial effects of simultaneous supplementation of Lactobacillus reuteri and calcium fluoride nanoparticles on ovariectomy-induced osteoporosis. BMC Complement Med Ther 2023; 23:340. [PMID: 37752485 PMCID: PMC10521537 DOI: 10.1186/s12906-023-04167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The development of new strategies to inhibit and/or treat osteoporosis as a chronic systemic disease is one of the most crucial topics. The present study aimed to investigate the simultaneous effects of calcium fluoride nanoparticles (CaF2 NPs) and lactobacillus reuteri ATCC PTA 6475 (L. reuteri) against osteoporosis in an ovariectomized rat model (OVX). METHODS In this study, 18 matured Wistar female rats were randomly assigned into 6 groups, including control, OVX, sham, OVX + L. reuteri, OVX + CaF2 NPs, and OVX + L. reuteri + CaF2 NPs. We used OVX rats to simulate post-menopausal osteoporosis, and the treatments were begun two weeks before OVX and continued for four weeks. All groups' blood samples were collected, and serum biomarkers (estrogen, calcium, vitamin D3, and alkaline phosphatase (ALP)) were measured. The tibia and Femur lengths of all groups were measured. Histopathological slides of tibia, kidney, and liver tissues were analyzed using the Hematoxylin and Eosin staining method. RESULTS Our results revealed that dietary supplementation of L. reuteri and CaF2 NPs in low doses for 6 weeks did not show adverse effects in kidney and liver tissues. The tibial and femoral lengths of OVX rats as well as the population of osteoblasts and osteocytes and newly generated osteoid in the tibia remarkably increased in the combination therapy group. Moreover, there was a significant increase in serum estrogen levels and a significant decrease in serum calcium and alkaline phosphatase levels in combination treatment groups compared to the OVX groups not receiving the diet. CONCLUSIONS Our results suggest the favorable effects of the simultaneous supplementation of L. reuteri and CaF2 NP to reduce post-menopausal bone loss.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahareh Faal
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
18
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. From Cells to Environment: Exploring the Interplay between Factors Shaping Bone Health and Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1546. [PMID: 37763665 PMCID: PMC10532995 DOI: 10.3390/medicina59091546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The skeletal system is an extraordinary structure that serves multiple purposes within the body, including providing support, facilitating movement, and safeguarding vital organs. Moreover, it acts as a reservoir for essential minerals crucial for overall bodily function. The intricate interplay of bone cells plays a critical role in maintaining bone homeostasis, ensuring a delicate balance. However, various factors, both intrinsic and extrinsic, can disrupt this vital physiological process. These factors encompass genetics, aging, dietary and lifestyle choices, the gut microbiome, environmental toxins, and more. They can interfere with bone health through several mechanisms, such as hormonal imbalances, disruptions in bone turnover, direct toxicity to osteoblasts, increased osteoclast activity, immune system aging, impaired inflammatory responses, and disturbances in the gut-bone axis. As a consequence, these disturbances can give rise to a range of bone disorders. The regulation of bone's physiological functions involves an intricate network of continuous processes known as bone remodeling, which is influenced by various intrinsic and extrinsic factors within the organism. However, our understanding of the precise cellular and molecular mechanisms governing the complex interactions between environmental factors and the host elements that affect bone health is still in its nascent stages. In light of this, this comprehensive review aims to explore emerging evidence surrounding bone homeostasis, potential risk factors influencing it, and prospective therapeutic interventions for future management of bone-related disorders.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA;
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| |
Collapse
|
19
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Gholami A, Montazeri-Najafabady N, Ashoori Y, Kazemi K, Heidari R, Omidifar N, Karimzadeh I, Ommati MM, Abootalebi SN, Golkar N. The ameliorating effect of limosilactobacillus fermentum and its supernatant postbiotic on cisplatin-induced chronic kidney disease in an animal model. BMC Complement Med Ther 2023; 23:243. [PMID: 37461012 PMCID: PMC10351115 DOI: 10.1186/s12906-023-04068-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a worldwide public health problem affecting millions of people. Probiotics and postbiotics are associated with valuable compounds with antibacterial, anti-inflammatory, and immunomodulatory effects, preserving renal function in CKD patients. The current study is aimed to evaluate the efficacy of Limosilactobacillus fermentum (L. fermentum) and its postbiotic in an animal model of cisplatin-induced CKD. METHODS The animals were divided into four experimental groups (normal mice, CKD mice with no treatment, CKD mice with probiotic treatment, and CKD mice with postbiotic treatment). CKD mice were induced by a single dose of cisplatin 10 mg/kg, intraperitoneally. For 28 days, the cultured probiotic bacteria and its supernatant (postbiotic) were delivered freshly to the related groups through their daily water. Then, blood urea nitrogen (BUN) and creatinine (Cr) of plasma samples as well as glutathione (GSH), lipid peroxidation, reactive oxygen species, and total antioxidant capacity of kidneys were assessed in the experimental mice groups. In addition, histopathological studies were performed on the kidneys. RESULTS Application of L. fermentum probiotic, and especially postbiotics, significantly decreased BUN and Cr (P < 0.0001) as well as ROS formation and lipid peroxidation levels (P < 0.0001) along with increased total antioxidant capacity and GSH levels (P < 0.001). The histopathologic images also confirmed their renal protection effect. Interestingly, the postbiotic displayed more effectiveness than the probiotic in some assays. The improvement effect on renal function in the current model is mainly mediated by oxidative stress markers in the renal tissue. CONCLUSIONS In conclusion, it was found that the administration of L. fermentum probiotic, and particularly its postbiotic in cisplatin-induced CKD mice, showed promising effects and could successfully improve renal function in the animal model of CKD. Therefore, probiotics and postbiotics are considered as probably promising alternative supplements to be used for CKD.