1
|
Ding H, Lv H, Sui M, Wang X, Sun Y, Tian M, Ma S, Xue Y, Zhang M, Wang X, Qi J, Wang L, Zhu Q. Interaction of neuropilin-1 and hepatocyte growth factor/C-Met pathway in liver fibrosis progression in hepatocyte-specific NRP-1 knockout mice. J Gastroenterol 2025:10.1007/s00535-025-02262-8. [PMID: 40419692 DOI: 10.1007/s00535-025-02262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Hepatocyte growth factor (HGF)/c-Met signaling critically influences liver fibrosis, but its interaction with neuropilin-1 (NRP-1) in hepatocytes remains unclear. We investigated the role of hepatocyte-specific NRP-1 deletion in liver fibrosis progression and its relationship with the HGF/c-Met pathway. METHODS Hepatocyte-specific NRP-1 knockout mice were generated using the Cre-lox system, and liver fibrosis was induced by carbon tetrachloride injections or a methionine- and choline-deficient diet. Fibrosis severity, hepatocyte injury, and cytokine secretion were evaluated via histology, biochemical assays, and molecular analyses in isolated hepatocytes. In vitro experiments were conducted in primary hepatocytes and Huh7 cells using lentiviral overexpression and knockdown of NRP-1. Chromatin immunoprecipitation and dual-luciferase reporter assays were performed to analyze transcription factor binding to the NRP-1 promoter. RESULTS Hepatocyte NRP-1 expression increased significantly during liver fibrosis and was positively correlated with HGF/c-Met expression and fibrosis severity. In vivo, NRP-1 inhibition reduced extracellular matrix accumulation and abnormal angiogenesis in Alb-Cre NRP-1f/f mice. In vitro, NRP-1 blockade inhibited c-Met activation and reduced transforming growth factor-beta and vascular endothelial growth factor secretion in hepatocytes. NRP-1 functioned as a co-receptor for HGF/c-Met, with HGF upregulating NRP-1 expression at transcript and protein levels. NRP-1 promoted fibrosis through the Met/extracellular signal-regulated kinase pathway. Furthermore, HGF increased retinoic acid receptor alpha expression, promoting NRP-1 transcription. CONCLUSIONS HGF-induced upregulation of hepatocyte NRP-1, mediated by RARA binding to its promoter, drives liver fibrosis through c-Met pathway activation, highlighting NRP-1 as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Han Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Huanran Lv
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Minghao Sui
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Xinyu Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Yanning Sun
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Miaomiao Tian
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Shujun Ma
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Yuchan Xue
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Miao Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Xin Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Jianni Qi
- Department of Key Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Le Wang
- Department of Geriatrics, Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China.
| | - Qiang Zhu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan City, Shandong Province, China.
| |
Collapse
|
2
|
Chen L, Guillot A, Tacke F. Reviewing the function of macrophages in liver disease. Expert Rev Gastroenterol Hepatol 2025:1-17. [PMID: 40387555 DOI: 10.1080/17474124.2025.2508963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/10/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
INTRODUCTION The liver is a central metabolic organ, but is also hosting a unique immune microenvironment to sustain homeostasis and proper defense measures against injury threats in healthy individuals. Liver macrophages, mostly represented by the tissue-resident Kupffer cells and bone marrow- or monocyte-derived macrophages, are intricately involved in various aspects of liver homeostasis and disease, including tissue injury, inflammation, fibrogenesis and repair mechanisms. AREAS COVERED We review recent findings on defining the liver macrophage landscape and their functions in liver diseases with the aim of highlighting potential targets for therapeutic interventions. A comprehensive literature search in PubMed and Google Scholar was conducted to identify relevant literature up to date. EXPERT OPINION Liver macrophages orchestrate key homeostatic and pathogenic processes in the liver. Thus, targeting liver macrophages represents an attractive strategy for drug development, e.g. to ameliorate liver inflammation, steatohepatitis or fibrosis. However, translation from fundamental research to therapies remains challenging due to the versatile nature of the liver macrophage compartment. Recent and major technical advances such as single-cell and spatially-resolved omics approaches deepened our understanding of macrophage biology at a molecular level. Yet, further studies are needed to identify suitable, etiology- and stage-dependent strategies for the treatment of liver diseases.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Zhuo Y, Wu H, Zhao W, Yin S, Lei F, Pang X, Sun W, Feng L, Jia S, Li W, Li Y, Ren J, Wang M, Zhou D. Single-cell profiling reveals monocyte heterogeneity and association with liver fibrosis in patients with chronic HBV. Hepatol Commun 2025; 9:e0672. [PMID: 40227083 PMCID: PMC11999413 DOI: 10.1097/hc9.0000000000000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) infection results in persistent liver inflammation, which ultimately leads to liver fibrosis and increases the risk of cirrhosis. Recruitment of circulating monocytes to the liver is an essential aspect that exacerbates liver fibrosis; however, the mechanism underlying their dysregulation, which contributes to this progression, remains unclear. METHODS Single-cell RNA sequencing was performed to characterize the landscape of circulating monocytes from patients with CHB and liver fibrosis (CHB group) and healthy controls (HC group). Conventional techniques were performed to validate the findings. RESULTS Monocytes significantly expanded in the CHB group. The proto-oncogene LIM domain only 2 (LMO2) was highly expressed in monocytes from the CHB group, which may be associated with their expansion. In addition, we noticed that a classical monocyte subcluster surged in the CHB group and highly expressed platelet-related genes such as ITGA2B, which was identified as monocyte-platelet aggregates (MPA). The frequency of MPA was significantly higher in the CHB group, positively associated with platelet and white blood cell, and negatively associated with liver fibroscan and age, which indicates that MPA may play an important role in liver inflammation in the early liver fibrosis stage. Moreover, we found that MPA displays the enrichment of chemokine signaling-associated genes, such as C-C chemokine motif ligand 5 (CCL5), and showed an increased adhesion capacity to endothelial cells. After incubation with MPA cell supernatants, pro-inflammatory factors such as IL-8 and IL-1β were upregulated in LX-2 cells, which were reversed by the addition of anti-CCL5 antibodies. CONCLUSIONS Our data suggest that enhanced LMO2 expression in circulating monocytes may be associated with their expansion, and an increased MPA subset may participate in liver fibrosis progression. These results provide valuable insights into the etiology of liver fibrosis in patients with CHB.
