1
|
Narasimhan K, Tint MT, Chen L, Mir SA, Sadananthan SA, Michael N, Ramasamy A, Tan KML, Mishra P, Bendt AK, Tan KH, Cameron-Smith D, Chong YS, Gluckman PD, Meikle PJ, Leow MKS, Yap F, Lee YS, Yng CS, Eriksson JG, Velan SS, Karnani N, Wenk MR. Sexual dimorphism in the association of umbilical cord blood lipidome with abdominal fat in early childhood. BMC Med 2025; 23:215. [PMID: 40223079 PMCID: PMC11995507 DOI: 10.1186/s12916-025-04030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Although the associations between cord blood lipidome and neonatal birth weight are established, it remains uncertain whether sexual dimorphism in fetal fat accumulation extends to the relationship between cord blood lipid profiles and neonatal abdominal fat compartments. Understanding these relationships could provide insights into early sex-specific differences in lipid metabolism. METHODS We conducted lipidomics of umbilical cord blood plasma samples (350 (46.6%) girls and 401 (53.4%) boys) from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort. Abdominal fat compartments-superficial subcutaneous adipose tissue (sSAT), deep SAT (dSAT), and intra-abdominal adipose tissue (IAT)-were quantified by magnetic resonance imaging within 2 weeks of birth in 239 subjects. Linear regression models were used to assess sex differences in lipid species associated with abdominal fat compartments. RESULTS Newborn girls had significantly higher superficial and deep subcutaneous adipose tissue volumes compared to boys, whereas intra-abdominal adipose tissue volumes were similar between sexes. In the pooled analysis, cord blood plasma lipids showed distinct associations with different fat depots: 38 lipid species were associated with sSAT, 4 with dSAT, and 38 with IAT. In sex-stratified analyses, 13 lipids were associated with sSAT in girls and 3 in boys, whereas dSAT showed associations with 45 lipids in boys but none in girls. These sex differences were primarily observed in ether-linked phospholipids and ceramides. Notably, no significant associations were observed between lipids and IAT in either sex, suggesting depot-specific sexual dimorphism in early life. CONCLUSIONS Our study reveals sexual dimorphism in the associations between cord blood lipidome and abdominal adiposity, suggesting depot-specific patterns in adipose tissue development and lipid metabolism in early life.
Collapse
Affiliation(s)
- Kothandaraman Narasimhan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore.
| | - Mya Thway Tint
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Li Chen
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Life Sciences Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
| | - Sartaj Ahmad Mir
- Life Sciences Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suresh Anand Sadananthan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Navin Michael
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Adaikalavan Ramasamy
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Karen Mei-Ling Tan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Priti Mishra
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Anne K Bendt
- Life Sciences Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
| | - Kok Hian Tan
- Maternal Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - David Cameron-Smith
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 14 Medical Drive, MD6, #07-02, Singapore, Singapore
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Meikle
- Baker Heart and Diabetes Institute AU, Melbourne, VIC, 3004, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Melvin Khee Shing Leow
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 14 Medical Drive, MD6, #07-02, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Fabian Yap
- Division of Paediatric Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan Shiao Yng
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Johan G Eriksson
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Folkhalsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - S Sendhil Velan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
| | - Neerja Karnani
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine , 30 Medical Drive, Singapore, 117609, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Data Engagement, Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Markus R Wenk
- Life Sciences Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
de Oliveira MP, da Silva LE, Fernandes BB, Steiner MR, Pistóia DG, Santos Cichella TD, Jacinto LB, Spuldaro KM, Pinto Moehlecke Iser B, Rezin GT. The impact of obesity on mitochondrial dysfunction during pregnancy. Mol Cell Endocrinol 2025; 598:112463. [PMID: 39832615 DOI: 10.1016/j.mce.2025.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Mitochondria play a central role in nutrient metabolism, besides being responsible for the production of adenosine triphosphate (ATP), the main source of cellular energy. However, the ATP production process is associated with the generation of reactive oxygen species (ROS), which excessive accumulation can cause mitochondrial dysfunction. This dysfunction, in turn, causes the accumulation of fatty acids in the adipose tissue, triggering a local inflammatory process that can evolve into systemic inflammation. In women with obesity, an increase in lipid levels in the placental environment is observed. The high presence of fatty acids compromises the structural integrity and mitochondrial membrane, culminating in the release of ROS. This process damages the DNA of placental cells and causes an inflammatory state, affecting metabolic efficiency. This vicious cycle is characterized by defects in mitochondrial ATP production, which can lead to lipid accumulation and inflammation. In pregnant women with obesity, these mitochondrial changes play a determining role in pregnancy outcomes. Hence, the objective of this study was to search the literature to review the impact of mitochondrial dysfunction in the maternal obesity.
