1
|
Varsani A, Custer JM, Cobb IN, Harding C, Collins CL, Suazo C, Schreck J, Fontenele RS, Stainton D, Dayaram A, Goldstein S, Kazlauskas D, Kraberger S, Krupovic M. Bacilladnaviridae: refined taxonomy and new insights into the biology and evolution of diatom-infecting DNA viruses. J Gen Virol 2025; 106:002084. [PMID: 40072902 PMCID: PMC11903649 DOI: 10.1099/jgv.0.002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Bacilladnaviruses are single-stranded DNA viruses that infect diatoms that, so far, have been primarily identified in marine organisms and environments. Using a viral metagenomics approach, we discovered 13 novel bacilladnaviruses originating from samples of mud-flat snail (Amphibola crenata; n=3 genomes) and benthic sediments (n=10 genomes) collected from the Avon-Heathcote Estuary in New Zealand. Comparative genomics and phylogenetic analysis of the new bacilladnavirus sequences in the context of the previously classified members of the family helped refine and further expand the Bacilladnaviridae taxonomy. Here, based on the replication-associated protein phylogeny and pairwise identities, we established 4 new genera - Aberdnavirus, Keisodnavirus, Puahadnavirus and Seawadnavirus - and 13 new species within the family. Comparison of the bacilladnavirus capsid protein sequences suggests that the positively charged N-terminal region (R-arm) is required for encapsidation of the larger genomes, whereas the smaller bacilladnavirus genomes can be packaged in the absence of the R-arm subdomain. Furthermore, analysis of the bacilladnavirus genomes revealed that members of three genera encode a highly derived variant of a phospholipase A1, which is predicted to be involved in the lysis of the infected diatoms and/or facilitates the entry of the virions into the host cells. Collectively, our results allow refining of the taxonomy of bacilladnaviruses and provide new insights into the biology and evolution of this understudied group of diatom viruses.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925, Cape Town, South Africa
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ilaria N. Cobb
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Courtney L. Collins
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua Schreck
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anisha Dayaram
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sharyn Goldstein
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| |
Collapse
|
2
|
Washington JM, Basta H, De Jesus AB, Bendele MG, Cresawn SG, Ginser EK. Expanding the Diversity of Actinobacterial Tectiviridae: A Novel Genus from Microbacterium. Viruses 2025; 17:113. [PMID: 39861902 PMCID: PMC11768872 DOI: 10.3390/v17010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Six novel Microbacterium phages belonging to the Tectiviridae family were isolated using Microbacterium testaceum as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats. Transmission electron microscopy (TEM) imaging analysis revealed that the six novel phages have six-sided icosahedral double-layered capsids with an internal lipid membrane that occasionally forms protruding nanotubules. Annotation analysis determined that the novel Microbacterium phages all have 32-34 protein-coding genes and no tRNAs. Like other Tectiviridae, the phage genomes are arranged into two segments and include three highly conserved family genes that encode a DNA polymerase, double jelly-roll major capsid protein, and packaging ATPase. Although the novel bacteriophages have 91.6 to 97.5% nucleotide sequence similarity to each other, they are at most 58% similar to previously characterized Tectiviridae genera. Consequently, these novel Microbacterium phages expand the diversity of the Tectiviridae family, and we propose they form the sixth genus, Zetatectivirus.
Collapse
Affiliation(s)
- Jacqueline M. Washington
- Department of Biology and Chemistry, Alliance University, New York, NY 10004, USA;
- Department of Biology, Empire State University, Saratoga Springs, NY 12866, USA
| | - Holly Basta
- Department of Biology, Rocky Mountain College, Billings, MT 59102, USA;
| | - Angela Bryanne De Jesus
- Department of Biology and Chemistry, Alliance University, New York, NY 10004, USA;
- Weil Cornell Medicine, New York, NY 10021, USA
| | - Madison G. Bendele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA; (M.G.B.); (S.G.C.)
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA; (M.G.B.); (S.G.C.)
| | - Emily K. Ginser
- Biological Sciences Department, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
3
|
Arata Y, Jurica P, Parrish N, Sako Y. Bioinformatic Annotation of Transposon DNA Processing Genes on the Long-Read Genome Assembly of Caenorhabditis elegans. Bioinform Biol Insights 2024; 18:11779322241304668. [PMID: 39713040 PMCID: PMC11662393 DOI: 10.1177/11779322241304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Transposable elements (TEs) or transposons are thought to play roles in animal physiological processes, such as germline, early embryonic, and brain development, as well as aging. However, their roles have not been systematically investigated through experimental studies. In this study, we created a catalog of genes directly involved in replication, excision, or integration of transposon-coding DNA, which we refer to as transposon DNA processing genes (TDPGs). Specifically, to bridge the gap to experimental studies, we sought potentially functional TDPGs which maintain intact open reading frames and the amino acids at their catalytic cores on the latest long-read genome assembly of Caenorhabditis elegans, VC2010. Among 52 519 TE loci, we identified 145 potentially functional TDPGs encoded in long terminal repeat elements, long interspersed nuclear elements, terminal inverted repeat elements, Helitrons, and Mavericks/Polintons. Our TDPG catalog, which contains a feasible number of genes, allows for the experimental manipulation of TE mobility in vivo, regardless of whether the TEs are autonomous or non-autonomous, thereby potentially promoting the study of the physiological functions of TE mobility.
Collapse
Affiliation(s)
- Yukinobu Arata
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Peter Jurica
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Nicholas Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
4
|
Chase EE, Pitot T, Bouchard S, Triplet S, Przybyla C, Gobet A, Desnues C, Blanc G. Viral dynamics in a high-rate algal pond reveals a burst of Phycodnaviridae diversity correlated with episodic algal mortality. mBio 2024; 15:e0280324. [PMID: 39530688 PMCID: PMC11633385 DOI: 10.1128/mbio.02803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores virus-host dynamics in a unique environment: an industrial high-rate algal pond (HRAP). A wealth of novel DNA algal viruses are revealed, including members of Nucleocytoviricota "giant viruses" and the enigmatic Preplasmiviricota (e.g., virophages and polinton-like viruses). Several species of single-celled eukaryotic photosynthetic algae are identified (Chlorophyta) as putative hosts, with alternating dominant populations during the year of study. We specifically observe a surprising diversity of giant viruses from the family Phycodnaviridae (Nucleocytoviricota), including phylogenetically related but highly diversified genotypes appearing in the HRAP that we suggest are implicated in bloom collapse. We hypothesize that these related Phycodnaviridae lineages infect the same algal species of the genus Picochlorum that has been identified in the HRAP. This study establishes a baseline for comprehending the role viruses play in algal farming and emphasizes the necessity of controlling the viral load in future culture system development to optimize algal growth. IMPORTANCE The virosphere is ubiquitous, but we have yet to characterize many environments where viruses exist. In an industrial polyculture of microalgae, a wealth of viruses persist, their diversity and dynamics changing over time and consequently give evidence of their evolution and ecological strategies. Several notable infectious agents of the culture's algae appear, including giant viruses, polinton-like viruses, and a virophage. As our reliance and interest in algal compound-based cosmetics, pharmaceuticals, and bio-plastics increases, so must our understanding of these systems, including the unique viruses that appear there.
