1
|
Wang K, Xie Y, Chen X, Ouyang X, Zhao L, Chen H, Xu J. The Activation of Muscarinic Acetylcholine Receptors Protects against Neuroinflammation in a Mouse Model through Attenuating Microglial Inflammation. Int J Mol Sci 2024; 25:10432. [PMID: 39408758 PMCID: PMC11476571 DOI: 10.3390/ijms251910432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Neuroinflammation is a critical factor that contributes to neurological impairment and is closely associated with the onset and progression of neurodegenerative diseases. In the central nervous system (CNS), microglia play a pivotal role in the regulation of inflammation through various signaling pathways. Therefore, mitigating microglial inflammation is considered a promising strategy for restraining neuroinflammation. Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and exhibit clear neuroprotective effects in various disease models. However, whether the activation of mAChRs can harness benefits in neuroinflammation remains largely unexplored. In this study, the anti-inflammatory effects of mAChRs were found in a neuroinflammation mouse model. The expression of various cytokines and chemokines was regulated in the brains and spinal cords after the administration of mAChR agonists. Microglia were the primary target cells through which mAChRs exerted their anti-inflammatory effects. The results showed that the activation of mAChRs decreased the pro-inflammatory phenotypes of microglia, including the expression of inflammatory cytokines, morphological characteristics, and distribution density. Such anti-inflammatory modulation further exerted neuroprotection, which was found to be even more significant by the direct activation of neuronal mAChRs. This study elucidates the dual mechanisms through which mAChRs exert neuroprotective effects in central inflammatory responses, providing evidence for their application in inflammation-related neurological disorders.
Collapse
Affiliation(s)
- Kaichun Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Xie
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
| | - Xixiang Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Ouyang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Hongzhuan Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianrong Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Chen J, Wei X, Wu X, Zhang Q, Xia G, Xia H, Shang H, Lin S. Disorder of neuroplasticity aggravates cognitive impairment via neuroinflammation associated with intestinal flora dysbiosis in chronic heart failure. Aging (Albany NY) 2024; 16:10882-10904. [PMID: 38968172 PMCID: PMC11272129 DOI: 10.18632/aging.205960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Chronic heart failure (CHF) impairs cognitive function, yet its effects on brain structure and underlying mechanisms remain elusive. This study aims to explore the mechanisms behind cognitive impairment. METHODS CHF models in rats were induced by ligation of the left anterior descending coronary artery. Cardiac function was analyzed by cardiac ultrasound and hemodynamics. ELISA, immunofluorescence, Western blot, Golgi staining and transmission electron microscopy were performed on hippocampal tissues. The alterations of intestinal flora under the morbid state were investigated via 16S rRNA sequencing. The connection between neuroinflammation and synapses is confirmed by a co-culture system of BV2 microglia and HT22 cells in vitro. Results: CHF rats exhibited deteriorated cognitive behaviors. CHF induced neuronal structural disruption, loss of Nissl bodies, and synaptic damage, exhibiting alterations in multiple parameters. CHF rats showed increased hippocampal levels of inflammatory cytokines and activated microglia and astrocytes. Furthermore, the study highlights dysregulated PDE4-dependent cAMP signaling and intestinal flora dysbiosis, closely associated with neuroinflammation, and altered synaptic proteins. In vitro, microglial neuroinflammation impaired synaptic plasticity via PDE4-dependent cAMP signaling. CONCLUSIONS Neuroinflammation worsens CHF-related cognitive impairment through neuroplasticity disorder, tied to intestinal flora dysbiosis. PDE4 emerges as a potential therapeutic target. These findings provide insightful perspectives on the heart-gut-brain axis.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xuefen Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
3
|