Collapse
Affiliation(s)
- Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Debora Gehrke Pistóia
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Tamires Dos Santos Cichella
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Luana Bahia Jacinto
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Karoline Marcondes Spuldaro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Betine Pinto Moehlecke Iser
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
3
|
Wu W, Wang K, Liu J, So PK, Leung TF, Wong MS, Zhao D. A High-Throughput Integrated Nontargeted Metabolomics and Lipidomics Workflow Using Microelution Enhanced Matrix Removal-Lipid for Comparative Analysis of Human Maternal and Umbilical Cord Blood Metabolomes. Anal Chem 2025; 97:2629-2638. [PMID: 39883156 PMCID: PMC11822729 DOI: 10.1021/acs.analchem.4c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents. Our proposed methodology enables parallel profiling of metabolome and lipidome within a single sample aliquot using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Following method development and optimization with representative metabolites at levels comparable to those detected in human blood, the optimized workflow was applied to prepare metabolome-lipidome from maternal and umbilical cord-blood sera prior to comprehensive profiling using three different UHPLC columns. Results indicate that, compared with conventional two-step metabolomics-lipidomics sample pretreatment workflow, this new approach substantially reduces sample amount and processing time, while still preserving metabolite profiles and revealing additional MS features. Over 2500 metabolites were annotated in human sera with >1000 shared across maternal and cord blood. The shared metabolites are closely linked to various physiological functions, including nutrient transfer, hormonal regulation, waste product clearance, and metabolic programming, underscoring the significant impact of maternal metabolic activities on neonatal metabolic health. In summary, the proposed workflow enables efficient sample pretreatment for nontargeted metabolomics-lipidomics using one single sample while achieving broad metabolite coverage, highlighting its remarkable applicability in clinical and preclinical research.
Collapse
Affiliation(s)
- Wenjie Wu
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
| | - Ke Wang
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
| | - Jianing Liu
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
| | - Pui-Kin So
- University
Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ting-Fan Leung
- Department
of Paediatrics, The Chinese University of
Hong Kong, Prince of Wales
Hospital, Shatin, Hong Kong SAR
China
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR China
| | - Man-sau Wong
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
- Research
Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Danyue Zhao
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
- Research
Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
4
|
Zhang W, Li Z, Huang Y, Zhao J, Guo S, Wang Q, Guo S, Li Q. Complex Role of Circulating Triglycerides in Breast Cancer Onset and Survival: Insights From Two-Sample Mendelian Randomization Study. Cancer Med 2025; 14:e70698. [PMID: 39960141 PMCID: PMC11831496 DOI: 10.1002/cam4.70698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Reducing the incidence of breast cancer and improving its prognosis have become significant challenges for the global public health sector. We aimed to investigate the role of circulating triglycerides in the occurrence and survival of patients with breast cancer, while focusing on the possible differential effects by molecular subtypes of breast cancer. METHODS We used a Mendelian randomization approach to analyze publicly accessible genome-wide association study data, including triglyceride levels, breast cancer risk, and survival prognosis. We performed a two-sample causality inference analysis using the inverse-variance weighted method. We used both Mendelian randomization-Egger regression and weighted median methods for model verification. Heterogeneity was evaluated using Cochran's Q test, and sensitivity analyses were performed using the leave-one-out method, Mendelian randomization-Egger intercept test, and Mendelian Randomization Pleiotropy RESidual Sum and Outlier test. RESULTS The results revealed a negative causal relationship between triglyceride levels and overall breast cancer risk (odds ratio [OR] = 0.94, confidence interval [CI] = 0.89-0.99, p = 0.011), luminal A breast cancer risk (OR = 0.93, CI = 0.87-0.99, p = 0.014), and human epidermal growth factor receptor 2 (HER2)-enriched breast cancer risk (OR = 0.84, CI = 0.73-0.96, p = 0.010). However, no statistically significant correlations were observed for the luminal B, luminal B HER2-negative, and triple-negative subtypes. Furthermore, triglyceride levels showed a positive causal relationship with the risk of survival prognosis in patients with estrogen receptor-negative breast cancer (OR = 1.33, CI = 1.00-1.76, p = 0.047). However, no statistically significant impact was observed on the survival of patients with overall breast cancer or patients with estrogen receptor-positive, HER2-positive, and HER2-negative breast cancer. CONCLUSIONS The potentially complex role of circulating triglycerides in the incidence and survival of patients with breast cancer provides a new perspective on the heterogeneity of the effects of triglycerides on breast cancer, thereby promoting the development of precise medical strategies. Moreover, our findings contribute to an increased understanding of overall health among patients and clinicians alike.