Collapse
Affiliation(s)
- E. E. Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection, Marseille, France
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - T. Pitot
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | - S. Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
| | - S. Triplet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - C. Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - A. Gobet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - C. Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection, Marseille, France
| | - G. Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
| |
Collapse
|
5
|
Piedade GJ, Schön ME, Lood C, Fofanov MV, Wesdorp EM, Biggs TEG, Wu L, Bolhuis H, Fischer MG, Yutin N, Dutilh BE, Brussaard CPD. Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape. Nat Commun 2024; 15:9192. [PMID: 39448562 PMCID: PMC11502894 DOI: 10.1038/s41467-024-53317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas. We uncover novel viral taxa at high taxonomic ranks, expanding our understanding of crassphage, polinton-like virus, and virophage diversity. Nucleocytoviricota viruses represent an abundant and diverse group of Antarctic viruses, highlighting their potential as important regulators of phytoplankton population dynamics. Our temporal analysis reveals complex seasonal patterns in marine viral communities (bacteriophages, eukaryotic viruses) which underscores the apparent interactions with their microbial hosts, whilst deepening our understanding of their roles in the world's most sensitive and rapidly changing ecosystem.
Collapse
Affiliation(s)
- Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Max E Schön
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Cédric Lood
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Mikhail V Fofanov
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Ella M Wesdorp
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Tristan E G Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Lingyi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Koonin EV, Fischer MG, Kuhn JH, Krupovic M. The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. Microbiol Mol Biol Rev 2024; 88:e0008623. [PMID: 39023254 PMCID: PMC11426020 DOI: 10.1128/mmbr.00086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom Bamfordvirae. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class Polintoviricetes) in the phylum Preplasmiviricota. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (Maveriviricetes), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class Tectiliviricetes) to the phylum Nucleocytoviricota that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within Polintoviricetes. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups Polintoviricetes, PLVs (new class 'Aquintoviricetes'), and virophages (renamed class 'Virophaviricetes') together with Adenoviridae (new class 'Pharingeaviricetes') in a preplasmiviricot subphylum 'Polisuviricotina' sister to a subphylum including Tectiliviricetes ('Prepoliviricotina').
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| |
Collapse
|
7
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: small relatives of giant viruses. mBio 2024; 15:e0103524. [PMID: 38832788 PMCID: PMC11253617 DOI: 10.1128/mbio.01035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCPs) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian "mriya," dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae." The previously characterized members of these families, yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism. IMPORTANCE The origin of giant viruses of eukaryotes that belong to the phylum Nucleocytoviricota is not thoroughly understood and remains a matter of major interest and debate. Here, we combine metagenome database searches with extensive protein sequence and structure analysis to describe a distinct group of viruses with comparatively small genomes of 35-45 kilobases that appear to comprise a distinct class within the phylum Nucleocytoviricota that we provisionally named "Mriyaviricetes." Mriyaviruses appear to be the closest identified relatives of the ancestors of the Nucleocytoviricota. Analysis of proteins encoded in mriyavirus genomes suggests that they replicate their genome via the rolling circle mechanism that is unusual among viruses with double-stranded DNA genomes and so far not described for members of Nucleocytoviricota.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Barth ZK, Hicklin I, Thézé J, Takatsuka J, Nakai M, Herniou EA, Brown AM, Aylward FO. Genomic analysis of hyperparasitic viruses associated with entomopoxviruses. Virus Evol 2024; 10:veae051. [PMID: 39100687 PMCID: PMC11296320 DOI: 10.1093/ve/veae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Polinton-like viruses (PLVs) are a diverse group of small integrative dsDNA viruses that infect diverse eukaryotic hosts. Many PLVs are hypothesized to parasitize viruses in the phylum Nucleocytoviricota for their own propagation and spread. Here, we analyze the genomes of novel PLVs associated with the occlusion bodies of entomopoxvirus (EPV) infections of two separate lepidopteran hosts. The presence of these elements within EPV occlusion bodies suggests that they are the first known hyperparasites of poxviruses. We find that these PLVs belong to two distinct lineages that are highly diverged from known PLVs. These PLVs possess mosaic genomes, and some essential genes share homology with mobile genes within EPVs. Based on this homology and observed PLV mosaicism, we propose a mechanism to explain the turnover of PLV replication and integration genes.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Ian Hicklin
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Julien Thézé
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | - Jun Takatsuka
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Madoka Nakai
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA 24061, USA
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Krupovic M, Kuhn JH, Fischer MG, Koonin EV. Natural history of eukaryotic DNA viruses with double jelly-roll major capsid proteins. Proc Natl Acad Sci U S A 2024; 121:e2405771121. [PMID: 38805295 PMCID: PMC11161782 DOI: 10.1073/pnas.2405771121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris75015, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Fort Detrick, Frederick, MD21702
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| |
Collapse
|
10
|
Stephens D, Faghihi Z, Moniruzzaman M. Widespread occurrence and diverse origins of polintoviruses influence lineage-specific genome dynamics in stony corals. Virus Evol 2024; 10:veae039. [PMID: 38808038 PMCID: PMC11131425 DOI: 10.1093/ve/veae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024] Open
Abstract
Stony corals (Order: Scleractinia) are central to vital marine habitats known as coral reefs. Numerous stressors in the Anthropocene are contributing to the ongoing decline in coral reef health and coverage. While viruses are established modulators of marine microbial dynamics, their interactions within the coral holobiont and impact on coral health and physiology remain unclear. To address this key knowledge gap, we investigated diverse stony coral genomes for 'endogenous' viruses. Our study uncovered a remarkable number of integrated viral elements recognized as 'Polintoviruses' (Class Polintoviricetes) in thirty Scleractinia genomes; with several species harboring hundreds to thousands of polintoviruses. We reveal massive paralogous expansion of polintoviruses in stony coral genomes, alongside the presence of integrated elements closely related to Polinton-like viruses (PLVs), a group of viruses that exist as free virions. These results suggest multiple integrations of polintoviruses and PLV-relatives, along with paralogous expansions, shaped stony coral genomes. Re-analysis of existing gene expression data reveals all polintovirus structural and non-structural hallmark genes are expressed, providing support for free virion production from polintoviruses. Our results, revealing a significant diversity of polintovirus across the Scleractinia order, open a new research avenue into polintovirus and their possible roles in disease, genomic plasticity, and environmental adaptation in this key group of organisms.
Collapse
Affiliation(s)
- Danae Stephens
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1031, USA
| | - Zahra Faghihi
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1031, USA
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1031, USA
| |
Collapse
|
11
|
Krupovic M, Kuhn JH, Fischer MG, Koonin EV. Natural history of eukaryotic DNA viruses with double jelly-roll major capsid proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585575. [PMID: 38712159 PMCID: PMC11071308 DOI: 10.1101/2024.03.18.585575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We employed protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a supefamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains, and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Koslová A, Hackl T, Bade F, Sanchez Kasikovic A, Barenhoff K, Schimm F, Mersdorf U, Fischer MG. Endogenous virophages are active and mitigate giant virus infection in the marine protist Cafeteria burkhardae. Proc Natl Acad Sci U S A 2024; 121:e2314606121. [PMID: 38446847 PMCID: PMC10945749 DOI: 10.1073/pnas.2314606121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/14/2024] [Indexed: 03/08/2024] Open
Abstract
Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists.