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Montazeri-Najafabady
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Ashoori
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Kazemi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71348-14336, Shiraz, Iran.
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Seyedeh Narjes Abootalebi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Intensive Care Unit, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Golkar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71348-14336, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Zhai J, Sun S, Cheng J, Wang J, Jin G, Xu X, Liu X, Zhao J, Chen C, Zhong W, Wang B. Lactobacillus acidophilus supernatant alleviates osteoporosis by upregulating colonic SERT expression. Future Microbiol 2023; 18:581-593. [PMID: 37424511 DOI: 10.2217/fmb-2022-0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aims: To investigate the involvement of serotonin transporter (SERT) in colonic epithelial cells in the anti-osteoporosis role of Lactobacillus acidophilus (LA) supernatant (LAS). Methods: The abundance of fecal LA and bone mineral density (BMD) in patients with osteoporosis (OP) or severe osteoporosis were assessed. The protective role of LA in osteoporosis and the expression of SERT and relative signaling were evaluated. Results: Abundance of fecal LA was decreased in patients with severe OP and was positively correlated with BMD. Supplementing LAS to mice alleviated senile osteoporosis. In vitro, NOD2/RIP2/NF-κB signaling was inhibited by LAS due to increased SERT expression. Conclusion: LAS alleviates OP in mice by producing protective metabolites and upregulating SERT expression and represents a promising therapeutic agent.
Collapse
Affiliation(s)
- Jianhua Zhai
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China
| | - Siyuan Sun
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Cheng
- Department of Orthointernal, Tianjin Hospital, Tianjin, China
| | - Jing Wang
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuxiu Xu
- Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaotong Liu
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Chen
- Department of Geriatric Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology & Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
Can probiotics decrease the risk of postmenopausal osteoporosis in women? PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
23
|
da Silva TCA, dos Santos Gonçalves JA, Souza LACE, Lima AA, Guerra-Sá R. The correlation of the fecal microbiome with the biochemical profile during menopause: a Brazilian cohort study. BMC Womens Health 2022; 22:499. [PMID: 36474222 PMCID: PMC9724392 DOI: 10.1186/s12905-022-02063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hormonal, biochemical, and metabolic changes after menopause may alter the quality of life of women, leading to vasomotor, psychological, and genitourinary symptoms, and changes in their gut microbiota, which regulates estrogen levels through the estroboloma. Fecal samples were used to investigate the changes in the gut microbiota during aging and hormonal changes in women. A balanced gut microbiota has been associated with health or disease conditions and remains poorly understood after menopause. This study identified the fecal microbiota, and their association with biochemical and hormonal parameters of a cohort of women in the climacteric in the city of Ouro Preto-MG, Brazil. METHODS A total of 102 women aged 40 to 65 years old were recruited and distributed into three groups according to the STRAW criteria for reproductive stage: reproductive (n = 18), premenopausal (n = 26), and postmenopausal (n = 58). Blood samples were collected to measure their serum biochemical and hormone levels, and the participants answered a questionnaire. The gut microbiota was analyzed from fecal samples by qPCR using the genera Bifidobacterium, Bacteroides, Lactobacillus, and Clostridium. RESULTS The following parameters showed differences among the groups: total cholesterol, triglycerides, VLDL, ApoB, urea, calcium, uric acid, and alkaline phosphatase (p < 0.05). qPCR revealed the genus Clostridium to be the most abundant in all three groups. In the reproductive age group, the significant correlations were: Bacteroides with glucose (r = -0.573 p = 0.0129), and SDHEA (r = -0.583 p = 0.0111). For the premenopausal group, they were: Bifidobacteria with total cholesterol (r = 0.396 p = 0.0451), LDL (r = 0.393 p = 0.0468), ApoB (r = 0.411 p = 0.0368); Lactobacillus and calcium (r = 0.443 p = 0.0232), ALP (r = 0.543 p = 0.0041), LPa (r =-0.442 p = 0.02336); and Bacteroides and urea (r =-0.461 p = 0.0176). In the postmenopausal group, they were Bifidobacterium and ALP (r =-0.315 p = 0.0159), Lactobacillus and urea (r =-0.276 p = 0.0356), and Clostridium and beta estradiol (r =-0.355 p = 0.0062). CONCLUSION In conclusion, the hormonal and metabolic changes during menopause in the population studied were accompanied by a significant change in the fecal microbiota, especially of the genus Clostridium.