李 明, 何 梁, 李 天, 鲍 岩, 徐 祥, 陈 光. [Repeated mild traumatic brain injury in the parietal cortex inhibits expressions of NLG-1 and PSD-95 in the medulla oblongata of mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:960-966. [PMID: 38862454 PMCID: PMC11166725 DOI: 10.12122/j.issn.1673-4254.2024.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To assess the effects of repeated mild traumatic brain injury (rmTBI) in the parietal cortex on neuronal morphology and synaptic plasticity in the medulla oblongata of mice. METHODS Thirty-two male ICR mice were randomly divided into sham operation group (n=8) and rmTBI group (n=24). The mice in the latter group were subjected to repeated mild impact injury of the parietal cortex by a free-falling object. The mice surviving the injuries were evaluated for neurological deficits using neurological severity scores (NSS), righting reflex test and forced swimming test, and pathological changes of the neuronal cells in the medulla oblongata were observed with HE and Nissl staining. Western blotting and immunofluorescence staining were used to detect the expressions of neuroligin 1(NLG-1) and postsynaptic density protein 95(PSD-95) in the medulla oblongata of the mice that either survived rmTBI or not. RESULTS None of the mice in the sham-operated group died, while the mortality rate was 41.67% in rmTBI group. The mice surviving rmTBI showed significantly reduced NSS, delayed recovery of righting reflex, increased immobility time in forced swimming test (P < 0.05), and loss of Nissl bodies; swelling and necrosis were observed in a large number of neurons in the medulla oblongata, where the expression levels of NLG-1 and PSD-95 were significantly downregulated (P < 0.05). The mice that did not survive rmTBI showed distorted and swelling nerve fibers and decreased density of neurons in the medulla oblongina with lowered expression levels of NLG-1 and PSD-95 compared with the mice surviving the injuries (P < 0.01). CONCLUSION The structural and functional anomalies of the synapses in the medulla oblongata may contribute to death and neurological impairment following rmTBI in mice.
Collapse
|
4
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
5
|
Cade S, Zhou XF, Bobrovskaya L. An Imbalance in the Pro/mature BDNF Ratio Occurs in Multiple Brain Regions During Normal Ageing in Wild-Type Mice. J Mol Neurosci 2023; 73:469-484. [PMID: 37314606 PMCID: PMC10432372 DOI: 10.1007/s12031-023-02131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
The early transition to Alzheimer's disease is characterized by a period of accelerated brain atrophy that exceeds normal ageing. Identifying the molecular basis of this atrophy could facilitate the discovery of novel drug targets. The precursor of brain-derived neurotrophic factor, a well characterized neurotrophin, is increased in the hippocampus of aged rodents, while its mature isoform is relatively stable. This imbalance could increase the risk of Alzheimer's disease by precipitating its pathological hallmarks. However, less is known about how relative levels of these isoforms change in middle-aged mice. In addition, the underlying mechanisms that might cause an imbalance are unknown. The main aim of this study was to determine how precursor brain-derived neurotrophic factor changes relative to its mature isoform with normal brain ageing in wild type mice. A secondary aim was to determine if signaling through the neurotrophin receptor, p75 influences this ratio. An increasing ratio was identified in several brain regions, except the hippocampus, suggesting a neurotrophic imbalance occurs as early as middle age. Some changes in receptors that mediate the isoforms effects were also identified, but these did not correspond with trends in the isoforms. Relative amounts of precursor brain-derived neurotrophic factor were mostly unchanged in mutant p75 mice. The lack of changes suggested that signaling through the receptor had no influence on the ratio.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
6
|
Lim D, Kim D, Um JW, Ko J. Reassessing synaptic adhesion pathways. Trends Neurosci 2022; 45:517-528. [DOI: 10.1016/j.tins.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023]
|
7
|
Cade S, Zhou XF, Bobrovskaya L. The role of brain-derived neurotrophic factor and the neurotrophin receptor p75NTR in age-related brain atrophy and the transition to Alzheimer's disease. Rev Neurosci 2022; 33:515-529. [PMID: 34982865 DOI: 10.1515/revneuro-2021-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/11/2021] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer's disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer's disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease's progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer's disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer's disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|