Collapse
Affiliation(s)
- Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Thomas Hackl
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
| | - Felix Bade
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | | | - Karina Barenhoff
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Fiona Schimm
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Ulrike Mersdorf
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| |
Collapse
|
13
|
Jeong DE, Sundrani S, Hall RN, Krupovic M, Koonin EV, Fire AZ. DNA Polymerase Diversity Reveals Multiple Incursions of Polintons During Nematode Evolution. Mol Biol Evol 2023; 40:msad274. [PMID: 38069639 DOI: 10.1093/molbev/msad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Polintons are double-stranded DNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family but encode a distinct protein-primed DNA polymerase B (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda. Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting interphylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of an HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sameer Sundrani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V Koonin
- National National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Li C, Wang W, Zhang X, Xiao P, Li Z, Wang P, Shi N, Zhou H, Lu H, Gao X, Zhang H, Jin N. Metavirome Analysis and Identification of Midge-Borne Viruses from Yunnan Province, China, in 2021. Viruses 2023; 15:1817. [PMID: 37766224 PMCID: PMC10535587 DOI: 10.3390/v15091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/μL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.
Collapse
Affiliation(s)
- Chenghui Li
- College of Agriculture, Yanbian University, Yanji 133002, China; (C.L.); (X.G.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.W.); (P.X.)
| | - Xuancheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Pengpeng Xiao
- Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.W.); (P.X.)
| | - Zhuoxin Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Ning Shi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Puer 665000, China;
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Xu Gao
- College of Agriculture, Yanbian University, Yanji 133002, China; (C.L.); (X.G.)
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
| | - Ningyi Jin
- College of Agriculture, Yanbian University, Yanji 133002, China; (C.L.); (X.G.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Z.L.); (P.W.); (H.L.)
- Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.W.); (P.X.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| |
Collapse
|
15
|
Jeong DE, Sundrani S, Hall RN, Krupovic M, Koonin EV, Fire AZ. DNA polymerase diversity reveals multiple incursions of Polintons during nematode evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554363. [PMID: 37662302 PMCID: PMC10473752 DOI: 10.1101/2023.08.22.554363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Polintons are dsDNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family, but encode a distinct protein-primed B family DNA polymerase (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda . Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting inter-phylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of a HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.
Collapse
|
16
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
17
|
Wu Z, Chu T, Sheng Y, Yu Y, Wang Y. Diversity, Relationship, and Distribution of Virophages and Large Algal Viruses in Global Ocean Viromes. Viruses 2023; 15:1582. [PMID: 37515268 PMCID: PMC10385804 DOI: 10.3390/v15071582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Virophages are a group of small double-stranded DNA viruses that replicate and proliferate with the help of the viral factory of large host viruses. They are widely distributed in aquatic environments but are more abundant in freshwater ecosystems. Here, we mined the Global Ocean Viromes 2.0 (GOV 2.0) dataset for the diversity, distribution, and association of virophages and their potential host large viruses in marine environments. We identified 94 virophage sequences (>5 kbp in length), of which eight were complete genomes. The MCP phylogenetic tree showed that the GOV virophages were widely distributed on the global virophage tree but relatively clustered on three major branches. The gene-sharing network divided GOV virophages into 21 outliers, 2 overlaps, and 14 viral clusters, of which 4 consisted of only the GOV virophages. We also identified 45 large virus sequences, 8 of which were >100 kbp in length and possibly involved in cell-virus-virophage (C-V-v) trisome relationships. The potential eukaryotic hosts of these eight large viruses and the eight virophages with their complete genomes identified are likely to be algae, based on comparative genomic analysis. Both homologous gene and codon usage analyses support a possible interaction between a virophage (GOVv18) and a large algal virus (GOVLV1). These results indicate that diverse and novel virophages and large viruses are widespread in global marine environments, suggesting their important roles and the presence of complicated unknown C-V-v relationships in marine ecosystems.
Collapse
Affiliation(s)
- Zhenqi Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201304, China; (Z.W.); (T.C.); (Y.S.); (Y.Y.)
| | - Ting Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201304, China; (Z.W.); (T.C.); (Y.S.); (Y.Y.)
| | - Yijian Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201304, China; (Z.W.); (T.C.); (Y.S.); (Y.Y.)
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201304, China; (Z.W.); (T.C.); (Y.S.); (Y.Y.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201304, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201304, China; (Z.W.); (T.C.); (Y.S.); (Y.Y.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201304, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| |
Collapse
|
18
|
Barreat JGN, Katzourakis A. A billion years arms-race between viruses, virophages, and eukaryotes. eLife 2023; 12:RP86617. [PMID: 37358563 DOI: 10.7554/elife.86617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Bamfordviruses are arguably the most diverse group of viruses infecting eukaryotes. They include the Nucleocytoplasmic Large DNA viruses (NCLDVs), virophages, adenoviruses, Mavericks and Polinton-like viruses. Two main hypotheses for their origins have been proposed: the 'nuclear-escape' and 'virophage-first' hypotheses. The nuclear-escape hypothesis proposes an endogenous, Maverick-like ancestor which escaped from the nucleus and gave rise to adenoviruses and NCLDVs. In contrast, the virophage-first hypothesis proposes that NCLDVs coevolved with protovirophages; Mavericks then evolved from virophages that became endogenous, with adenoviruses escaping from the nucleus at a later stage. Here, we test the predictions made by both models and consider alternative evolutionary scenarios. We use a data set of the four core virion proteins sampled across the diversity of the lineage, together with Bayesian and maximum-likelihood hypothesis-testing methods, and estimate rooted phylogenies. We find strong evidence that adenoviruses and NCLDVs are not sister groups, and that Mavericks and Mavirus acquired the rve-integrase independently. We also found strong support for a monophyletic group of virophages (family Lavidaviridae) and a most likely root placed between virophages and the other lineages. Our observations support alternatives to the nuclear-escape scenario and a billion years evolutionary arms-race between virophages and NCLDVs.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol 2023; 8:1008-1017. [PMID: 37127702 PMCID: PMC11130978 DOI: 10.1038/s41564-023-01378-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| |
Collapse
|
20
|
Moniruzzaman M, Aylward FO. Endogenous DNA viruses take center stage in eukaryotic genome evolution. Proc Natl Acad Sci U S A 2023; 120:e2305212120. [PMID: 37186839 PMCID: PMC10214139 DOI: 10.1073/pnas.2305212120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Coral Gables, FL33149
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
21
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Bellas C, Hackl T, Plakolb MS, Koslová A, Fischer MG, Sommaruga R. Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses. Proc Natl Acad Sci U S A 2023; 120:e2300465120. [PMID: 37036967 PMCID: PMC10120064 DOI: 10.1073/pnas.2300465120] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Eukaryotic genomes contain a variety of endogenous viral elements (EVEs), which are mostly derived from RNA and ssDNA viruses that are no longer functional and are considered to be "genomic fossils." Genomic surveys of EVEs, however, are strongly biased toward animals and plants, whereas protists, which represent the majority of eukaryotic diversity, remain poorly represented. Here, we show that protist genomes harbor tens to thousands of diverse, ~14 to 40 kbp long dsDNA viruses. These EVEs, composed of virophages, Polinton-like viruses, and related entities, have remained hitherto hidden owing to poor sequence conservation between virus groups and their repetitive nature that precluded accurate short-read assembly. We show that long-read sequencing technology is ideal for resolving virus insertions. Many protist EVEs appear intact, and most encode integrases, which suggests that they have actively colonized hosts across the tree of eukaryotes. We also found evidence for gene expression in host transcriptomes and that closely related virophage and Polinton-like virus genomes are abundant in viral metagenomes, indicating that many EVEs are probably functional viruses.
