1
|
Zahavi EE, Koppel I, Kawaguchi R, Oses-Prieto JA, Briner A, Monavarfeshani A, Dalla Costa I, van Niekerk E, Lee J, Matoo S, Hegarty S, Donahue RJ, Sahoo PK, Ben-Dor S, Feldmesser E, Ryvkin J, Leshkowitz D, Perry RBT, Cheng Y, Farber E, Abraham O, Samra N, Okladnikov N, Alber S, Albus CA, Rishal I, Ulitsky I, Tuszynski MH, Twiss JL, He Z, Burlingame AL, Fainzilber M. Repeat-element RNAs integrate a neuronal growth circuit. Cell 2025:S0092-8674(25)00498-2. [PMID: 40381624 DOI: 10.1016/j.cell.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/12/2024] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Neuronal growth and regeneration are regulated by local translation of mRNAs in axons. We examined RNA polyadenylation changes upon sensory neuron injury and found upregulation of a subset of polyadenylated B2-SINE repeat elements, hereby termed GI-SINEs (growth-inducing B2-SINEs). GI-SINEs are induced from ATF3 and other AP-1 promoter-associated extragenic loci in injured sensory neurons but are not upregulated in lesioned retinal ganglion neurons. Exogenous GI-SINE expression elicited axonal growth in injured sensory, retinal, and corticospinal tract neurons. GI-SINEs interact with ribosomal proteins and nucleolin, an axon-growth-regulating RNA-binding protein, to regulate translation in neuronal cytoplasm. Finally, antisense oligos against GI-SINEs perturb sensory neuron outgrowth and nucleolin-ribosome interactions. Thus, a specific subfamily of transposable elements is integral to a physiological circuit linking AP-1 transcription with localized RNA translation.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Indrek Koppel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel; Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam Briner
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Aboozar Monavarfeshani
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Erna van Niekerk
- Department of Neurosciences, University of California, San Diego, and Veterans Administration Medical Center, San Diego, CA 92093, USA
| | - Jinyoung Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Shane Hegarty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Donahue
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Ryvkin
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuyan Cheng
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eli Farber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ofri Abraham
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Samra
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Christin A Albus
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel; Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, and Veterans Administration Medical Center, San Diego, CA 92093, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Chen Y, Yang J, Wang C, Wang T, Zeng Y, Li X, Zuo Y, Chen H, Zhang C, Cao Y, Sun C, Wang M, Cao X, Ge X, Liu Y, Zhang G, Deng Y, Peng C, Lu A, Lu J. Aptamer-functionalized triptolide with release controllability as a promising targeted therapy against triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:207. [PMID: 39054545 PMCID: PMC11270970 DOI: 10.1186/s13046-024-03133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Targeted delivery and precise release of toxins is a prospective strategy for the treatment of triple-negative breast cancer (TNBC), yet the flexibility to incorporate both properties simultaneously remains tremendously challenging in the X-drug conjugate fields. As critical components in conjugates, linkers could flourish in achieving optimal functionalities. Here, we pioneered a pH-hypersensitive tumor-targeting aptamer AS1411-triptolide conjugate (AS-TP) to achieve smart release of the toxin and targeted therapy against TNBC. The multifunctional acetal ester linker in the AS-TP site-specifically blocked triptolide toxicity, quantitatively sustained aptamer targeting, and ensured the circulating stability. Furthermore, the aptamer modification endowed triptolide with favorable water solubility and bioavailability and facilitated endocytosis of conjugated triptolide by TNBC cells in a nucleolin-dependent manner. The integrated superiorities of AS-TP promoted the preferential intra-tumor triptolide accumulation in xenografted TNBC mice and triggered the in-situ triptolide release in the weakly acidic tumor microenvironment, manifesting striking anti-TNBC efficacy and virtually eliminated toxic effects beyond clinical drugs. This study illustrated the therapeutic potential of AS-TP against TNBC and proposed a promising concept for the development of nucleic acid-based targeted anticancer drugs.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jirui Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianbao Wang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hongyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong Province, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Ge
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, 611137, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
3
|
Herzog S, Fläschner G, Incaviglia I, Arias JC, Ponti A, Strohmeyer N, Nava MM, Müller DJ. Monitoring the mass, eigenfrequency, and quality factor of mammalian cells. Nat Commun 2024; 15:1751. [PMID: 38409119 PMCID: PMC10897412 DOI: 10.1038/s41467-024-46056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The regulation of mass is essential for the development and homeostasis of cells and multicellular organisms. However, cell mass is also tightly linked to cell mechanical properties, which depend on the time scales at which they are measured and change drastically at the cellular eigenfrequency. So far, it has not been possible to determine cell mass and eigenfrequency together. Here, we introduce microcantilevers oscillating in the Ångström range to monitor both fundamental physical properties of the cell. If the oscillation frequency is far below the cellular eigenfrequency, all cell compartments follow the cantilever motion, and the cell mass measurements are accurate. Yet, if the oscillating frequency approaches or lies above the cellular eigenfrequency, the mechanical response of the cell changes, and not all cellular components can follow the cantilever motions in phase. This energy loss caused by mechanical damping within the cell is described by the quality factor. We use these observations to examine living cells across externally applied mechanical frequency ranges and to measure their total mass, eigenfrequency, and quality factor. The three parameters open the door to better understand the mechanobiology of the cell and stimulate biotechnological and medical innovations.
