1
|
Agboka KM, Abdel-Rahman EM, Salifu D, Kanji B, Ndjomatchoua FT, Guimapi RA, Ekesi S, Tobias L. Towards combining self-organizing maps (SOM) and convolutional neural network (CNN) for improving model accuracy: Application to malaria vectors phenotypic resistance. MethodsX 2025; 14:103198. [PMID: 39991436 PMCID: PMC11847465 DOI: 10.1016/j.mex.2025.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications.•The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics.•Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models.•The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.
Collapse
Affiliation(s)
- Komi Mensah Agboka
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 00100, Kenya
| | - Elfatih M. Abdel-Rahman
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 00100, Kenya
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | - Daisy Salifu
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 00100, Kenya
| | - Brian Kanji
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 00100, Kenya
| | - Frank T. Ndjomatchoua
- Department of Plant Sciences, School of the Biological Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ritter A.Y. Guimapi
- Biotechnology and Plant Health Division, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, Ås NO-1431, Norway
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 00100, Kenya
| | - Landmann Tobias
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 00100, Kenya
| |
Collapse
|
2
|
Barasa S, Aemro M, Abebe W, Daka D, Addisu B, Tamene E, Woldesenbet D, Zeleke AJ. Assessing insecticide susceptibility status of Anopheles mosquitoes in Gondar zuria district, Northwest Ethiopia. Sci Rep 2025; 15:14452. [PMID: 40280999 PMCID: PMC12032162 DOI: 10.1038/s41598-025-96370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Insecticide-based vector control, which comprises the use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method of malaria control in Ethiopia. However, its effectiveness is threatened as malaria vectors become resistant to insecticides. Thus, the aim of this study was to monitor the insecticide susceptibility status of malaria vectors. WHO susceptibility tests were used to detect knock-down and mortality rate in the wild malaria vectors collected in Gondar zuria woreda, Northwest Ethiopia. The WHO diagnostic doses of 0.75% permethrin, 0.05% deltamethrin, 0.05% alpha-cypermethrin, 0.1% propoxur and 0.25% pirimiphos-methyl were used. The major malaria vectors in Ethiopia, Anopheles gambiae s.l Anopheles funestus group, and Anopheles Pharoensis, were susceptible, to pirimiphos-methyl and propoxur. However, resistant to permethrin (mortality rate of 88.8%), alphacypermethrin (mortality rate of 67.5%), and deltamethrin (mortality rate of 73.8%). Although permethrin restoration was only 96% in permethrin resistant Anopheles mosquitoes, the efficacy of alphacypermethrin and deltamethrin was totally restored by pre-exposure to PBO. The susceptibility of malaria vectors to pirimiphos-methyl, propoxur, and PBO + pyrethroid insecticides is encouraging for successful malaria control. Further investigations are needed to better understand the molecular basis of pyrethroids insecticide resistant-malaria vectors.
Collapse
Affiliation(s)
- Silesh Barasa
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia.
| | - Mulugeta Aemro
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wagaw Abebe
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Deresse Daka
- Department of Medical Microbiology, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Bedasa Addisu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Debre Brihan University, Debre Brihan, Ethiopia
| | - Elias Tamene
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wachamo University, Wachamo, Ethiopia
| | - Dagmawi Woldesenbet
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wachamo University, Wachamo, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Schmidt TL. Evolutionary consequences of long-distance dispersal in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101325. [PMID: 39675628 DOI: 10.1016/j.cois.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Long-distance dispersal (LDD) provides a means for mosquitoes to invade new regions and spread adaptive alleles, including those conferring insecticide resistance. Most LDD takes place on human transport vessels and will typically be rarer and more directionally constrained than active flight but can connect populations and regions that are otherwise mutually inaccessible. These features make LDD worthy of specific consideration in mosquito research. This paper reviews recent evolutionary research on LDD and its consequences for mosquito populations and mosquito control. LDD is the main source of mosquito range expansions, and genomic methods can now trace the origins of new invasions to specific towns or cities. Genomic methods can also give a rough indication of the number of invaders, which if very small may lead to the stochastic loss of advantageous alleles during invasion bottlenecks. Once invasions are established, LDD spreads adaptive alleles between populations. Emerging insights into insecticide resistance evolution indicate that LDD has repeatedly spread resistance mutations across global species ranges, but these broad patterns are convoluted by two other evolutionary processes: parallel adaptation at the same gene or gene cluster and polygenic adaptation at different genes in different populations. Together, these processes have produced patterns of similarity and dissimilarity at resistance genes that are decoupled from geographical distance. LDD within cities is less well studied but is important for planning and evaluating local control efforts. Urban investigations of LDD may help identify areas experiencing weaker selection pressures from insecticides and isolated areas to target for control.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
4