Collapse
Affiliation(s)
- Yue Zhuo
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, China
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Wenying Zhao
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Fang Lei
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Xueyang Pang
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Wei Sun
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin, China
| | - Shulei Jia
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Wanzhen Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Yang Li
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Jiling Ren
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Dongming Zhou
- Department of Pathogen Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Zhu B, Wei R, Li X, Bi Q. Targeting CCL5 Attenuates Fibrosis via Activation of PI3k/Akt Signaling Axis After Glaucoma Filtration Surgery. Curr Eye Res 2025; 50:394-404. [PMID: 39618346 DOI: 10.1080/02713683.2024.2432399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE Glaucoma filtration surgery (GFS) stands as a paramount clinical intervention for glaucoma. Nonetheless, the prevalent cause of GFS failure is filtration bleb scarring, and the role of inflammation and immune response in contributing to fibrosis remains elusive. METHODS The study employed 30 female Sprague-Dawley rats (8 weeks old, 200-250 g) to assess the anti-scarring impact of the Chemokine (C-C motif) receptor 5 (CCR5)-Chemokine (C-C motif) ligand 5 (CCL5) antibody after GFS. Additionally, anti-fibrotic effects on HConFs were examined, creating an intra-operative inflammatory response using damaged-HConFs supernatant medium (DHSM). In vitro and in vivo validation aimed to elucidate the potential anti-fibrotic molecular mechanism of the CCR5-CCL5 antibody. RESULTS The CCR5-CCL5 antibody effectively prolonged filtration bleb duration and enhanced the functionality of the filtered bleb. Improved postoperative intraocular pressure values (IOP) and morphological images were observed in the CCR5-CCL5 antibody-treated group. Histochemical staining and cellular experiments confirmed the antifibrotic function of the CCR5-CCL5 antibody. Notably, M2-type macrophage polarization was reduced in the CCR5-CCL5 antibody-treated model. CCL5-induced fibrosis in HConFs was mediated through the PI3K/Akt signaling pathway. Consistently, inhibition of PI3K/Akt significantly attenuated the profibrotic effects of CCR5-CCL5. Mechanistically, the CCL5 antibody exerts its antifibrotic effect by targeting CCR5 on HConFs, leading to the inhibition of the PI3K/Akt mechanism. CONCLUSIONS This study unveils that CCR5-CCL5 promotes fibrosis in GFS through inflammatory stimulation of HConFs and enhanced activation of the PI3K/Akt signaling pathway. The findings suggest that intraoperative CCR5-CCL5 antibody treatment could serve as a cost-effective therapeutic agent or a useful adjuvant in preventing ocular bleb scar formation.
Collapse
Affiliation(s)
- Baixue Zhu
- Yulin Hospital of Traditional Chinese Medicine, Yulin, Shaanxi, China
| | - Ran Wei
- Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Xinying Li
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingyun Bi
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu T, Sui M, Tian M, Wu N, Zhao S, Wang Y, Yang Y, Ma S, Jiao D, Wang L, Feng Y, Zhang Y, Qin C, Liu C, Qi J, Zhu Q. Sulfonated albumin from hepatocytes accelerates liver fibrosis in nonalcoholic fatty liver disease through endoplasmic reticulum stress. Free Radic Biol Med 2025; 228:150-162. [PMID: 39743026 DOI: 10.1016/j.freeradbiomed.2024.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Posttranslational modifications (PTM) of albumin occur in liver diseases; however, little is known about the source and function of sulfonated albumin, a significant modification of albumin occurring in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the mechanism underlying sulfonated albumin production and its role in the progression of NAFLD-related liver fibrosis. METHODS Serum samples from healthy controls and patients with NAFLD were used to measure the proportion of sulfonated albumin. Mice models with NAFLD fed with high-fat diet (HFD) and methionine choline-deficient diet (MCD) were constructed. RNA sequencing, KEGG analysis, and GSEA were used to explore the mechanism of sulfonated albumin production and its mechanism of activating hepatic stellate cells (HSCs) and promoting the progression of liver fibrosis in NAFLD. RESULTS Sulfonated albumin levels increased significantly in both human and mouse NAFLD serum samples. In vivo studies in mice have shown that the intraperitoneal injection of sulfonated albumin promotes inflammation, hepatic steatosis, and liver fibrosis in NAFLD. In addition, autophagy has been verified as a key mechanism in the regulation of sulfonated albumin production. We also demonstrated that reactive oxygen species (ROS) production depends on the accumulation of damaged mitochondria and affects the production of sulfonated albumin under the regulation of autophagy. Hepatocyte-derived sulfonated albumin activates HSCs through the GAL3 receptor, thereby activating the endoplasmic reticulum (ER) stress pathway and promoting profibrotic activation of HSCs. CONCLUSIONS Our study demonstrated that sulfonated albumin activated HSCs through GAL3, thereby accelerating NAFLD-related liver fibrosis. Serum sulfonated albumin may be a potential diagnostic marker for liver fibrosis and an important target for the treatment of NAFLD-related liver fibrosis.
Collapse
Affiliation(s)
- Tiantian Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Minghao Sui
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Miaomiao Tian
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Nijin Wu
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Songbo Zhao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yingchun Wang
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yinuo Yang
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shujun Ma
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Deyan Jiao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Le Wang
- Department of Health Care Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Guo S, Zhang Q, Guo Y, Yin X, Zhang P, Mao T, Tian Z, Li X. The role and therapeutic targeting of the CCL2/CCR2 signaling axis in inflammatory and fibrotic diseases. Front Immunol 2025; 15:1497026. [PMID: 39850880 PMCID: PMC11754255 DOI: 10.3389/fimmu.2024.1497026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway. Additionally, further in-depth research is needed to explore the clinical significance of the CCL2/CCR2 axis in fibrotic conditions affecting different organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Cheng JY, Shan GY, Wan H, Liu YY, Zhang YX, Shi WN, Li HJ. Hepatitis B virus-induced cirrhosis: Mechanisms, global variations, and treatment advances. World J Hepatol 2024; 16:1515-1523. [DOI: 10.4254/wjh.v16.i12.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
We focus on hepatitis B virus (HBV)-induced cirrhosis, global differences, and the evolution of antiviral treatment strategies. Chronic HBV (CHB) infection affects more than 250 million people globally, leading to cirrhosis and hepatocellular carcinoma. The aim of this article was to synthesize the current understanding of the pathophysiological mechanisms and clinical consequences of HBV-induced cirrhosis, and explore differences in disease progression between geographic regions. Disease progression varies across regions due to differences in HBV subtypes, transmission routes, and immune responses. The challenge of late diagnosis and treatment, particularly in resource-limited areas, highlights the urgency and importance of CHB service expansion. Modern nucleos(t)ide analogues, such as tenofovir and entecavir, have emerged as the main therapeutic regimens to improve clinical outcomes in patients by suppressing viral replication and attenuating liver fibrosis. However, drug resistance challenges highlight the need for ongoing research and personalized treatment strategies. This article highlights the mechanisms and impact of cirrhosis progression in the context of CHB infection, aiming to reduce the incidence of cirrhosis and its serious consequences, thereby improving the long-term health of CHB patients worldwide, especially in Africa.