Collapse
Affiliation(s)
- Sophie Herzog
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland.
- Nanosurf AG, Gräubernstrasse 12, 4410, Liestal, Switzerland.
| | - Ilaria Incaviglia
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Javier Casares Arias
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Aaron Ponti
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Michele M Nava
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Song DA, Alber S, Doron-Mandel E, Schmid V, Albus CA, Leitner O, Hamawi H, Oses-Prieto JA, Dezorella N, Burlingame AL, Fainzilber M, Rishal I. A New Monoclonal Antibody Enables BAR Analysis of Subcellular Importin β1 Interactomes. Mol Cell Proteomics 2022; 21:100418. [PMID: 36180036 PMCID: PMC9630795 DOI: 10.1016/j.mcpro.2022.100418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Importin β1 (KPNB1) is a nucleocytoplasmic transport factor with critical roles in both cytoplasmic and nucleocytoplasmic transport, hence there is keen interest in the characterization of its subcellular interactomes. We found limited efficiency of BioID in the detection of importin complex cargos and therefore generated a highly specific and sensitive anti-KPNB1 monoclonal antibody to enable biotinylation by antibody recognition analysis of importin β1 interactomes. The monoclonal antibody recognizes an epitope comprising residues 301-320 of human KPBN1 and strikingly is highly specific for cytoplasmic KPNB1 in diverse applications, with little reaction with KPNB1 in the nucleus. Biotinylation by antibody recognition with this novel antibody revealed numerous new interactors of importin β1, expanding the KPNB1 interactome to cytoplasmic and signaling complexes that highlight potential new functions for the importins complex beyond nucleocytoplasmic transport. Data are available via ProteomeXchange with identifier PXD032728.
Collapse
Affiliation(s)
- Didi-Andreas Song
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ella Doron-Mandel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Schmid
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Christin A. Albus
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Orith Leitner
- Life Science Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Hedva Hamawi
- Life Science Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel,For correspondence: Ida Rishal
| |
Collapse
|
5
|
A closed-loop multi-scale model for intrinsic frequency-dependent regulation of axonal growth. Math Biosci 2021; 344:108768. [PMID: 34952037 DOI: 10.1016/j.mbs.2021.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
This article develops a closed-loop multi-scale model for axon length regulation based on a frequency-dependent negative feedback mechanism. It builds on earlier models by linking molecular motor dynamics to signaling delays that then determine signal oscillation period. The signal oscillation is treated as a front end for a signaling pathway that modulates axonal length. This model is used to demonstrate the feasibility of such a mechanism and is tested against two previously published reports in which experimental manipulations were performed that resulted in axon growth. The model captures these observations and yields an expression for equilibrium axonal length. One major prediction of the model is that increasing motor density in the body of an axon results in axonal growth-this idea has not yet been explored experimentally.
Collapse
|
6
|
Doron‐Mandel E, Koppel I, Abraham O, Rishal I, Smith TP, Buchanan CN, Sahoo PK, Kadlec J, Oses‐Prieto JA, Kawaguchi R, Alber S, Zahavi EE, Di Matteo P, Di Pizio A, Song D, Okladnikov N, Gordon D, Ben‐Dor S, Haffner‐Krausz R, Coppola G, Burlingame AL, Jungwirth P, Twiss JL, Fainzilber M. The glycine arginine-rich domain of the RNA-binding protein nucleolin regulates its subcellular localization. EMBO J 2021; 40:e107158. [PMID: 34515347 PMCID: PMC8521312 DOI: 10.15252/embj.2020107158] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ella Doron‐Mandel
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Indrek Koppel
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Ofri Abraham
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Terika P Smith
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | | | - Pabitra K Sahoo
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Jan Kadlec
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Juan A Oses‐Prieto
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Riki Kawaguchi
- Departments of Psychiatry and NeurologySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Eitan Erez Zahavi
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Pierluigi Di Matteo
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Agostina Di Pizio
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Didi‐Andreas Song
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Dalia Gordon
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Shifra Ben‐Dor
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Giovanni Coppola
- Departments of Psychiatry and NeurologySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | - Alma L Burlingame
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Jeffery L Twiss
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
7
|
Engel KL, Arora A, Goering R, Lo HYG, Taliaferro JM. Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 2020; 21:404-418. [PMID: 32291836 PMCID: PMC7304542 DOI: 10.1111/tra.12730] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Essentially all cells contain a variety of spatially restricted regions that are important for carrying out specialized functions. Often, these regions contain specialized transcriptomes that facilitate these functions by providing transcripts for localized translation. These transcripts play a functional role in maintaining cell physiology by enabling a quick response to changes in the cellular environment. Here, we review how RNA molecules are trafficked within cells, with a focus on the subcellular locations to which they are trafficked, mechanisms that regulate their transport and clinical disorders associated with misregulation of the process.
Collapse
Affiliation(s)
- Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|