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van’t Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie major selective sweeps in insecticide resistance genes in Anopheles arabiensis. PLoS Biol 2024; 22:e3002898. [PMID: 39636817 PMCID: PMC11620391 DOI: 10.1371/journal.pbio.3002898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. The outdoor-biting malaria vector Anopheles arabiensis is of increasing concern for malaria transmission because it is apparently less susceptible to many indoor control interventions, yet knowledge of its mechanisms of resistance remains limited. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of globally high resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to the pyrethroid deltamethrin (commonly used in bednets) and PM (widespread use for indoor spraying), in An. arabiensis from 2 regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in metabolic resistance. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the carboxylesterase genes Coeae2g - Coeae6g. Using complementary data from another malaria vector, An. coluzzii, in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster (Cyp6aap_Dup33). Against this background of metabolic resistance, resistance caused by mutations in the insecticide target sites was very rare or absent. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with 3 An. arabiensis individuals from West Africa revealed a startling evolutionary diversity, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R. Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E. Van’t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Emily J. Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas J. Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A. Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
5
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
6
|
Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Hancock PA, Knight E, Dorsey G, Opigo J, Yeka A, Katureebe A, Kyohere M, Hemingway J, Kamya MR, McDermott D, Lucas ER, Donnelly MJ. LLIN Evaluation in Uganda Project (LLINEUP)-effects of a vector control trial on Plasmodium infection prevalence and genotypic markers of insecticide resistance in Anopheles vectors from 48 districts of Uganda. Sci Rep 2024; 14:14488. [PMID: 38914669 PMCID: PMC11196729 DOI: 10.1038/s41598-024-65050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Pyrethroid bednets treated with the synergist piperonyl butoxide (PBO) offer the possibility of improved vector control in mosquito populations with metabolic resistance. In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid insecticide plus PBO (PBO LLINs), as compared to conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to provide greater protection against malaria than conventional LLINs, reducing parasitaemia and vector density. In the LLINEUP trial, we conducted cross-sectional household entomological surveys at baseline and then every 6 months for two years, which we use here to investigate longitudinal changes in mosquito infection rate and genetic markers of resistance. Overall, 5395 female Anopheles mosquitoes were collected from 5046 households. The proportion of mosquitoes infected (PCR-positive) with Plasmodium falciparum did not change significantly over time, while infection with non-falciparum malaria decreased in An. gambiae s.s., but not An. funestus. The frequency of genetic markers associated with pyrethroid resistance increased significantly over time, but the rate of change was not different between the two LLIN types. The knock-down resistance (kdr) mutation Vgsc-995S declined over time as Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-995F appears to be spreading into Uganda. Distribution of LLINs in Uganda was previously found to be associated with reductions in parasite prevalence and vector density, but here we show that the proportion of infective mosquitoes remained stable across both PBO and non-PBO LLINs, suggesting that the potential for transmission persisted. The increased frequency of markers of pyrethroid resistance indicates that LLIN distribution favoured the evolution of resistance within local vectors and highlights the potential benefits of resistance management strategies.Trial registration: This study is registered with ISRCTN, ISRCTN17516395. Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395 .
Collapse
Affiliation(s)
- Amy Lynd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Gonahasa
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Sarah G Staedke
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ambrose Oruni
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - Erin Knight
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, CA, 94110, USA
| | | | - Adoke Yeka
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Agaba Katureebe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Mary Kyohere
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Daniel McDermott
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
7
|
Odero JO, Dennis TPW, Polo B, Nwezeobi J, Boddé M, Nagi SC, Hernandez-Koutoucheva A, Nambunga IH, Bwanary H, Mkandawile G, Govella NJ, Kaindoa EW, Ferguson HM, Ochomo E, Clarkson CS, Miles A, Lawniczak MKN, Weetman D, Baldini F, Okumu FO. Discovery of knock-down resistance in the major African malaria vector Anopheles funestus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584754. [PMID: 38854026 PMCID: PMC11160573 DOI: 10.1101/2024.03.13.584754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A major mechanism of insecticide resistance in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa. While monitoring 10 populations of An. funestus in Tanzania, we unexpectedly found resistance to DDT, a banned insecticide, in one location. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found 8 novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (L1014F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to the exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). Further study is necessary to identify the origin and spread of kdr in An. funestus, and the potential threat to current insecticide-based vector control in Africa.