Collapse
Affiliation(s)
- Thayane Christine Alves da Silva
- grid.411213.40000 0004 0488 4317Graduate Program in Biological Sciences - Biological Sciences Research Center, Federal University of Ouro Preto, Morro Do Cruzeiro, Ouro Preto, Minas Gerais Brazil ,grid.411213.40000 0004 0488 4317Laboratory of Biochemistry and Molecular Biology (LBBM), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - Jennefer Aparecida dos Santos Gonçalves
- grid.411213.40000 0004 0488 4317Laboratory of Biochemistry and Molecular Biology (LBBM), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - Laura Alves Cota e Souza
- grid.411213.40000 0004 0488 4317Graduate Program in Pharmaceutical Sciences (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - Angélica Alves Lima
- grid.411213.40000 0004 0488 4317Graduate Program in Pharmaceutical Sciences (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - R. Guerra-Sá
- grid.411213.40000 0004 0488 4317Graduate Program in Biological Sciences - Biological Sciences Research Center, Federal University of Ouro Preto, Morro Do Cruzeiro, Ouro Preto, Minas Gerais Brazil ,grid.411213.40000 0004 0488 4317Laboratory of Biochemistry and Molecular Biology (LBBM), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| |
Collapse
|
24
|
Mineral-Enriched Postbiotics: A New Perspective for Microbial Therapy to Prevent and Treat Gut Dysbiosis. Biomedicines 2022; 10:biomedicines10102392. [PMID: 36289654 PMCID: PMC9599024 DOI: 10.3390/biomedicines10102392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Postbiotics are non-viable probiotic preparations that confer a health benefit on the host. In the last years, scientific literature has proved that postbiotics have health-promoting features and technological advantages compared to probiotics, augmenting their full potential application in the food and pharmaceutical industries. The current work comprehensively summarizes the benefits and potential applications of postbiotics and essential mineral-enriched biomass and proposes a new strategy for microbial therapy—mineral-enriched postbiotics. We hypothesize and critically review the relationship between micronutrients (calcium, magnesium, iron, zinc, selenium) and postbiotics with gut microbiota, which has been barely explored yet, and how the new approach could be involved in the gut microbiome modulation to prevent and treat gut dysbiosis. Additionally, the bioactive molecules and minerals from postbiotics could influence the host mineral status, directly or through gut microbiota, which increases the mineral bioavailability. The review increases our understanding of the health improvements of mineral-enriched postbiotics, including antioxidant functions, highlighting their perspective on microbial therapy to prevent and threaten gut-related diseases.