Collapse
Affiliation(s)
| | - Thomas Hackl
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AGGroningen, The Netherlands
| | | | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120Heidelberg, Germany
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120Heidelberg, Germany
| | - Ruben Sommaruga
- Department of Ecology, Universität Innsbruck, 6020Innsbruck, Austria
| |
Collapse
|
23
|
Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, Jaillon O, Wincker P, Ogata H, Krupovic M, Delmont TO. Mirusviruses link herpesviruses to giant viruses. Nature 2023; 616:783-789. [PMID: 37076623 PMCID: PMC10132985 DOI: 10.1038/s41586-023-05962-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, Gif sur Yvette, France
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
| |
Collapse
|
24
|
Inoue Y, Takeda H. Teratorn and Its Related Elements – a Novel Group of Herpesviruses Widespread in Teleost Genomes. Zoolog Sci 2023; 40:83-90. [PMID: 37042688 DOI: 10.2108/zs220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/12/2022] [Indexed: 03/08/2023]
Abstract
Herpesviruses are a large family of DNA viruses infecting vertebrates and invertebrates, and are important pathogens in the field of aquaculture. In general, herpesviruses do not have the ability to integrate into the host genomes since they do not have a chromosomal integration step in their life cycles. Recently, we identified a novel group of herpesviruses, "Teratorn" and its related elements, in the genomes of various teleost fish species. At least some of the Teratorn-like herpesviruses are fused with a piggyBac-like DNA transposon, suggesting that they have acquired the transposon-like intragenomic lifestyle by hijacking the transposon system. In this review, we describe the sequence characteristics of Teratorn-like herpesviruses and phylogenetic relationships with other herpesviruses. Then we discuss the process of transposon-herpesvirus fusion, their life cycle, and the generality of transposon-virus fusion. Teratorn-like herpesviruses provide a piece of concrete evidence that even non-retroviral elements can become intragenomic parasites retaining replication capacity, by acquiring transposition machinery from other sources.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Kalatzis PG, Mauritzen JJ, Winther-Have CS, Michniewski S, Millard A, Tsertou MI, Katharios P, Middelboe M. Staying below the Radar: Unraveling a New Family of Ubiquitous "Cryptic" Non-Tailed Temperate Vibriophages and Implications for Their Bacterial Hosts. Int J Mol Sci 2023; 24:3937. [PMID: 36835353 PMCID: PMC9966536 DOI: 10.3390/ijms24043937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteriophages are the most abundant biological entities in the oceans and play key roles in bacterial activity, diversity and evolution. While extensive research has been conducted on the role of tailed viruses (Class: Caudoviricetes), very little is known about the distribution and functions of the non-tailed viruses (Class: Tectiliviricetes). The recent discovery of the lytic Autolykiviridae family demonstrated the potential importance of this structural lineage, emphasizing the need for further exploration of the role of this group of marine viruses. Here, we report the novel family of temperate phages under the class of Tectiliviricetes, which we propose to name "Asemoviridae" with phage NO16 as a main representative. These phages are widely distributed across geographical regions and isolation sources and found inside the genomes of at least 30 species of Vibrio, in addition to the original V. anguillarum isolation host. Genomic analysis identified dif-like sites, suggesting that NO16 prophages recombine with the bacterial genome based on the XerCD site-specific recombination mechanism. The interactions between the NO16 phage and its V. anguillarum host were linked to cell density and phage-host ratio. High cell density and low phage predation levels were shown to favor the temperate over the lytic lifestyle for NO16 viruses, and their spontaneous induction rate was highly variable between different V. anguillarum lysogenic strains. NO16 prophages coexist with the V. anguillarum host in a mutualistic interaction by rendering fitness properties to the host, such as increased virulence and biofilm formation through lysogenic conversion, likely contributing to their global distribution.
Collapse
Affiliation(s)
- Panos G. Kalatzis
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | - Jesper Juel Mauritzen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
| | | | - Slawomir Michniewski
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, 71500 Heraklion, Greece
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Elsinore, Denmark
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
26
|
Zhou Y, Zhou L, Yan S, Chen L, Krupovic M, Wang Y. Diverse viruses of marine archaea discovered using metagenomics. Environ Microbiol 2023; 25:367-382. [PMID: 36385454 DOI: 10.1111/1462-2920.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH). We report 35 new genomes of viruses which could be confidently assigned to hosts representing diverse lineages of marine archaea. We show that the archaeal YSH virome is highly diverse, with some viruses enriching the previously described virus groups, such as magroviruses of Marine Group II Archaea (Poseidoniales), and others representing novel groups of marine archaeal viruses. Metagenomic recruitment of Tara Oceans datasets on the YSH viral genomes demonstrated the presence of YSH Poseidoniales and Nitrososphaeria viruses in the global oceans, but also revealed the endemic YSH-specific viral lineages. Furthermore, our results highlight the relationship between the soil and marine thaumarchaeal viruses. We propose three new families within the class Caudoviricetes for the classification of the five complete viral genomes predicted to replicate in marine Poseidoniales and Nitrososphaeria, two ecologically important and widespread archaeal groups. This study illustrates the utility of viral metagenomics in exploring the archaeal virome and provides new insights into the diversity, distribution and evolution of marine archaeal viruses.
Collapse
Affiliation(s)
- Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Liang Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Roitman S, Rozenberg A, Lavy T, Brussaard CPD, Kleifeld O, Béjà O. Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga. Nat Microbiol 2023; 8:332-346. [PMID: 36702941 DOI: 10.1038/s41564-022-01305-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023]
Abstract
Virophages are small double stranded DNA (dsDNA) viruses that can only replicate in a host by co-infecting with another virus. Marine algae are commonly associated with virophage-like elements such as Polinton-like viruses (PLVs) that remain largely uncharacterized. Here we isolated a PLV that co-infects the alga Phaeocystis globosa with the Phaeocystis globosa virus-14T (PgV-14T), a close relative of the "Phaeocystis globosa virus-virophage" genomic sequence. We name this PLV 'Gezel-14T. Gezel is phylogenetically distinct from the Lavidaviridae family where all known virophages belong. Gezel-14T co-infection decreases the fitness of its viral host by reducing burst sizes of PgV-14T, yet insufficiently to spare the cellular host population. Genomic screens show Gezel-14T-like PLVs integrated into Phaeocystis genomes, suggesting that these widespread viruses are capable of integration into cellular host genomes. This system presents an opportunity to better understand the evolution of eukaryotic dsDNA viruses as well as the complex dynamics and implications of viral parasitism.