Collapse
Affiliation(s)
- Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Brian Polo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joachim Nwezeobi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Marilou Boddé
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | | | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Hamis Bwanary
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Heather M Ferguson
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Chris S Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G12 8QQ, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Ibrahim EA, Wamalwa M, Odindi J, Tonnang HEZ. Spatio-temporal characterization of phenotypic resistance in malaria vector species. BMC Biol 2024; 22:117. [PMID: 38764011 PMCID: PMC11102860 DOI: 10.1186/s12915-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. RESULTS The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. CONCLUSIONS The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.
Collapse
Affiliation(s)
- Eric Ali Ibrahim
- International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Mark Wamalwa
- International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya
| | - John Odindi
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Henri E Z Tonnang
- International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya.
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
9
|
Agboka KM, Wamalwa M, Mutunga JM, Tonnang HEZ. A mathematical model for mapping the insecticide resistance trend in the Anopheles gambiae mosquito population under climate variability in Africa. Sci Rep 2024; 14:9850. [PMID: 38684842 PMCID: PMC11059405 DOI: 10.1038/s41598-024-60555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
The control of arthropod disease vectors using chemical insecticides is vital in combating malaria, however the increasing insecticide resistance (IR) poses a challenge. Furthermore, climate variability affects mosquito population dynamics and subsequently IR propagation. We present a mathematical model to decipher the relationship between IR in Anopheles gambiae populations and climate variability. By adapting the susceptible-infected-resistant (SIR) framework and integrating temperature and rainfall data, our model examines the connection between mosquito dynamics, IR, and climate. Model validation using field data achieved 92% accuracy, and the sensitivity of model parameters on the transmission potential of IR was elucidated (e.g. μPRCC = 0.85958, p-value < 0.001). In this study, the integration of high-resolution covariates with the SIR model had a significant impact on the spatial and temporal variation of IR among mosquito populations across Africa. Importantly, we demonstrated a clear association between climatic variability and increased IR (width = [0-3.78], α = 0.05). Regions with high IR variability, such as western Africa, also had high malaria incidences thereby corroborating the World Health Organization Malaria Report 2021. More importantly, this study seeks to bolster global malaria combat strategies by highlighting potential IR 'hotspots' for targeted intervention by National malria control programmes.
Collapse
Affiliation(s)
- Komi Mensah Agboka
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772 00100, Nairobi, Kenya.
| | - Mark Wamalwa
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772 00100, Nairobi, Kenya
| | - James Mutuku Mutunga
- School of Engineering Design and Innovation Pennsylvania State University, University Park, PA, 16802, USA
| | - Henri E Z Tonnang
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772 00100, Nairobi, Kenya.
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
10
|
Ibrahim EA, Wamalwa M, Odindi J, Tonnang HEZ. Insights and challenges of insecticide resistance modelling in malaria vectors: a review. Parasit Vectors 2024; 17:174. [PMID: 38570854 PMCID: PMC10993508 DOI: 10.1186/s13071-024-06237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Malaria is one of the most devastating tropical diseases, resulting in loss of lives each year, especially in children under the age of 5 years. Malaria burden, related deaths and stall in the progress against malaria transmission is evident, particularly in countries that have moderate or high malaria transmission. Hence, mitigating malaria spread requires information on the distribution of vectors and the drivers of insecticide resistance (IR). However, owing to the impracticality in establishing the critical need for real-world information at every location, modelling provides an informed best guess for such information. Therefore, this review examines the various methodologies used to model spatial, temporal and spatio-temporal patterns of IR within populations of malaria vectors, incorporating pest-biology parameters, adopted ecological principles, and the associated modelling challenges. METHODS The review focused on the period ending March 2023 without imposing restrictions on the initial year of publication, and included articles sourced from PubMed, Web of Science, and Scopus. It was also limited to publications that deal with modelling of IR distribution across spatial and temporal dimensions and excluded articles solely focusing on insecticide susceptibility tests or articles not published in English. After rigorous selection, 33 articles met the review's elibility criteria and were subjected to full-text screening. RESULTS Results show the popularity of Bayesian geostatistical approaches, and logistic and static models, with limited adoption of dynamic modelling approaches for spatial and temporal IR modelling. Furthermore, our review identifies the availability of surveillance data and scarcity of comprehensive information on the potential drivers of IR as major impediments to developing holistic models of IR evolution. CONCLUSIONS The review notes that incorporating pest-biology parameters, and ecological principles into IR models, in tandem with fundamental ecological concepts, potentially offers crucial insights into the evolution of IR. The results extend our knowledge of IR models that provide potentially accurate results, which can be translated into policy recommendations to combat the challenge of IR in malaria control.