Collapse
Affiliation(s)
- Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hui Wan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yi-Ying Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Yu-Xin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wen-Na Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hai-Jun Li
- Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
8
|
Zhu S, Chen X, Sun L, Li X, Chen Y, Li L, Suo X, Xu C, Ji M, Wang J, Wang H, Zhang L, Meng X, Huang C, Li J. N6-Methyladenosine modification of circDcbld2 in Kupffer cells promotes hepatic fibrosis via targeting miR-144-3p/Et-1 axis. Acta Pharm Sin B 2024. [DOI: 10.1016/j.apsb.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
9
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
10
|
Feng Z, Fu J, Tang L, Bao C, Liu H, Liu K, Yang T, Yuan JH, Zhou CB, Zhang C, Xu R, Wang FS. HBeAg induces neutrophils activation impairing NK cells function in patients with chronic hepatitis B. Hepatol Int 2024; 18:1122-1134. [PMID: 38829576 DOI: 10.1007/s12072-024-10689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The role of neutrophils in hepatitis B virus (HBV) infection has been a subject of debate due to their involvement in antiviral responses and immune regulation. This study aimed to elucidate the neutrophil characteristics in patients with chronic hepatitis B (CHB). METHODS Through flow cytometry and ribonucleic acid-sequencing analysis, the phenotypes and counts of neutrophils were analyzed in patients with CHB. Moreover, the effects of HBeAg on neutrophils and the corresponding pattern recognition receptors were identified. Simultaneously, the cross-talk between neutrophils and natural killer (NK) cells was investigated. RESULTS Neutrophils were activated in patients with CHB, characterized by higher expression levels of programmed death-ligand 1 (PD-L1), cluster of differentiation 86, and interleukin-8, and lower levels of CXC motif chemokine receptor (CXCR) 1 and CXCR2. Hepatitis B e antigen (HBeAg) partially induces neutrophil activation through the Toll-like receptor 2 (TLR2). A consistent upregulation of the TLR2 and HBeAg expression was observed in patients with CHB. Notably, the genes encoding molecules pivotal for NK-cell function upon NK receptor engagement enriched in neutrophils after HBeAg activation. The HBeAg-activated neutrophils demonstrated the ability to decrease the production of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in NK cells, while the PD-1 and PD-L1 pathways partially mediated the immunosuppression. CONCLUSIONS The immunosuppression of neutrophils induced by HBeAg suggests a novel pathogenic mechanism contributing to immune tolerance in patients with CHB.
Collapse
Affiliation(s)
- Zhiqian Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lili Tang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chunmei Bao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Honghong Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kai Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Wu N, Ma S, Ding H, Cao H, Liu T, Tian M, Liu Q, Bian H, Yu Z, Liu C, Wang L, Feng Y, Wu H, Qi J. SH-Alb inhibits phenotype remodeling of pro-fibrotic macrophage to attenuate liver fibrosis through SIRT3-SOD2 axis. Biomed Pharmacother 2024; 176:116919. [PMID: 38876053 DOI: 10.1016/j.biopha.2024.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Albumin has a variety of biological functions, such as immunomodulatory and antioxidant activity, which depends largely on its thiol activity. However, in clinical trials, the treatment of albumin by injection of commercial human serum albumin (HSA) did not achieve the desired results. Here, we constructed reduced modified albumin (SH-Alb) for in vivo and in vitro experiments to investigate the reasons why HSA did not achieve the expected effects. SH-Alb was found to delay the progression of liver fibrosis in mice by alleviating liver inflammation and oxidative stress. Although R-Alb also has some of the above roles, the effect of SH-Alb is more remarkable. Mechanism studies have shown that SH-Alb reduces the release of pro-inflammatory and pro-fibrotic cytokine through the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, SH-Alb deacetylates SOD2, a key enzyme of mitochondrial reactive oxygen species (ROS) production, by promoting the expression of SIRT3, thereby reducing the accumulation of ROS. Finally, macrophages altered by R-Alb or SH-Alb can inhibit the activation of hepatic stellate cells and endothelial cells, further delaying the progression of liver fibrosis. These results indicate that SH-Alb can remodel the phenotype of macrophages, thereby affecting the intrahepatic microenvironment and delaying the process of liver fibrosis. It provides a good foundation for the application of albumin in clinical treatment.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Han Ding
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Huiling Cao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Tiantian Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Qiqi Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Zhen Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Chenxi Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Le Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yuemin Feng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Hao Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, PR China.
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, PR China.
| |
Collapse
|
12
|
Zhou Y, Yan J, Huang H, Liu L, Ren L, Hu J, Jiang X, Zheng Y, Xu L, Zhong F, Li X. The m 6A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis 2024; 15:189. [PMID: 38443347 PMCID: PMC10914723 DOI: 10.1038/s41419-024-06509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Evidence for the involvement of N6-Methyladenosine (m6A) modification in the etiology and progression of liver fibrosis has emerged and holds promise as a therapeutic target. Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is a newly identified m6A-binding protein that functions to enhance mRNA stability and translation. However, its role as an m6A-binding protein in liver fibrosis remains elusive. Here, we observed that IGF2BP2 is highly expressed in liver fibrosis and activated hepatic stellate cells (HSCs), and inhibition of IGF2BP2 protects against HSCs activation and liver fibrogenesis. Mechanistically, as an m6A-binding protein, IGF2BP2 regulates the expression of Aldolase A (ALDOA), a key target in the glycolytic metabolic pathway, which in turn regulates HSCs activation. Furthermore, we observed that active glycolytic metabolism in activated HSCs generates large amounts of lactate as a substrate for histone lactylation. Importantly, histone lactylation transforms the activation phenotype of HSCs. In conclusion, our findings reveal the essential role of IGF2BP2 in liver fibrosis by regulating glycolytic metabolism and highlight the potential of targeting IGF2BP2 as a therapeutic for liver fibrosis.