Collapse
|
25
|
Aggarwal S, Sabharwal V, Kaushik P, Joshi A, Aayushi A, Suri M. Postbiotics: From emerging concept to application. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.887642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microbiome innovation has resulted in an umbrella term, postbiotics, which refers to non-viable microbial cells, metabolic byproducts and their microbial components released after lysis. Postbiotics, modulate immune response, gene expression, inhibit pathogen binding, maintain intestinal barriers, help in controlling carcinogenesis and pathogen infections. Postbiotics have antimicrobial, antioxidant, and immunomodulatory properties with favorable physiological, immunological, neuro-hormonal, regulatory and metabolic reactions. Consumption of postbiotics relieves symptoms of various diseases and viral infections such as SARS-CoV-2. Postbiotics can act as alternatives for pre-probiotic specially in immunosuppressed patients, children and premature neonates. Postbiotics are used to preserve and enhance nutritional properties of food, elimination of biofilms and skin conditioning in cosmetics. Postbiotics have numerous advantages over live bacteria with no risk of bacterial translocation from the gut to blood, acquisition of antibiotic resistance genes. The process of extraction, standardization, transport, and storage of postbiotic is more natural. Bioengineering techniques such as fermentation technology, high pressure etc., may be used for the synthesis of different postbiotics. Safety assessment and quality assurance of postbiotic is important as they may induce stomach discomfort, sepsis and/or toxic shock. Postbiotics are still in their infancy compared to pre- and pro- biotics but future research in this field may contribute to improved physiological functions and host health. The current review comprehensively summarizes new frontiers of research in postbiotics.
Collapse
|
26
|
Gholami A, Dabbaghmanesh MH, Ghasemi Y, Koohpeyma F, Talezadeh P, Montazeri-Najafabady N. The ameliorative role of specific probiotic combinations on bone loss in the ovariectomized rat model. BMC Complement Med Ther 2022; 22:241. [PMID: 36115982 PMCID: PMC9482298 DOI: 10.1186/s12906-022-03713-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoporosis, a skeletal disease described by impaired bone strength, cause an increased risk of fractures. We aimed in this study to clarify which particular wise combination of probiotics has the most beneficial effect in the rat model of osteoporosis.
Methods
Sixty-three mature female Sprague Dawley rats (12–14 weeks old, weight 200 ± 20 g) were ovariectomized and then divided into nine random groups, each group consisting of 7 rats. Lactic acid bacteria were isolated from traditional fermented yogurt on the northern coast of the Persian Gulf. Seven combinations of probiotics, each containing three probiotic strains, were designed and administered (1 × 10 9 CFU / ml/strain daily along with their water) to treat ovariectomized rats. The period from ovariectomy to eutanásia was 3 months. For evaluating femur, spine, and tibia, bone mineral density (BMD), and bone mineral content (BMC), Dual-energy X-ray absorptiometry (DEXA) scans were performed. Also, effect of probiotic combinations was assessed on biochemical markers including vitamin D, calcium, phosphorus, and alkaline phosphatase in serum.
Results
Combination NO 4, containing L. acidophilus, B. longum, and L. reuteri, is the most influential group on global, spine, and femur BMD. Combination NO 3, containing L. acidophilus, L. casei, and L. reuteri, also significantly affects the BMD of the tibia among the treatment group. We found that the combination NO 4 had the most significant ameliorative effect on global BMC. Also, combination NO 1 (comprising L. acidophilus, L. casei, and B. longum), NO 6 (containing L. casei, B. longum, and Bacillus coagulans), NO 7 (containing L. casei, L. reuteri, and B. longum), and NO 4 had the most considerable raising effect on spine BMC. In addition, the serum calcium and Vitamin D concentration in the groups NO 4, 6, and 7 were significantly higher than in OVX groups, whereas the alkaline phosphatase concentration was considerably reduced in these groups.
Conclusion
Among nine effective probiotics, a combination containing L. acidophilus, B. longum, and L. reuteri is the most influential group in ovariectomized osteoporotic rat.
Collapse
|
27
|
Singh V, Park YJ, Lee G, Unno T, Shin JH. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022; 63:9961-9976. [PMID: 35635755 DOI: 10.1080/10408398.2022.2076651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Tatsuya Unno
- Department of Biotechnology, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
28
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
29
|
A Review on Health Benefits of Malva sylvestris L. Nutritional Compounds for Metabolites, Antioxidants, and Anti-Inflammatory, Anticancer, and Antimicrobial Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548404. [PMID: 34434245 PMCID: PMC8382527 DOI: 10.1155/2021/5548404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
The utilization of medicinal plants and their derivatives in treating illnesses is more appropriately recognized as herbal remedy than traditional medicine. For centuries, medicinal herbs have been used for the treatment of diseases in many countries. Malva sylvestris L. is a kind of mallow derived from Malvaceae species and is recognized as common mallow. This amazing plant has antimicrobial, hepatoprotective, anti-inflammatory, and antioxidant properties and is considered as one of the most promising herbal medicinal species. This plant's traditional use in treating many diseases and preparing pharmaceutical compounds can show us how to know in depth the plant origin of drugs used to produce antibiotics and other therapeutic agents.
Collapse
|