Collapse
Affiliation(s)
- Eric Ali Ibrahim
- International Centre of Insect Physiology and Ecology (Icipe), PO box 30772, Nairobi, Kenya
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Mark Wamalwa
- International Centre of Insect Physiology and Ecology (Icipe), PO box 30772, Nairobi, Kenya
| | - John Odindi
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Henri Edouard Zefack Tonnang
- International Centre of Insect Physiology and Ecology (Icipe), PO box 30772, Nairobi, Kenya.
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
11
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583874. [PMID: 38559088 PMCID: PMC10979859 DOI: 10.1101/2024.03.11.583874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
12
|
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Kétoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, Weetman D. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii. Nat Commun 2023; 14:4946. [PMID: 37587104 PMCID: PMC10432508 DOI: 10.1038/s41467-023-40693-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Constant V Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Guillaume K Kétoh
- Laboratory of Ecology and Ecotoxicology, Department of Zoology, Faculty of Sciences, Université de Lomé, 01 B.P. 1515, Lomé, Togo
| | - Benjamin G Koudou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
13
|
AlGabbani Q. Nanotechnology: A promising strategy for the control of parasitic infections. Exp Parasitol 2023:108548. [PMID: 37196702 DOI: 10.1016/j.exppara.2023.108548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Annually 3.5 billion people are affected by the parasitic infections that results around 200,000 deaths per annum. Major diseases occur due to the neglected tropical parasites. Variety of methods have been used to treat the parasitic infections but now these methods have become ineffective due to the development of resistance in the parasites and some other side effects of traditional treatment methods. Previous methods include use of chemotherapeutic agents and ethnobotanicals for the treatment of parasites. Parasites have developed resistance against the chemotherapeutic agents. A major problem related to Ethnobotanicals is the unequal availability of drug at the target site which is responsible for the low efficacy of drug. Nanotechnology technology involves the manipulation of matter on a nanoscale level and has the potential to enhance the efficacy and safety of existing drugs, develop new treatments, and improve diagnostic methods for parasitic infections. Nanoparticles can be designed to selectively target parasites while minimizing toxicity to the host, and they can also be used to improve drug delivery and increase drug stability. Some important nanotechnology-based tools for parasitic control include nanoparticle-based drug delivery, nanoparticle diagnostics, nanoparticle vaccines, nanoparticle insecticides. Nanotechnology has the potential to revolutionize the field of parasitic control by providing new methods for detection, prevention and treatment of parasitic infections. This review discusses the current state of nanotechnology-based approaches for controlling parasitic infections and highlights their potential to revolutionize the field of parasitology.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
14
|
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Ketoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, Weetman D. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae s.l. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523889. [PMID: 36712022 PMCID: PMC9882144 DOI: 10.1101/2023.01.13.523889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Constant V Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Guillaume K Ketoh
- Laboratory of Ecology and Ecotoxicology, Department of Zoology, Faculty of Sciences, Université de Lomé, 01 B.P: 1515 Lomé 01, Togo
| | - Benjamin G Koudou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
15
|
Montgomery M, Harwood JF, Yougang AP, Wilson-Bahun TA, Tedjou AN, Keumeni CR, Kilpatrick AM, Wondji CS, Kamgang B. Spatial distribution of insecticide resistant populations of Aedes aegypti and Ae. albopictus and first detection of V410L mutation in Ae. aegypti from Cameroon. Infect Dis Poverty 2022; 11:90. [PMID: 35974351 PMCID: PMC9382841 DOI: 10.1186/s40249-022-01013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Dengue (DENV), chikungunya (CHIKV) and Zika virus (ZIKV), are mosquito-borne viruses of medical importance in most tropical and subtropical regions. Vector control, primarily through insecticides, remains the primary method to prevent their transmission. Here, we evaluated insecticide resistance profiles and identified important underlying resistance mechanisms in populations of Aedes aegypti and Ae. albopictus from six different regions in Cameroon to pesticides commonly used during military and civilian public health vector control operations. Methods Aedes mosquitoes were sampled as larvae or pupae between August 2020 and