Collapse
Affiliation(s)
- Wu Zhang
- Fourth Department of OncologyHebei General HospitalShijiazhuangChina
- Graduate SchoolNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhiru Li
- Fourth Department of OncologyHebei General HospitalShijiazhuangChina
- Graduate SchoolNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuquan Huang
- Department of PathologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jing Zhao
- Sixth Department of OncologyHebei General HospitalShijiazhuangHebeiChina
| | - Shaowei Guo
- Fourth Department of OncologyHebei General HospitalShijiazhuangChina
| | - Qian Wang
- Fourth Department of OncologyHebei General HospitalShijiazhuangChina
| | - Sihan Guo
- Department of Computer ScienceDurham UniversityDurhamUK
| | - Qingxia Li
- Fourth Department of OncologyHebei General HospitalShijiazhuangChina
- Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
5
|
Albrecht M, Worthmann A, Heeren J, Diemert A, Arck PC. Maternal lipids in overweight and obesity: implications for pregnancy outcomes and offspring's body composition. Semin Immunopathol 2025; 47:10. [PMID: 39841244 PMCID: PMC11754334 DOI: 10.1007/s00281-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases. This can be applied to the onset of pregnancy complications such as gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP), which in fact occur more frequently in women affected by OWO. In this review, we summarize current knowledge on maternal lipid metabolites in pregnancy and highlight associations between the maternal lipidome and the risk to develop GDM, HDP and childhood OWO. Emerging data underpin that dysregulations in maternal triglyceride, phospholipid and polyunsaturated fatty acid (PUFA) metabolism may play a role in modulating the risk for adverse pregnancy outcomes and childhood OWO, but it is yet premature to convert currently available insights into clinical guidelines. Well-designed large-scale lipidomic studies, combined with translational approaches including animal models of obesity, will likely facilitate the recognition of underling pathways of OWO-related pregnancy complications and child's health outcomes, based on which clinical guidelines and recommendations can be updated.
Collapse
Affiliation(s)
- Marie Albrecht
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Junior Research Center for Reproduction: Sexual and Reproductive Health in Overweight and Obesity (SRHOO), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Ghebosu RE, Hui L, Wolfram J. Increasing the biomolecular relevance of cell culture practice. J Biomed Sci 2025; 32:3. [PMID: 39748368 PMCID: PMC11697962 DOI: 10.1186/s12929-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025] Open
Abstract
The biomolecular relevance of medium supplements is a key challenge affecting cell culture practice. The biomolecular composition of commonly used supplements differs from that of a physiological environment, affecting the validity of conclusions drawn from in vitro studies. This article discusses the advantages and disadvantages of common supplements, including context-dependent considerations for supplement selection to improve biomolecular relevance, especially in nanomedicine and extracellular vesicle research.
Collapse
Affiliation(s)
- Raluca E Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Lawrence Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia.
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Grünherz L, Kollarik S, Sanchez-Macedo N, McLuckie M, Lindenblatt N. Lipidomic Analysis of Microfat and Nanofat Reveals Different Lipid Mediator Compositions. Plast Reconstr Surg 2024; 154:895e-905e. [PMID: 39480647 PMCID: PMC11512614 DOI: 10.1097/prs.0000000000011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/30/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Microfat and nanofat are commonly used in various surgical procedures, from skin rejuvenation to scar correction, to contribute to tissue regeneration. Microfat contains mainly adipocytes and is well suited for tissue augmentation, and nanofat is rich in lipids, adipose-derived stem cells, microvascular fragments, and growth factors, making it attractive for aesthetic use. The authors have previously demonstrated that the mechanical processing of microfat into nanofat significantly changes its proteomic profile. Considering that mechanical fractionation leads to adipocyte disruption and lipid release, they aimed to analyze their lipidomic profiles for their regenerative properties. METHODS Microfat and nanofat samples were isolated from 14 healthy patients. Lipidomic profiling was performed by liquid chromatography tandem mass spectrometry. The resulting data were compared against the Human Metabolome and LIPID MAPS Structure Database. MetaboAnalyst was used to analyze metabolic pathways and lipids of interest. RESULTS From 2388 mass-to-charge ratio features, metabolic pathway enrichment analysis of microfat and nanofat samples revealed 109 pathways that were significantly enriched. Microfat samples revealed higher-intensity levels of sphingosines, different eicosanoids, and fat-soluble vitamins. Increased levels of coumaric acids and prostacyclin were found in nanofat. CONCLUSIONS This is the first study to analyze the lipidomic profiles of microfat and nanofat, providing evidence that mechanical emulsification of microfat into nanofat leads to changes in their lipid profiles. From 109 biological pathways, antiinflammatory, antifibrotic, and antimelanogenic lipid mediators were particularly enriched in nanofat samples when compared with microfat. Although further studies are necessary for a deeper understanding of the composition of these specific lipid mediators in nanofat samples, the authors propose that they might contribute to its regenerative effects on tissue. CLINICAL RELEVANCE STATEMENT Profiling the unique lipid mediators in nanofat and microfat enhances our understanding of their different therapeutic effects and allows us to link these specific mediators to antiinflammatory, pro-regenerative, or healing properties. Ultimately, this insight can advance personalized therapeutic strategies, where a specific type of fat is selected based on its optimal therapeutic effect.