Collapse
Affiliation(s)
- Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jiexi Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Precision Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - He Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lu Liu
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinjing Hu
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Xiaoxu Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lingcong Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Fupeng Zhong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Precision Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
13
|
Zhang Y, Wu D, Tian X, Chen B. From hepatitis B virus infection to acute-on-chronic liver failure: The dynamic role of hepatic macrophages. Scand J Immunol 2024; 99:e13349. [PMID: 38441398 DOI: 10.1111/sji.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 03/07/2024]
Abstract
Acute-on-chronic liver failure (ACLF) is a progressive disease that is associated with rapid worsening of clinical symptoms and high mortality. A multicentre prospective study from China demonstrated that patients with hepatitis B virus-related ACLF (HBV-ACLF) exhibited worse clinical characteristics and higher mortality rates compared to non-HBV-ACLF patients. Immune dysregulation is closely linked to the potential mechanisms of initiation and progression of ACLF. Innate immune response, which is represented by monocytes/macrophages, is up-regulated across ACLF development. This suggests that monocytes/macrophages play an essential role in maintaining the immune homeostasis of ACLF. Information that has been published in recent years shows that the immune status and function of monocytes/macrophages vary in ACLF precipitated by different chronic liver diseases. Monocytes/macrophages have an immune activation effect in hepatitis B-precipitated-ACLF, but they exhibit an immune suppression in cirrhosis-precipitated-ACLF. Therefore, this review aims to explain whether this difference affects the clinical outcome in HBV-ACLF patients as well as the mechanisms involved. We summarize the novel findings that highlight the dynamic polarization phenotype and functional status of hepatic macrophages from the stage of HBV infection to ACLF development. Moreover, we discuss how different HBV-related liver disease tissue microenvironments affect the phenotype and function of hepatic macrophages. In summary, increasing developments in understanding the differences in immune phenotype and functional status of hepatic macrophages in ACLF patients will provide new perspectives towards the effective restoration of ACLF immune homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Dongsheng Wu
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoling Tian
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
14
|
Yang J, Xu S, Cheng J, Yin X, Yan D, Li X. CXCL10 and its receptor in patients with chronic hepatitis B and their ability to predict HBeAg seroconversion during antiviral treatment with TDF. J Med Virol 2024; 96:e29516. [PMID: 38469895 DOI: 10.1002/jmv.29516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
The serum chemokine C-X-C motif ligand-10 (CXCL10) and its unique receptor (CXCR3) may predict the prognosis of patients with chronic hepatitis B (CHB) treated with tenofovir disoproxil fumarate (TDF). Nevertheless, there are few reports on the profile of CXCL10 and CXCR3 and their clinical application in HBeAg (+) CHB patients during TDF antiviral therapy. CXCL10 and CXCR3 were determined in 118 CHB patients naively treated with TDF for at least 96 weeks at baseline and at treatment weeks 12 and 24. In addition, gene set enrichment analysis was used to examine the associated dataset from Gene Expression Omnibus and explore the gene sets associated with HBeAg seroconversion (SC). The change of CXCL10 (ΔCXCL10, baseline to 48-week TDF treatment) and CXCR3 (ΔCXCR3) is closely related to the possibility of HBeAg SC of CHB patients under TDF treatment. Immunohistochemical analysis of CXCL10/CXCR3 protein in liver tissue shows that there is a significant difference between paired liver biopsy samples taken before and after 96 weeks of successful TDF treatment of CHB patients (11 pairs) but no significance for unsuccessful TDF treatment (14 pairs). Multivariate Cox analysis suggests that the ΔCXCL10 is an independent predictive indicator of HBeAg SC, and the area under the receiver operating characteristic curve of the ΔCXCL10 in CHB patients is 0.8867 (p < 0.0001). Our results suggest that a lower descending CXCL10 level is associated with an increased probability of HBeAg SC of CHB patients during TDF therapy. Moreover, liver tissue CXCL10 might be involved in the immunological process of HBeAg SC.
Collapse
Affiliation(s)
- Jiezuan Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Shaoyan Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinlin Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Xuying Yin
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Dong Yan
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Tian M, Wu N, Xie X, Liu T, You Y, Ma S, Bian H, Cao H, Wang L, Liu C, Qi J. Phosphorylation of RGS16 at Tyr168 promote HBeAg-mediated macrophage activation by ERK pathway to accelerate liver injury. J Mol Med (Berl) 2024; 102:257-272. [PMID: 38141114 DOI: 10.1007/s00109-023-02405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
Liver injury is closely associated with macrophage activation following HBV infection. Our previous study showed that only HBeAg, but not HBsAg and HBcAg, stably enhances inflammatory cytokine production in macrophages. And we also indicated that HBeAg could induce macrophage activation via TLR2 and thus aggravate the progression of liver fibrosis. However, the specific molecular mechanism of HBeAg in macrophage activation is not clear. We screened significantly overexpressed RGS16 from RNASeq results of HBeAg-stimulated macrophages and validated them with cellular assays, GSE83148 microarray dataset, and in clinical samples. Meanwhile, small interference, plasmid, and lentivirus transfection assays were used to establish cell models for knockdown and overexpression of RGS16, and q-PCR, ELISA, Transwell, and CCK-8 assays were used to analyze the role of RGS16 in HBeAg-induced macrophage activation. In addition, the upstream and downstream mechanisms of RGS16 in HBeAg-treated macrophage activation were explored using inhibitors, phostag gels, and RGS16 phosphorylation mutant plasmids. Finally, the effect of RGS16 on hepatic inflammation in murine tissues was evaluated by H&E staining, liver enzyme assay and immunofluorescence. RGS16 was significantly upregulated in HBeAg-induced macrophage activation, and its expression was enhanced with increasing HBeAg content and treatment time. Functional experiments showed that overexpression of RGS16 promoted the production of inflammatory factors TNF-α and IL-6 and boosted macrophage proliferation and migration, while knockdown of RGS16 exhibited the opposite effect. Mechanistically, we discovered that RGS16 is regulated by the TLR2/P38/STAT5 signaling pathway. Meanwhile, RGS16 enhanced ERK phosphorylation via its own Tyr168 phosphorylation to contribute to macrophage activation, thereby accelerating liver injury. Finally, in mice, overexpression of RGS16 markedly strengthened liver inflammation. HBeAg upregulates RGS16 expression through the TLR2-P38-STAT5 axis, and the upregulated expression of RGS16 enhances macrophage activation and accelerates liver injury by promoting ERK phosphorylation. In this process, phosphorylation of Tyr168 is necessary for RGS16 to function. KEY MESSAGES: RGS16 boosted HBeAg-induced macrophage inflammation, proliferation, and migration. Tyr168 phosphorylation of RGS16 affected by ERK promoted macrophage activation. HBeAg upregulated the expression of RGS16 through TLR2/P38/STAT5 signal pathway. RGS16 promoted liver injury by regulating macrophage functions in mouse model.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoyu Xie
- Shandong Provincial Clinical Research Center for Digestive Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Tiantian Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Yajing You
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Huiling Cao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Le Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Chenxi Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China.
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
16
|
Peng D, Li J, Li Y, Bai L, Xiong A, He X, Li X, Ran Q, Zhang L, Jiang M, Wang J, Leung ELH, Yang P, Li G. MMP14 high macrophages orchestrate progressive pulmonary fibrosis in SR-Ag-induced hypersensitivity pneumonitis. Pharmacol Res 2024; 200:107070. [PMID: 38218353 DOI: 10.1016/j.phrs.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Fibrotic hypersensitivity pneumonitis (FHP) is a fatal interstitial pulmonary disease with limited treatment options. Lung macrophages are a heterogeneous cell population that exhibit distinct subsets with divergent functions, playing pivotal roles in the progression of pulmonary fibrosis. However, the specific macrophage subpopulations and underlying mechanisms involved in the disease remain largely unexplored. In this study, a decision tree model showed that matrix metalloproteinase-14 (MMP14) had higher scores for important features in the up-regulated genes in macrophages from mice exposed to the Saccharopolyspora rectivirgula antigen (SR-Ag). Using single-cell RNA sequencing (scRNA-seq) analysis of hypersensitivity pneumonitis (HP) mice profiles, we identified MMP14high macrophage subcluster with a predominant M2 phenotype that exhibited higher activity in promoting fibroblast-to myofibroblast transition (FMT). We demonstrated that suppressing toll-like receptor 2 (TLR2) and nuclear factor kappa-B (NF-κB) could attenuate MMP14 expression and exosome secretion in macrophages stimulation with SR-Ag. The exosomes derived from MMP14-overexpressing macrophages were found to be more effective in regulating the transition of fibroblasts through exosomal MMP14. Importantly, it was observed that the transfer of MMP14-overexpressing macrophages into mice promoted lung inflammation and fibrosis induced by SR-Ag. NSC-405020 binding to the hemopexin domain (PEX) of MMP-14 ameliorated lung inflammation and fibrosis induced by SR-Ag in mice. Thus, MMP14-overexpressing macrophages may be an important mechanism contributing to the exacerbation of allergic reactions. Our results indicated that MMP14 in macrophages has the potential to be a therapeutic target for HP.