Collapse
Affiliation(s)
- Sheila Roitman
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Andrey Rozenberg
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tali Lavy
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Oded Kleifeld
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
28
|
Roux S, Fischer MG, Hackl T, Katz LA, Schulz F, Yutin N. Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules 2023; 13:204. [PMID: 36830574 PMCID: PMC9952930 DOI: 10.3390/biom13020204] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of "hyperparasitism" in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other "virophage-like" mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages 'sensu stricto', i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthias G. Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
29
|
Smaruj P, Kieliszek M. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history. EXCLI JOURNAL 2023; 22:70-83. [PMID: 36814855 PMCID: PMC9939771 DOI: 10.17179/excli2022-5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Many archaeal and bacterial organisms possess an adaptive immunity system known as CRISPR-Cas. Its role is to recognize and degrade foreign DNA showing high similarity to repeats within the CRISPR array. In recent years computational techniques have been used to identify cas1 genes that are not associated with CRISPR systems, named cas1-solo. Often, cas1-solo genes are present in a conserved neighborhood of PolB-like polymerase genes, which is a characteristic feature of self-synthesizing, eukaryotic transposons of the Polinton class. Nearly all cas1-polB genomic islands are flanked by terminal inverted repeats and direct repeats which correspond to target site duplications. Considering the patchy taxonomic distribution of the identified islands in archaeal and bacterial genomes, they were characterized as a new superfamily of mobile genetic elements and called casposons. Here, we review recent experiments on casposons' mobility and discuss their discovery, classification, and evolutionary relationship with the CRISPR-Cas systems.
Collapse
Affiliation(s)
- Paulina Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland,*To whom correspondence should be addressed: Paulina Smaruj, Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America, E-mail:
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
30
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Xu Y, Wang H, Sahu SK, Li L, Liang H, Günther G, Wong GKS, Melkonian B, Melkonian M, Liu H, Wang S. Chromosome-level genome of Pedinomonas minor (Chlorophyta) unveils adaptations to abiotic stress in a rapidly fluctuating environment. THE NEW PHYTOLOGIST 2022; 235:1409-1425. [PMID: 35560066 DOI: 10.1111/nph.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The Pedinophyceae (Viridiplantae) comprise a class of small uniflagellate algae with a pivotal position in the phylogeny of the Chlorophyta as the sister group of the 'core chlorophytes'. We present a chromosome-level genome assembly of the freshwater type species of the class, Pedinomonas minor. We sequenced the genome using Pacbio, Illumina and Hi-C technologies, performed comparative analyses of genome and gene family evolution, and analyzed the transcriptome under various abiotic stresses. Although the genome is relatively small (55 Mb), it shares many traits with core chlorophytes including number of introns and protein-coding genes, messenger RNA (mRNA) lengths, and abundance of transposable elements. Pedinomonas minor is only bounded by the plasma membrane, thriving in temporary habitats that frequently dry out. Gene family innovations and expansions and transcriptomic responses to abiotic stresses have shed light on adaptations of P. minor to its fluctuating environment. Horizontal gene transfers from bacteria and fungi have possibly contributed to the evolution of some of these traits. We identified a putative endogenization site of a nucleocytoplasmic large DNA virus and hypothesized that endogenous viral elements donated foreign genes to the host genome, their spread enhanced by transposable elements, located at gene boundaries in several of the expanded gene families.
Collapse
Affiliation(s)
- Yan Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongli Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Hongping Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Gerd Günther
- Private Laboratory, Knittkuhler Str. 61, Düsseldorf, 40629, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Barbara Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Michael Melkonian
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
32
|
Chase EE, Desnues C, Blanc G. Integrated Viral Elements Suggest the Dual Lifestyle of Tetraselmis Spp. Polinton-Like Viruses. Virus Evol 2022; 8:veac068. [PMID: 35949392 PMCID: PMC9356565 DOI: 10.1093/ve/veac068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we aimed at exploring horizontal gene transfer between viruses and Chlorodendraceae green algae (Chlorophyta) using available genomic and transcriptomic sequences for twenty algal strains. We identified a significant number of genes sharing a higher sequence similarity with viral homologues, thus signalling their possible involvement in horizontal gene transfers with viruses. Further characterization showed that many of these genes were clustered in DNA regions of several tens to hundreds of kilobases in size, originally belonging to viruses related to known Tetraselmis spp. viruses (TetV and TsV). In contrast, the remaining candidate HGT genes were randomly dispersed in the algal genomes, were more frequently transcribed, and belonged to large multigene families. The presence of homologues in Viridiplantae suggested that the latter were more likely of algal rather than viral origin. We found a remarkable diversity in polinton-like virus (PLV) elements inserted in Tetraselmis genomes, all of which were most similar to the Tetraselmis striata virus (TsV). The genes of PLV elements are transcriptionally inactive with the notable exception of the homologue of the TVSG_00024 gene of TsV whose function is unknown. We suggest that this gene may be involved in a sentinel process to trigger virus reactivation and excision in response to an environmental stimulus. Altogether, these results provide evidence that TsV-related viruses have a dual lifestyle, alternating between a free viral phase (i.e. virion) and a phase integrated into host genomes.
Collapse
Affiliation(s)
- Emily E Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, Campus de Luminy , 163 Avenue de Luminy, 13009 Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection , 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Christelle Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, Campus de Luminy , 163 Avenue de Luminy, 13009 Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection , 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Guillaume Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, Campus de Luminy , 163 Avenue de Luminy, 13009 Marseille, France
| |
Collapse
|
33
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
34
|
Hackl T, Duponchel S, Barenhoff K, Weinmann A, Fischer MG. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. eLife 2021; 10:72674. [PMID: 34698016 PMCID: PMC8547959 DOI: 10.7554/elife.72674] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Virophages can parasitize giant DNA viruses and may provide adaptive anti-giant virus defense in unicellular eukaryotes. Under laboratory conditions, the virophage mavirus integrates into the nuclear genome of the marine flagellate Cafeteria burkhardae and reactivates upon superinfection with the giant virus CroV. In natural systems, however, the prevalence and diversity of host-virophage associations has not been systematically explored. Here, we report dozens of integrated virophages in four globally sampled C. burkhardae strains that constitute up to 2% of their host genomes. These endogenous mavirus-like elements (EMALEs) separated into eight types based on GC-content, nucleotide similarity, and coding potential and carried diverse promoter motifs implicating interactions with different giant viruses. Between host strains, some EMALE insertion loci were conserved indicating ancient integration events, whereas the majority of insertion sites were unique to a given host strain suggesting that EMALEs are active and mobile. Furthermore, we uncovered a unique association between EMALEs and a group of tyrosine recombinase retrotransposons, revealing yet another layer of parasitism in this nested microbial system. Our findings show that virophages are widespread and dynamic in wild Cafeteria populations, supporting their potential role in antiviral defense in protists. Viruses exist in all ecosystems in vast numbers and infect many organisms. Some of them are harmful but others can protect the organisms they infect. For example, a group of viruses called virophages protect microscopic sea creatures called plankton from deadly infections by so-called giant viruses. In fact, virophages need plankton infected with giant viruses to survive because they use enzymes from the giant viruses to turn on their own genes. A virophage called mavirus integrates its genes into the DNA of a type of plankton called Cafeteria. It lays dormant in the DNA until a giant virus called CroV infects the plankton. This suggests that the mavirus may be a built-in defense against CroV infections and laboratory studies seem to confirm this. But whether wild Cafeteria also use these defenses is unknown. Hackl et al. show that virophages are common in the DNA of wild Cafeteria and that the two appear to have a mutually beneficial relationship. In the experiments, the researchers sequenced the genomes of four Cafeteria populations from the Atlantic and Pacific Oceans and looked for virophages in their DNA. Each of the four Cafeteria genomes contained dozens of virophages, which suggests that virophages are important to these plankton. This included several relatives of the mavirus and seven new virophages. Virophage genes were often interrupted by so called jumping genes, which may take advantage of the virophages the way the virophages use giant viruses to meet their own needs. The experiments show that virophages often co-exist with marine plankton from around the world and these relationships are likely beneficial. In fact, the experiments suggest that the virophages may have played an important role in the evolution of these plankton. Further studies may help scientists learn more about virus ecology and how viruses have shaped the evolution of other creatures.