July 2021 in six locations across Cameroon and reared until the next generation, G1. Ae. aegypti and Ae. albopictus adults from G1 were tested following World Health Organization (WHO) recommendations and Ae. aegypti G0 adults screened with real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Piperonyl butoxide (PBO) assays and real time qPCR were carried out from some cytochrome p450 genes known to be involved in metabolic resistance. Statistical analyses were performed using Chi-square test and generalized linear models. Results Loss of susceptibility was observed to all insecticides tested. Mortality rates from tests with 0.25% permethrin varied from 24.27 to 85.89% in Ae. aegypti and from 17.35% to 68.08% in Ae. albopictus. Mortality rates for 0.03% deltamethrin were between 23.30% and 88.20% in Ae. aegypti and between 69.47 and 84.11% in Ae. albopictus. We found a moderate level of resistance against bendiocarb, with mortality rates ranging from 69.31% to 90.26% in Ae. aegypti and from 86.75 to 98.95% in Ae. albopictus. With PBO pre-exposure, we found partial or fully restored susceptibility to pyrethroids and bendiocarb. The genes Cyp9M6F88/87 and Cyp9J10 were overexpressed in Ae. aegypti populations from Douala sites resistant to permethrin and deltamethrin. Cyp6P12 was highly expressed in alphacypermethrin and permethrin resistant Ae. albopictus samples. F1534C and V1016I mutations were detected in A. aegypti mosquitoes and for the first time V410L was reported in Cameroon. Conclusions This study revealed that Ae. aegypti and Ae. albopictus are resistant to multiple insecticide classes with multiple resistance mechanisms implicated. These findings could guide insecticide use to control arbovirus vectors in Cameroon. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01013-8.
Collapse
Affiliation(s)
- Matthew Montgomery
- U.S. Naval Medical Research Unit No. 3, Naval Air Station Sigonella, Italy
| | - James F Harwood
- U.S. Naval Medical Research Unit No. 3, Naval Air Station Sigonella, Italy
| | - Aurelie P Yougang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Theodel A Wilson-Bahun
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Laboratory of Vertebrate and Invertebrate Bioecology, Faculty of Science and Technology, Marien-Ngouabi University, Brazzaville, Congo
| | - Armel N Tedjou
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Christophe Rostand Keumeni
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | | | - Charles S Wondji
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Vector Biology Department, Liverpool School of Tropical Medicine, London, UK
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
| |
Collapse
|
16
|
Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y, Alouffi A. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life (Basel) 2022; 12:life12050750. [PMID: 35629416 PMCID: PMC9145985 DOI: 10.3390/life12050750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Protozoa, helminths and ectoparasites are the major groups of parasites distributed worldwide. Currently, these parasites are treated with chemotherapeutic antiprotozoal drugs, anti-helminthic and anti-ectoparasitic agents, but, with the passage of time, resistance to these drugs has developed due to overuse. In this scenario, nanoparticles are proving to be a major breakthrough in the treatment and control of parasitic diseases. In the last decade, there has been enormous development in the field of nanomedicine for parasitic control. Gold and silver nanoparticles have shown promising results in the treatments of various types of parasitic infections. These nanoparticles are synthesized through the use of various conventional and molecular technologies and have shown great efficacy. They work in different ways, that include damaging the parasite membrane, DNA (Deoxyribonucleic acid) disruption, protein synthesis inhibition and free-radical formation. These agents are effective against intracellular parasites as well. Other nanoparticles, such as iron, nickel, zinc and platinum, have also shown good results in the treatment and control of parasitic infections. It is hoped that this research subject will become the future of modern drug development. This review summarizes the methods that are used to synthesize nanoparticles and their possible mechanisms of action against parasites.
Collapse
Affiliation(s)
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Zaheer Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Ankara University, Ankara 06100, Turkey;
| | - Tauseef ur Rehman
- Department of Parasitology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (T.u.R.); (A.A.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture Multan, Multan 60650, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Arar Northern Border University, Arar 73211, Saudi Arabia;
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62217, Saudi Arabia;
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
- Correspondence: (T.u.R.); (A.A.)
| |
Collapse
|