Collapse
Affiliation(s)
- Dan Peng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Juan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lingling Bai
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Pingchang Yang
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen 518060, China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China.
| |
Collapse
|
17
|
Sun F, Li J, Cao L, Yan C. Mycobacterium tuberculosis virulence protein ESAT-6 influences M1/M2 polarization and macrophage apoptosis to regulate tuberculosis progression. Genes Genomics 2024; 46:37-47. [PMID: 37971619 DOI: 10.1007/s13258-023-01469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Tuberculosis (TB) is an infectious disease caused by infection with Mycobacterium tuberculosis (Mtb), and it remains one of the major threats to human health worldwide. To our knowledge, the polarization of M1/M2 macrophages were critical innate immune cells which play important roles in regulating the immune response during TB progression. OBJECTIVE We aimed to explore the potential mechanisms of M1/M2 macrophage polarization in TB development. METHODS THP-1 macrophages were treated with early secreted antigenic target of 6 kDa (ESAT-6) protein for an increasing time. The polarization profiles, apoptosis levels of M1 and M2 macrophages were detected by RT-qPCR, immunofluorescence, Western blot and flow cytometry. RESULTS ESAT-6 initially promoted the generation of pro-inflammatory M1-polarized macrophages in THP-1 cells within 24 h, which were suppressed by further ESAT-6 treatment at 30-42 h. Interestingly, ESAT-6 continuously promoted M2 polarization of THP-1 cells, thereby maintaining the anti-inflammatory response in a time-dependent manner. In addition, ESAT-6 promoted apoptotic cell death in M1-polarized macrophages, which had little effects on apoptosis of M2-phenotype of macrophages. Then, the potential underlying mechanisms were uncovered, and we verified that ESAT-6 increased the protein levels of TLR4, MyD88 and NF-κB to activate the TLR4/MyD88/NF-κB pathway within 24 h, and this signal pathway was significantly inactivated at 36 h post-treatment. Interestingly, the following experiments confirmed that ESAT-6 TLR4/MyD88/NF-κB pathway-dependently regulated M1/M2 polarization and apoptosis of macrophage in THP-1 cells. CONCLUSION Our study investigated the detailed effects and mechanisms of M1/M2 macrophages in regulating innate responses during TB development, which provided a new perspective on the development of treatment strategies for this disease.
Collapse
Affiliation(s)
- Feng Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Pulmonary and Critical Care Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyu Shan Road, Urumqi, 830054, China
| | - Jiangbo Li
- Xinjiang Medical University, Urumqi, China
| | - Ling Cao
- Inspection Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunzi Yan
- Pulmonary and Critical Care Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, No.137, South Liyu Shan Road, Urumqi, 830054, China.
| |
Collapse
|
18
|
Wang Z, Hu D, Pei G, Zeng R, Yao Y. Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning. Front Immunol 2023; 14:1288699. [PMID: 38130724 PMCID: PMC10733527 DOI: 10.3389/fimmu.2023.1288699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background Lupus nephritis (LN) is a common and severe glomerulonephritis that often occurs as an organ manifestation of systemic lupus erythematosus (SLE). However, the complex pathological mechanisms associated with LN have hindered the progress of targeted therapies. Methods We analyzed glomerular tissues from 133 patients with LN and 51 normal controls using data obtained from the GEO database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was utilized to identify key gene modules. The least absolute shrinkage and selection operator (LASSO) and random forest were used to identify hub genes. We also analyzed immune cell infiltration using CIBERSORT. Additionally, we investigated the relationships between hub genes and clinicopathological features, as well as examined the distribution and expression of hub genes in the kidney. Results A total of 270 DEGs were identified in LN. Using weighted gene co-expression network analysis (WGCNA), we clustered these DEGs into 14 modules. Among them, the turquoise module displayed a significant correlation with LN (cor=0.88, p<0.0001). Machine learning techniques identified four hub genes, namely CD53 (AUC=0.995), TGFBI (AUC=0.997), MS4A6A (AUC=0.994), and HERC6 (AUC=0.999), which are involved in inflammation response and immune activation. CIBERSORT analysis suggested that these hub genes may contribute to immune cell infiltration. Furthermore, these hub genes exhibited strong correlations with the classification, renal function, and proteinuria of LN. Interestingly, the highest hub gene expression score was observed in macrophages. Conclusion CD53, TGFBI, MS4A6A, and HERC6 have emerged as promising candidate driver genes for LN. These hub genes hold the potential to offer valuable insights into the molecular diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Zheng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Che Z, Zhou Z, Li SQ, Gao L, Xiao J, Wong NK. ROS/RNS as molecular signatures of chronic liver diseases. Trends Mol Med 2023; 29:951-967. [PMID: 37704494 DOI: 10.1016/j.molmed.2023.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The liver can succumb to oxidant damage during the development of chronic liver diseases. Despite their physiological relevance to hepatic homeostasis, excessive reactive oxygen/nitrogen species (ROS/RNS) production under pathological conditions is detrimental to all liver constituents. Chronic oxidative stress coupled to unresolved inflammation sets in motion the activation of profibrogenic hepatic stellate cells (HSCs) and later pathogenesis of liver fibrosis, cirrhosis, and liver cancer. The liver antioxidant and repair systems, along with autophagic and ferroptotic machineries, are implicated in the onset and trajectory of disease development. In this review, we discuss the ROS/RNS-related mechanisms underlying liver fibrosis of distinct etiologies and highlight preclinical and clinical trials of antifibrotic therapies premised on remediating oxidative/nitrosative stress in hepatocytes or targeting HSC activation.
Collapse
Affiliation(s)
- Zhaodi Che
- Clinical Research Institute, Institute of Obesity and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Si-Qi Li
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Jia Xiao
- Clinical Research Institute, Institute of Obesity and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China; Shandong Provincial Key Laboratory for Clinical Research of Liver Diseases, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266001, China.
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
20
|
Yang K, Sun B, Zhang S, Pan Y, Fang J. RDW-SD is Superior to RDW-CV in Reflecting Liver Fibrosis Stage in Patients with Chronic Hepatitis B. Infect Drug Resist 2023; 16:6881-6891. [PMID: 37920477 PMCID: PMC10619233 DOI: 10.2147/idr.s427047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Purpose The clinical significance of the red blood cell distribution width (RDW)-coefficient of variation (RDW-CV) has been recognized in numerous diseases, but few studies have investigated the usefulness of RDW-standard deviation (RDW-SD). This study aimed to compare the utility of RDW-SD and RDW-CV in evaluating liver fibrosis stage in patients with chronic hepatitis B (CHB). Patients and Methods In this retrospective study, we enrolled 720 treatment-naïve CHB patients and 578 healthy controls, and evaluated their clinical parameters. In CHB patients, the associations between RDW-CV and liver fibrosis stage were analyzed as compared to RDW-SD using one-way analysis of variance (ANOVA), Spearman's rank correlation, student's t-test, binary logistic regression, and receiver operating characteristic (ROC) curve. Results RDW-SD, rather than RDW-CV was significantly elevated in CHB patients compared with healthy controls. Correlation analysis showed a stronger association between RDW-SD and liver fibrosis stage than RDW-CV in CHB patients. RDW-CV and RDW-SD are both independent predictors of significant fibrosis. For the diagnosis of significant fibrosis, the area under the receiver operating characteristic curve (AUC) for RDW-CV was 0.599, while for RDW-SD, it was 0.706. RDW-to-platelet ratio (RPR), a novel index for liver fibrosis calculated as RDW-CV/platelet, exhibited an AUC of 0.730. This AUC increased to 0.752 when RDW-CV in the RPR formula was replaced with RDW-SD. Additionally, subgroup analyses based on age, gender, and HBeAg status showed that the AUC for RDW-SD in diagnosing significant fibrosis was significantly greater than that for RDW-CV, with statistically significant differences. Conclusion RDW-SD showed superiority in reflecting liver fibrosis stage and diagnosing liver significant fibrosis than RDW-CV in treatment-naïve CHB patients.