Collapse
Affiliation(s)
- Thomas Hackl
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Sarah Duponchel
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Karina Barenhoff
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Alexa Weinmann
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| |
Collapse
|
35
|
Mönttinen HAM, Bicep C, Williams TA, Hirt RP. The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large. Microb Genom 2021; 7. [PMID: 34542398 PMCID: PMC8715426 DOI: 10.1099/mgen.0.000649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, Helsinki 00014, Finland
| | - Cedric Bicep
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France
| | - Tom A Williams
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave., Bristol, BS8 1TH, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
36
|
Abstract
Mavericks are virus-like mobile genetic elements found in the genomes of eukaryotes. Although Mavericks encode capsid morphogenesis homologs, their viral particles have not been observed. Here, we provide new evidence supporting the viral nature of Mavericks and the potential existence of virions. To this end, we conducted a phylogenomic analysis of Mavericks in hundreds of vertebrate genomes, discovering 134 elements with an intact coding capacity in 17 host species. We reveal an extensive genomic fossil record in 143 species and date three groups of elements to the Late Cretaceous. Bayesian phylogenetic analysis using genomic fossil orthologs suggests that Mavericks have infected osteichthyans for ∼419 My. They have undergone frequent cross-species transmissions in cyprinid fish and all core genes are subject to strong purifying selection. We conclude that vertebrate Mavericks form an ancient lineage of aquatic dsDNA viruses which are probably still functional in some vertebrate lineages.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Bellas CM, Sommaruga R. Polinton-like viruses are abundant in aquatic ecosystems. MICROBIOME 2021; 9:13. [PMID: 33436089 PMCID: PMC7805220 DOI: 10.1186/s40168-020-00956-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Polintons are large mobile genetic elements found in the genomes of eukaryotic organisms that are considered the ancient ancestors of most eukaryotic dsDNA viruses. Originally considered as transposons, they have been found to encode virus capsid genes, suggesting they may actually be integrated viruses; however, an extracellular form has yet to be detected. Recently, circa 25 Polinton-like viruses have been discovered in environmental metagenomes and algal genomes, which shared distantly related genes to both Polintons and virophages (Lavidaviridae). These entities could be the first members of a major class of ancient eukaryotic viruses; however, owing to the lack of available genomes for analysis, information on their global diversity, evolutionary relationships, eukaryotic hosts, and status as free virus particles is limited. RESULTS Here, we analysed the metaviromes of an alpine lake to show that Polinton-like virus genome sequences are abundant in the water column. We identify major capsid protein genes belonging to 82 new Polinton-like viruses and use these to interrogate publicly available metagenomic datasets, identifying 543 genomes and a further 16 integrated into eukaryotic genomes. Using an analysis of shared gene content and major capsid protein phylogeny, we define large groups of Polinton-like viruses and link them to diverse eukaryotic hosts, including a new group of viruses, which possess all the core genes of virophages and infect oomycetes and Chrysophyceae. CONCLUSIONS Our study increased the number of known Polinton-like viruses by 25-fold, identifying five major new groups of eukaryotic viruses, which until now have been hidden in metagenomic datasets. The large enrichment (> 100-fold) of Polinton-like virus sequences in the virus-sized fraction of this alpine lake and the fact that their viral major capsid proteins are found in eukaryotic host transcriptomes support the hypothesis that Polintons in unicellular eukaryotes are viruses. In summary, our data reveals a diverse assemblage of globally distributed viruses, associated with a wide range of unicellular eukaryotic hosts. We anticipate that the methods we have developed for Polinton-like virus detection and the database of over 20,000 genes we present will allow for continued discovery and analysis of these new viral groups. Video abstract.
Collapse
Affiliation(s)
- Christopher M. Bellas
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Ruben Sommaruga
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
38
|
Starrett GJ, Tisza MJ, Welch NL, Belford AK, Peretti A, Pastrana DV, Buck CB. Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol 2021; 7:veaa055. [PMID: 34646575 PMCID: PMC8502044 DOI: 10.1093/ve/veaa055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.
Collapse
Affiliation(s)
| | - Michael J Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Nicole L Welch
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Anna K Belford
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Alberto Peretti
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
39
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
40
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
41
|
Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat Microbiol 2020; 5:1262-1270. [PMID: 32690954 PMCID: PMC7508674 DOI: 10.1038/s41564-020-0755-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
RNA viruses in aquatic environments remain poorly studied. Here, we analysed the RNA virome from approximately 10 l water from Yangshan Deep-Water Harbour near the Yangtze River estuary in China and identified more than 4,500 distinct RNA viruses, doubling the previously known set of viruses. Phylogenomic analysis identified several major lineages, roughly, at the taxonomic ranks of class, order and family. The 719-member-strong Yangshan virus assemblage is the sister clade to the expansive class Alsuviricetes and consists of viruses with simple genomes that typically encode only RNA-dependent RNA polymerase (RdRP), capping enzyme and capsid protein. Several clades within the Yangshan assemblage independently evolved domain permutation in the RdRP. Another previously unknown clade shares ancestry with Potyviridae, the largest known plant virus family. The ‘Aquatic picorna-like viruses/Marnaviridae’ clade was greatly expanded, with more than 800 added viruses. Several RdRP-linked protein domains not previously detected in any RNA viruses were identified, such as the small ubiquitin-like modifier (SUMO) domain, phospholipase A2 and PrsW-family protease domain. Multiple viruses utilize alternative genetic codes implying protist (especially ciliate) hosts. The results reveal a vast RNA virome that includes many previously unknown groups. However, phylogenetic analysis of the RdRPs supports the previously established five-branch structure of the RNA virus evolutionary tree, with no additional phyla. Metagenomic analysis of a single RNA virome from the Yangshan Deep-Water Harbour in China enabled the recovery of more than 4,500 distinct RNA viruses, doubling the known set of RNA viruses to date, and provided insights into their biology.
Collapse
|
42
|
Paez-Espino D, Zhou J, Roux S, Nayfach S, Pavlopoulos GA, Schulz F, McMahon KD, Walsh D, Woyke T, Ivanova NN, Eloe-Fadrosh EA, Tringe SG, Kyrpides NC. Diversity, evolution, and classification of virophages uncovered through global metagenomics. MICROBIOME 2019; 7:157. [PMID: 31823797 PMCID: PMC6905037 DOI: 10.1186/s40168-019-0768-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Virophages are small viruses with double-stranded DNA genomes that replicate along with giant viruses and co-infect eukaryotic cells. Due to the paucity of virophage reference genomes, a collective understanding of the global virophage diversity, distribution, and evolution is lacking. RESULTS Here we screened a public collection of over 14,000 metagenomes using the virophage-specific major capsid protein (MCP) as "bait." We identified 44,221 assembled virophage sequences, of which 328 represent high-quality (complete or near-complete) genomes from diverse habitats including the human gut, plant rhizosphere, and terrestrial subsurface. Comparative genomic analysis confirmed the presence of four core genes in a conserved block. We used these genes to establish a revised virophage classification including 27 clades with consistent genome length, gene content, and habitat distribution. Moreover, for eight high-quality virophage genomes, we computationally predicted putative eukaryotic virus hosts. CONCLUSION Overall, our approach has increased the number of known virophage genomes by 10-fold and revealed patterns of genome evolution and global virophage distribution. We anticipate that the expanded diversity presented here will provide the backbone for further virophage studies.
Collapse
Affiliation(s)
- David Paez-Espino
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Jinglie Zhou
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Simon Roux
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Stephen Nayfach
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Georgios A. Pavlopoulos
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
- BSRC “Alexander Fleming”, 34 Fleming Street, Vari, 16672 Athens, Greece
| | - Frederik Schulz
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Katherine D. McMahon
- Departments of Civil and Environmental Engineering and Bacteriology, University of Wisconsin Madison, 1550 Linden Drive, Madison, WI 53726 USA
| | - David Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6 Canada
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Natalia N. Ivanova
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Emiley A. Eloe-Fadrosh
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Susannah G. Tringe
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, 94598 USA
| |
Collapse
|
43
|
Mougari S, Sahmi-Bounsiar D, Levasseur A, Colson P, La Scola B. Virophages of Giant Viruses: An Update at Eleven. Viruses 2019; 11:E733. [PMID: 31398856 PMCID: PMC6723459 DOI: 10.3390/v11080733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
The last decade has been marked by two eminent discoveries that have changed our perception of the virology field: The discovery of giant viruses and a distinct new class of viral agents that parasitize their viral factories, the virophages. Coculture and metagenomics have actively contributed to the expansion of the virophage family by isolating dozens of new members. This increase in the body of data on virophage not only revealed the diversity of the virophage group, but also the relevant ecological impact of these small viruses and their potential role in the dynamics of the microbial network. In addition, the isolation of virophages has led us to discover previously unknown features displayed by their host viruses and cells. In this review, we present an update of all the knowledge on the isolation, biology, genomics, and morphological features of the virophages, a decade after the discovery of their first member, the Sputnik virophage. We discuss their parasitic lifestyle as bona fide viruses of the giant virus factories, genetic parasites of their genomes, and then their role as a key component or target for some host defense mechanisms during the tripartite virophage-giant virus-host cell interaction. We also present the latest advances regarding their origin, classification, and definition that have been widely discussed.
Collapse
Affiliation(s)
- Said Mougari
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Dehia Sahmi-Bounsiar
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Bernard La Scola
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
44
|
Mustafin RN, Khusnutdinova EK. The role of transposable elements in the ecological morphogenesis under the influence of stress. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In natural selection, insertional mutagenesis is an important source of genome variability. Transposons are sensors of environmental stress effects, which contribute to adaptation and speciation. These effects are due to changes in the mechanisms of morphogenesis, since transposons contain regulatory sequences that have cis and trans effects on specific protein-coding genes. In variability of genomes, the horizontal transfer of transposons plays an important role, because it contributes to changing the composition of transposons and the acquisition of new properties. Transposons are capable of site-specific transpositions, which lead to the activation of stress response genes. Transposons are sources of non-coding RNA, transcription factors binding sites and protein-coding genes due to domestication, exonization, and duplication. These genes contain nucleotide sequences that interact with non-coding RNAs processed from transposons transcripts, and therefore they are under the control of epigenetic regulatory networks involving transposons. Therefore, inherited features of the location and composition of transposons, along with a change in the phenotype, play an important role in the characteristics of responding to a variety of environmental stressors. This is the basis for the selection and survival of organisms with a specific composition and arrangement of transposons that contribute to adaptation under certain environmental conditions. In evolution, the capability to transpose into specific genome sites, regulate gene expression, and interact with transcription factors, along with the ability to respond to stressors, is the basis for rapid variability and speciation by altering the regulation of ontogenesis. The review presents evidence of tissue-specific and stage-specific features of transposon activation and their role in the regulation of cell differentiation to confirm their role in ecological morphogenesis.
Collapse
Affiliation(s)
| | - E. K. Khusnutdinova
- Bashkir State Medical University;
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of RAS
| |
Collapse
|
45
|
Berjón-Otero M, Koslová A, Fischer MG. The dual lifestyle of genome-integrating virophages in protists. Ann N Y Acad Sci 2019; 1447:97-109. [PMID: 31162694 DOI: 10.1111/nyas.14118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/03/2023]
Abstract
DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
46
|
Stough JMA, Yutin N, Chaban YV, Moniruzzaman M, Gann ER, Pound HL, Steffen MM, Black JN, Koonin EV, Wilhelm SW, Short SM. Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages. Front Microbiol 2019; 10:703. [PMID: 31024489 PMCID: PMC6459981 DOI: 10.3389/fmicb.2019.00703] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Some giant viruses are ecological agents that are predicted to be involved in the top-down control of single-celled eukaryotic algae populations in aquatic ecosystems. Despite an increased interest in giant viruses since the discovery and characterization of Mimivirus and other viral giants, little is known about their physiology and ecology. In this study, we characterized the genome and functional potential of a giant virus that infects the freshwater haptophyte Chrysochromulina parva, originally isolated from Lake Ontario. This virus, CpV-BQ2, is a member of the nucleo-cytoplasmic large DNA virus (NCLDV) group and possesses a 437 kb genome encoding 503 ORFs with a GC content of 25%. Phylogenetic analyses of core NCLDV genes place CpV-BQ2 amongst the emerging group of algae-infecting Mimiviruses informally referred to as the “extended Mimiviridae,” making it the first virus of this group to be isolated from a freshwater ecosystem. During genome analyses, we also captured and described the genomes of three distinct virophages that co-occurred with CpV-BQ2 and likely exploit CpV for their own replication. These virophages belong to the polinton-like viruses (PLV) group and encompass 19–23 predicted genes, including all of the core PLV genes as well as several genes implicated in genome modifications. We used the CpV-BQ2 and virophage reference sequences to recruit reads from available environmental metatranscriptomic data to estimate their activity in fresh waters. We observed moderate recruitment of both virus and virophage transcripts in samples obtained during Microcystis aeruginosa blooms in Lake Erie and Lake Tai, China in 2013, with a spike in activity in one sample. Virophage transcript abundance for two of the three isolates strongly correlated with that of the CpV-BQ2. Together, the results highlight the importance of giant viruses in the environment and establish a foundation for future research on the physiology and ecology CpV-BQ2 as a model system for algal Mimivirus dynamics in freshwaters.