Collapse
Affiliation(s)
- Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, 230601, People’s Republic of China
| | - Beibei Sun
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Shicheng Zhang
- School of Public Health and Health Management, Anhui Medical College, Hefei, Anhui, 230601, People’s Republic of China
| | - Ying Pan
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, 230601, People’s Republic of China
| | - Jun Fang
- Faculty of Pharmaceutical Science, Sojo University, Kumamoto, 860-0082, Japan
| |
Collapse
|
21
|
Bao Z, Chen X, Li Y, Jiang W, Pan D, Ma L, Wu Y, Chen Y, Chen C, Wang L, Zhao S, Wang T, Lu WY, Ma C, Wang S. The hepatic GABAergic system promotes liver macrophage M2 polarization and mediates HBV replication in mice. Antiviral Res 2023; 217:105680. [PMID: 37494980 DOI: 10.1016/j.antiviral.2023.105680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Macrophages display functional phenotypic plasticity. Hepatitis B virus (HBV) infection induces polarizations of liver macrophages either to M1-like pro-inflammatory phenotype or to M2-like anti-inflammatory phenotype. Gamma-aminobutyric acid (GABA) signaling exists in various non-neuronal cells including hepatocytes and some immune cells. Here we report that macrophages express functional GABAergic signaling components and activation of type A GABA receptors (GABAARs) promotes M2-polarization thus advancing HBV replication. Notably, intraperitoneal injection of GABA or the GABAAR agonist muscimol increased HBV replication in HBV-carrier mice that were generated by hydrodynamical injection of adeno-associated virus/HBV1.2 plasmids (pAAV/HBV1.2). The GABA-augmented HBV replication in HBV-carrier mice was significantly reduced by the GABAAR inhibitor picrotoxin although picrotoxin had no significant effect on serum HBsAg levels in control HBV-carrier mice. Depletion of liver macrophages by liposomal clodronate treatment also significantly reduced the GABA-augmented HBV replication. Yet adoptive transfer of liver macrophages isolated from GABA-treated donor HBV-carrier mice into the liposomal clodronate-pretreated recipient HBV-carrier mice restored HBV replication. Moreover, GABA or muscimol treatment increased the expression of "M2" cytokines in macrophages, but had no direct effect on HBV replication in the HepG2.2.15 cells, HBV1.3-transfected Huh7, HepG2, or HepaRG cells, or HBV-infected Huh7-NTCP cells. Taken together, these results suggest that increasing GABA signaling in the liver promotes HBV replication in HBV-carrier mice by suppressing the immunity of liver macrophages, but not by increasing the susceptibility of hepatocytes to HBV infection. Our study shows that a previously unknown GABAergic system in liver macrophage has an essential role in HBV replication.
Collapse
Affiliation(s)
- Ziyou Bao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiaotong Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Li
- Translational Medical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenshan Jiang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Di Pan
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China; Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lushun Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunxiao Wu
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yunling Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China; Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chaojia Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Liyuan Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Songbo Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tixiao Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, Canada.
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
22
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
23
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
24
|
Yang K, Pan Y, Liu L, Sun B, Shi W. Serum Alpha-Fetoprotein as a Predictor of Liver Fibrosis in HBeAg-Positive Chronic Hepatitis B Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050923. [PMID: 37241155 DOI: 10.3390/medicina59050923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Non-invasive methods for evaluating liver fibrosis have been a crucial focus of clinical research. The aim of the current study is to assess the accuracy of serum alpha-fetoprotein (AFP) in determining the stage of liver fibrosis in patients with chronic hepatitis B (CHB) who are positive for HBeAg. Materials and Methods: The current study included a total of 276 HBeAg-positive CHB patients who underwent liver biopsy. The levels of serum AFP were measured in these patients using electrochemiluminescence immunoassays. The correlations between serum AFP levels and other laboratory parameters were analyzed using Spearman's correlation analysis. Binary logistic regression analysis was performed to determine the independent associations between serum AFP levels and liver fibrosis. The diagnostic performance of serum AFP and other non-invasive markers was evaluated using receiver operating characteristic (ROC) curves. Results: A total of 59 (21.4%) patients were found to have elevated levels of serum AFP (>7 ng/mL). These patients displayed a significantly higher proportion of both advanced fibrosis and cirrhosis compared to those with normal serum AFP levels (0-7 ng/mL). The level of serum AFP was positively associated with levels of serum globulin (GLB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL), as well as the AST-to-platelet ratio (APRI), fibrosis-4 (FIB-4), and Scheuer's classification, and negatively correlated with platelet (PLT) counts. Furthermore, serum AFP was found to be independently associated with significant fibrosis, advanced fibrosis, and cirrhosis. The results of the ROC analysis showed that serum AFP was an effective predictor of significant fibrosis, advanced fibrosis, and cirrhosis, with an area under the receiver operating characteristic curve (AUROC) of 0.773 (95% CI: 0.721-0.821), 0.889 (95% CI: 0.847-0.923), and 0.925 (95% CI: 0.887-0.953), respectively. These values are higher than those of the APRI and FIB-4. Conclusions: Serum AFP could serve as a valuable supplemental biomarker for determining the severity of liver fibrosis in HBeAg-positive patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei 230601, China
| | - Ying Pan
- Department of Medical Technology, Anhui Medical College, Hefei 230601, China
| | - Liwei Liu
- Department of Medical Technology, Anhui Medical College, Hefei 230601, China
| | - Beibei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shi
- Department of Medical Technology, Anhui Medical College, Hefei 230601, China
| |
Collapse
|
25
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
26
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
27
|
Li XY, Luo YT, Wang YH, Yang ZX, Shang YZ, Guan QX. Anti-inflammatory effect and antihepatoma mechanism of carrimycin. World J Gastroenterol 2023; 29:2134-2152. [PMID: 37122599 PMCID: PMC10130968 DOI: 10.3748/wjg.v29.i14.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND New drugs are urgently needed for the treatment of liver cancer, a feat that could be feasibly accomplished by finding new therapeutic purposes for marketed drugs to save time and costs. As a new class of national anti-infective drugs, carrimycin (CAM) has strong activity against gram-positive bacteria and no cross resistance with similar drugs. Studies have shown that the components of CAM have anticancer effects. AIM To obtain a deeper understanding of CAM, its distribution, metabolism and anti-inflammatory effects were assessed in the organs of mice, and its mechanism of action against liver cancer was predicted by a network pharmacology method. METHODS In this paper, the content of isovaleryl spiramycin III was used as an index to assess the distribution and metabolism of CAM and its effect on inflammatory factors in various mouse tissues and organs. Reverse molecular docking technology was utilized to determine the target of CAM, identify each target protein based on disease type, and establish a target protein-disease type network to ascertain the effect of CAM in liver cancer. Then, the key action targets of CAM in liver cancer were screened by a network pharmacology method, and the core targets were verified by molecular docking and visual analyses. RESULTS The maximum CAM concentration was reached in the liver, kidney, lung and spleen 2.5 h after intragastric administration. In the intestine, the maximum drug concentration was reached 0.5 h after administration. In addition, CAM significantly reduced the interleukin-4 (IL-4) levels in the lung and kidney and especially the liver and spleen; moreover, CAM significantly reduced the IL-1β levels in the spleen, liver, and kidney and particularly the small intestine and lung. CAM is predicted to regulate related pathways by acting on many targets, such as albumin, estrogen receptor 1, epidermal growth factor receptor and caspase 3, to treat cancer, inflammation and other diseases. CONCLUSION We determined that CAM inhibited inflammation. We also predicted the complex multitargeted effects of CAM that involve multiple pathways and the diversity of these effects in the treatment of liver cancer, which provides a basis and direction for further clinical research.
Collapse
Affiliation(s)
- Xiu-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Ting Luo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yan-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhi-Xin Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Zhou Shang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Qing-Xia Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
28
|
You H, Wang X, Ma L, Zhang F, Zhang H, Wang Y, Pan X, Zheng K, Kong F, Tang R. Insights into the impact of hepatitis B virus on hepatic stellate cell activation. Cell Commun Signal 2023; 21:70. [PMID: 37041599 PMCID: PMC10088164 DOI: 10.1186/s12964-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
During chronic hepatitis B virus (HBV) infection, hepatic fibrosis is a serious pathological condition caused by virus-induced liver damage. The activation of hepatic stellate cells (HSCs) is a central event in the occurrence and progression of liver fibrosis. Although accumulating evidence has shown that HBV directly stimulates HSC activation, whether the virus infects and replicates in HSCs remains controversial. Inflammation is one of the obvious characteristics of chronic HBV infection, and it has been demonstrated that persistent inflammation has a predominant role in triggering and maintaining liver fibrosis. In particular, the regulation of HSC activation by HBV-related hepatocytes via various inflammatory modulators, including TGF-β and CTGF, in a paracrine manner has been reported. In addition to these inflammation-related molecules, several inflammatory cells are essential for the progression of HBV-associated liver fibrosis. Monocytes, macrophages, Th17 cells, NK cells, as well as NKT cells, participate in the modulation of HBV-related liver fibrosis by interacting with HSCs. This review summarizes current findings on the effects of HBV and the relevant molecular mechanisms involved in HSC activation. Because HSC activation is essential for liver fibrosis, targeting HSCs is an attractive therapeutic strategy to prevent and reverse hepatic fibrosis induced by HBV infection. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Huanyang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
29
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
30
|
Zhang N, Yao H, Zhang Z, Li Z, Chen X, Zhao Y, Ju R, He J, Pan H, Liu X, Lv Y. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14:1131588. [PMID: 36875101 PMCID: PMC9978172 DOI: 10.3389/fimmu.2023.1131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayi He
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heli Pan
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Sun L, Yu J, Zhang N, Wang Y, Qi J. M1 macrophages may be effective adjuvants for promoting Th‑17 differentiation in HBeAg positive hepatitis patients with ALT ≤2ULN. Mol Med Rep 2023; 27:63. [PMID: 36734259 PMCID: PMC9926867 DOI: 10.3892/mmr.2023.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) infection can activate macrophages to accelerate liver disease progression, including inflammation and fibrosis. However, the exact mechanism remains undetermined. The present study assessed the effects of macrophage polarization and the related cytokines on Th‑17 differentiation in HBeAg positive individuals with a HBV infection, and also evaluated the potential association of Th‑17 cell frequency with the severity of liver injury. A cross‑sectional study design was used to collect the clinical parameters, blood samples and liver tissue samples of patients with alanine transaminase £2x upper limit of normal and confirmed hepatitis B who underwent liver puncture in Qishan Hospital between January 2019‑December 2021. Macrophage and Th‑17 cell related factors were assayed using ELISA. The expression and quantification of cell surface antigen and intracellular markers in cells were assessed using flow cytometry. Pathological staining, including hematoxylin and eosin, reticular fiber staining and immunohistochemical staining were used to assess inflammation and fibrosis in the liver tissue. In the peripheral blood of patients with HBV infection, the number of CD14+ macrophages was significantly increased compared with the healthy control, especially in the hepatitis B e antigen (HBeAg) positive group. CD14+ macrophages were predominantly of the M1 type based on the assessment of the phenotype using flow cytometry and cytokine secretion. Furthermore, the percentage of M1 phenotype and related cytokines were positively correlated with Th‑17 differentiation. IL‑17A secreted by Th‑17 was positively correlated with the degree of liver inflammation and fibrosis, as well as with the severity of liver disease, which indicated that the differentiation of Th‑17 may be involved in the progression of liver disease. HBeAg may promote Th‑17 differentiation and IL‑17A production by M1 macrophages to accelerate the pathogenesis of liver inflammation and fibrosis in CHB patients.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Hepatology, Yantai Qishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jianbin Yu
- Department of Oral and Maxillofacial Surgery, Yantai Stomatological Hospital, Yantai, Shandong 264000, P.R. China
| | - Nannan Zhang
- Department of Hepatology, Zaozhuang Central Hospital of Shandong Healthcare Group, Zaozhuang, Shandong 277800, P.R. China
| | - Yanyan Wang
- Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China,Correspondence to: Professor Jianni Qi, Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, P.R. China, E-mail:
| |
Collapse
|
32
|
Bai YM, Liang S, Zhou B. Revealing immune infiltrate characteristics and potential immune-related genes in hepatic fibrosis: based on bioinformatics, transcriptomics and q-PCR experiments. Front Immunol 2023; 14:1133543. [PMID: 37122694 PMCID: PMC10140356 DOI: 10.3389/fimmu.2023.1133543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Background The occurrence and progression of hepatic fibrosis (HF) is accompanied by inflammatory damage. Immune genes play a pivotal role in fibrogenesis and inflammatory damage in HF by regulating immune cell infiltration. However, the immune mechanisms of HF are inadequately studied. Therefore, this research aims to identify the immune genes and biological pathway which involved in fibrosis formation and inflammatory damage in HF and explore immune target-based therapeutics for HF. Methods The expression dataset GSE84044 of HF was downloaded from the GEO database. The crucial module genes for HF were screened according to weighted gene co-expression network analysis (WGCNA). The crucial module genes were mapped to immune-related genes obtained from the ImmPort database to obtain the hepatic fibrosis immune genes (HFIGs). In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed on HFIGs. Then, the protein-protein interaction (PPI) network was conducted on HFIGs and hub genes were identified from the PPI network. Moreover, immune infiltration analysis was performed to identified correlation between hub gene and immune cell infiltration. To verify the reliability of the GSE84044 expression profile data analysis, a rat model of CCl4-induced HF was established, followed by transcriptome sequencing and immunofluorescence analysis and quantitative reverse transcription (q-PCR) experiments were performed in HF rats and normal rat liver tissues. Finally, CMAP platform was used to explore immune target-based therapeutics for HF. Results In the bioinformatics analysis of GSE84044 data, 98 HFIGs were screened. These genes were mainly involved in inflammation-related biological pathways such as NOD-like receptor signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway and PI3K-Akt signaling pathway. From the PPI network, 10 hub genes were identified, including CXCL8, IL18, CXCL10, CD8A, IL7, PTPRC, CCL5, IL7R, CXCL9 and CCL2. Immune infiltration analysis showed that immune cells like neutrophils, natural killer (NK) cells, macrophages M1 and macrophages M2 were significantly correlated with the hepatic fibrosis process and hub gene expression was significantly correlated with these immune cells. Notably, most of the biological pathways HFIGs riched and all the hub gene expression except CXCL8 were validated in subsequent transcriptome and qRCR experiments. Finally, 15 small molecule compounds with the potential to reverse the high expression of hub genes were screen out as potential therapeutic agents for HF. Conclusion The immune genes CXCL8, IL18, CXCL10, CD8A, IL7, PTPRC, CCL5, IL7R, CXCL9 and CCL2 may play an essential role in the fibrosis formation and inflammatory damage in HF. The outcomes of this research provide a basis for the study of the immune mechanisms of HF and contribute to the diagnosis and prevention and treatment of HF in clinical practice.