Collapse
Affiliation(s)
- Joshua M A Stough
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Yuri V Chaban
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Mohammed Moniruzzaman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Helena L Pound
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Jenna N Black
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
47
|
Yau S, Seth-Pasricha M. Viruses of Polar Aquatic Environments. Viruses 2019; 11:v11020189. [PMID: 30813316 PMCID: PMC6410135 DOI: 10.3390/v11020189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
The poles constitute 14% of the Earth’s biosphere: The aquatic Arctic surrounded by land in the north, and the frozen Antarctic continent surrounded by the Southern Ocean. In spite of an extremely cold climate in addition to varied topographies, the polar aquatic regions are teeming with microbial life. Even in sub-glacial regions, cellular life has adapted to these extreme environments where perhaps there are traces of early microbes on Earth. As grazing by macrofauna is limited in most of these polar regions, viruses are being recognized for their role as important agents of mortality, thereby influencing the biogeochemical cycling of nutrients that, in turn, impact community dynamics at seasonal and spatial scales. Here, we review the viral diversity in aquatic polar regions that has been discovered in the last decade, most of which has been revealed by advances in genomics-enabled technologies, and we reflect on the vast extent of the still-to-be explored polar microbial diversity and its “enigmatic virosphere”.
Collapse
Affiliation(s)
- Sheree Yau
- Integrative Marine Biology Laboratory (BIOM), CNRS, UMR7232, Sorbonne Université, 66650 Banyuls-sur-Mer, France.
| | - Mansha Seth-Pasricha
- Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
48
|
Yang Q, Gao C, Jiang Y, Wang M, Zhou X, Shao H, Gong Z, McMinn A. Metagenomic Characterization of the Viral Community of the South Scotia Ridge. Viruses 2019; 11:E95. [PMID: 30678352 PMCID: PMC6410227 DOI: 10.3390/v11020095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Viruses are the most abundant biological entities in aquatic ecosystems and harbor an enormous amount of genetic diversity. Whereas their influence on marine ecosystems is widely acknowledged, current information about their diversity remains limited. We conducted a viral metagenomic analysis of water samples collected during the austral summer of 2016 from the South Scotia Ridge (SSR), near the Antarctic Peninsula. The taxonomic composition and diversity of the viral communities were investigated, and a functional assessment of the sequences was performed. Phylotypic analysis showed that most viruses belonged to the order Caudovirales, especially the family Podoviridae (41.92⁻48.7%), which is similar to the situation in the Pacific Ocean. Functional analysis revealed a relatively high frequency of phage-associated and metabolism genes. Phylogenetic analyses of phage TerL and Capsid_NCLDV (nucleocytoplasmic large DNA viruses) marker genes indicated that many sequences associated with Caudovirales and NCLDV were novel and distinct from known phage genomes. High Phaeocystis globosa virus virophage (Pgvv) signatures were found and complete and partial Pgvv-like were obtained, which influence host⁻virus interactions. Our study expands existing knowledge of viral communities and their diversities from the Antarctic region and provides basic data for further exploring polar microbiomes.
Collapse
Affiliation(s)
- Qingwei Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Xinhao Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
49
|
Koonin EV, Yutin N. Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism. Adv Virus Res 2019; 103:167-202. [PMID: 30635076 DOI: 10.1016/bs.aivir.2018.09.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Nucleocytoplasmic Large DNA Viruses (NCLDV) of eukaryotes (proposed order "Megavirales") comprise an expansive group of eukaryotic viruses that consists of the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, Pithoviridae, and Mimiviridae, as well as Pandoraviruses, Molliviruses, and Faustoviruses that so far remain unaccounted by the official virus taxonomy. All these viruses have double-stranded DNA genomes that range in size from about 100 kilobases (kb) to more than 2.5 megabases. The viruses with genomes larger than 500kb are informally considered "giant," and the largest giant viruses surpass numerous bacteria and archaea in both particle and genome size. The discovery of giant viruses has been highly unexpected and has changed the perception of viral size and complexity, and even, arguably, the entire concept of a virus. Given that giant viruses encode multiple proteins that are universal among cellular life forms and are components of the translation system, the quintessential cellular molecular machinery, attempts have been made to incorporate these viruses in the evolutionary tree of cellular life. Moreover, evolutionary scenarios of the origin of giant viruses from a fourth, supposedly extinct domain of cellular life have been proposed. However, despite all the differences in the genome size and gene repertoire, the NCLDV can be confidently defined as monophyletic group, on the strength of the presence of about 40 genes that can be traced back to their last common ancestor. Using several most strongly conserved genes from this ancestral set, a well-resolved phylogenetic tree of the NCLDV was built and employed as the scaffold to reconstruct the history of gene gain and loss throughout the course of the evolution of this group of viruses. This reconstruction reveals extremely dynamic evolution that involved extensive gene gain and loss in many groups of viruses and indicates that giant viruses emerged independently in several clades of the NCLDV. Thus, these giants of the virus world evolved repeatedly from smaller and simpler viruses, rather than from a fourth domain of cellular life, and captured numerous genes, including those for translation system components, from eukaryotes, along with some bacterial genes. Even deeper evolutionary reconstructions reveal apparent links between the NCLDV and smaller viruses of eukaryotes, such as adenoviruses, and ultimately, derive all these viruses from tailless bacteriophages.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
50
|
San Martín C, van Raaij MJ. The so far farthest reaches of the double jelly roll capsid protein fold. Virol J 2018; 15:181. [PMID: 30470230 PMCID: PMC6260650 DOI: 10.1186/s12985-018-1097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND During the last two decades, structural biology analyses have shown that viruses infecting hosts far apart in evolution share similar architectural features, prompting a new virus classification based on structural lineages. Until recently, only a few prokaryotic viruses had been described for one of the lineages, whose main characteristic is a capsid protein with a perpendicular double jelly roll. MAIN BODY Metagenomics analyses are showing that the variety of prokaryotic viruses encoding double jelly roll capsid proteins is much larger than previously thought. The newly discovered viruses have novel genome organisations with interesting implications for virus structure, function and evolution. There are also indications of their having a significant ecological impact. CONCLUSION Viruses with double jelly roll capsid proteins that infect prokaryotic hosts form a large part of the virosphere that had so far gone unnoticed. Their discovery by metagenomics is only a first step towards many more exciting findings. Work needs to be invested in isolating these viruses and their hosts, characterizing the structure and function of the proteins their genomes encode, and eventually access the wealth of biological information they may hold.
Collapse
Affiliation(s)
- Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| | - Mark J van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|