Collapse
Affiliation(s)
- Yan-Ming Bai
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Shuang Liang
- Yinchuan Hospital of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Bo Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence, Ningxia Medical University, Yinchuan, China
- *Correspondence: Bo Zhou,
| |
Collapse
|
33
|
You Y, Liu C, Liu T, Tian M, Wu N, Yu Z, Zhao F, Qi J, Zhu Q. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease. Free Radic Biol Med 2022; 193:808-819. [PMID: 36336231 DOI: 10.1016/j.freeradbiomed.2022.10.322] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a leading cause of chronic liver disease worldwide with limited therapeutic options. The role of fibronectin type III domain-containing protein 3B (FNDC3B), an important regulator of metabolism, in ALD, and the underlying mechanism as well as its potential implication in ALD therapeutic strategies remain unknown. METHODS Hepatocyte-specific FNDC3B knockdown or control C57BL/6 N mice received a Lieber-DeCarli diet for four weeks, followed by oral gavage (chronic-binge). Primary mouse hepatocytes and cell lines were used for in vitro studies. Liver injury, hepatic steatosis, and lipid peroxidation were assessed. RESULTS In cultured cells and mouse livers, alcohol exposure increased FNDC3B expression. Hepatocyte-specific FNDC3B deletion aggravated alcohol-induced liver steatosis via AMP-activated protein kinase (AMPK) inhibition. In vitro, FNDC3B expression was negatively regulated by miR-192-5p. Furthermore, FNDC3B deletion significantly exacerbated ethanol-mediated lipid peroxidation. The RNA sequence assay revealed a connection between FNDC3B and ferroptosis, which was verified by the administration of the ferroptosis inhibitor ferrostatin-1 (Fer-1). Additionally, FNDC3B inhibition-mediated AMPK inactivation downregulated transferrin expression, which was associated with marked iron overload and ferroptosis. CONCLUSIONS This study elucidated the critical role of FNDC3B in preventing hepatic steatosis and ferroptosis in response to chronic alcohol consumption. Our findings indicate that FNDC3B is a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Yajing You
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tiantian Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhen Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Fenglin Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
34
|
Chen T, Shi Z, Zhao Y, Meng X, Zhao S, Zheng L, Han X, Hu Z, Yao Q, Lin H, Du X, Zhang K, Han T, Hong W. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway. BMC Med 2022; 20:335. [PMID: 36171606 PMCID: PMC9520944 DOI: 10.1186/s12916-022-02523-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases. The dysregulation of liver sinusoidal endothelial cell (LSEC) phenotype is a critical early event in the fibrotic process. However, the biological function of lncRNAs in LSEC still remains unclear. METHODS The expression level of lncRNA Airn was evaluated in both human fibrotic livers and serums, as well as mouse fibrotic livers. Gain- and loss-of-function experiments were performed to detect the effect of Airn on LSEC differentiation and hepatic stellate cell (HSC) activation in liver fibrosis. Furthermore, RIP, RNA pull-down-immunoblotting, and ChIP experiments were performed to explore the underlying mechanisms of Airn. RESULTS We have identified Airn was significantly upregulated in liver tissues and LSEC of carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Moreover, the expression of AIRN in fibrotic human liver tissues and serums was remarkably increased compared with healthy controls. In vivo studies showed that Airn deficiency aggravated CCl4- and bile duct ligation (BDL)-induced liver fibrosis, while Airn over-expression by AAV8 alleviated CCl4-induced liver fibrosis. Furthermore, we revealed that Airn maintained LSEC differentiation in vivo and in vitro. Additionally, Airn inhibited HSC activation indirectly by regulating LSEC differentiation and promoted hepatocyte (HC) proliferation by increasing paracrine secretion of Wnt2a and HGF from LSEC. Mechanistically, Airn interacted with EZH2 to maintain LSEC differentiation through KLF2-eNOS-sGC pathway, thereby maintaining HSC quiescence and promoting HC proliferation. CONCLUSIONS Our work identified that Airn is beneficial to liver fibrosis by maintaining LSEC differentiation and might be a serum biomarker for liver fibrogenesis.
Collapse
Affiliation(s)
- Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanmian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoxiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sicong Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhimei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huajiang Lin
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Xiaoxiao Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
35
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|
36
|
Xie X, Lv H, Liu C, Su X, Yu Z, Song S, Bian H, Tian M, Qin C, Qi J, Zhu Q. Correction: HBeAg mediates inflammatory functions of macrophages by TLR2 contributing to hepatic fibrosis. BMC Med 2022; 20:180. [PMID: 35509049 PMCID: PMC9069840 DOI: 10.1186/s12916-022-02392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xiaoyu Xie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Huanran Lv
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaonan Su
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhen Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shouyang Song
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China.
| | - Qiang Zhu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China. .,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
37
|
Yu Z, Xie X, Su X, Lv H, Song S, Liu C, You Y, Tian M, Zhu L, Wang L, Qi J, Zhu Q. ATRA-mediated-crosstalk between stellate cells and Kupffer cells inhibits autophagy and promotes NLRP3 activation in acute liver injury. Cell Signal 2022; 93:110304. [DOI: 10.1016/j.cellsig.2022.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
|
38
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|