Collapse
Affiliation(s)
- Lisanne Grünherz
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Sedef Kollarik
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Nadia Sanchez-Macedo
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Michelle McLuckie
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Nicole Lindenblatt
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| |
Collapse
|
8
|
Chen L, Goh XP, Bendt AK, Tan KML, Leow MKS, Tan KH, Chan JKY, Chan SY, Chong YS, Gluckman PD, Eriksson JG, Wenk MR, Mir SA. Association of Acylcarnitines With Maternal Cardiometabolic Risk Factors Is Defined by Chain Length: The S-PRESTO Study. J Clin Endocrinol Metab 2024; 109:2831-2846. [PMID: 38625914 DOI: 10.1210/clinem/dgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
CONTEXT Due to the essential role of carnitine as an intermediary in amino acid, carbohydrate, and lipid metabolism, a detailed characterization of circulating and urinary carnitine concentrations will aid in elucidating the molecular basis of impaired maternal metabolic flexibility and facilitating timely intervention for expectant mothers. OBJECTIVE To investigate the association of maternal plasma and urinary free carnitine and acylcarnitines with cardiometabolic risk factors. METHODS Liquid chromatography tandem mass spectrometry-based quantification of free carnitine and acylcarnitines (C2-C18) was performed on 765 plasma and 702 urine samples collected at preconception, 26 to 28 weeks' pregnancy, and 3 months postpartum in the Singapore PREconception Study of long-Term maternal and child Outcomes (S-PRESTO) cohort study. RESULTS Plasma concentrations of free carnitine and acylcarnitines decreased coupled with increased renal clearance in pregnancy compared with preconception and postpartum. Renal clearance of carnitine increased with an increase in prepregnancy body mass index (ppBMI) and gestational weight gain. Plasma short-chain acylcarnitines were positively associated with ppBMI, irrespective of the physiological state, while medium- and long-chain acylcarnitines were negatively associated with ppBMI at preconception and postpartum but showed a positive association in pregnancy. Similarly, plasma short-chain acylcarnitines were positively associated with Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) whereas medium- and long-chain acylcarnitines were negatively associated with HOMA-IR at preconception and in pregnancy. Mothers who developed gestational diabetes mellitus during pregnancy had ∼10% higher plasma propionylcarnitine concentration and ∼18% higher urine tiglylcarnitine concentration than mothers with normal glucose metabolism at preconception. CONCLUSION This study provides the metabolic and physiological basis of maternal carnitine homeostasis, which can be used in assessment of maternal cardiometabolic health at preconception to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Xue Ping Goh
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Karen Mei-Ling Tan
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, 119074 Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, 308433 Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, 169857 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Kok Hian Tan
- Duke-National University of Singapore (NUS) Medical School, 169857 Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Jerry Kok Yen Chan
- Duke-National University of Singapore (NUS) Medical School, 169857 Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, 117609 Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
- Folkhalsan Research Center, 00250 Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, 00290 Helsinki, Finland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore, Singapore
| | - Sartaj Ahmad Mir
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore, Singapore
| |
Collapse
|
9
|
Ademowo OS, Wenk MR, Maier AB. Advances in clinical application of lipidomics in healthy ageing and healthy longevity medicine. Ageing Res Rev 2024; 100:102432. [PMID: 39029802 DOI: 10.1016/j.arr.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
It is imperative to optimise health and healthspan across the lifespan. The accumulation of reactive oxygen species (ROS) has been implicated in the hallmarks of ageing and inhibiting ROS production can potentially delay ageing whilst increasing healthy longevity. Lipids and lipid mediators (derivatives of lipids) are becoming increasingly recognized as central molecule in tissue and cellular function and are susceptible to peroxidation; hence linked with ageing. Lipid classes implicated in the ageing process include sterols, glycerophospholipids, sphingolipids and the oxidation products of polyunsaturated fatty acids but these are not yet translated into the clinic. Further mechanistic studies are required for the understanding of lipid classes in the ageing process. Lipidomics, the system level characterisation of lipid species with respect to metabolism and function, might provide a significant and useful biological age profiling tool through longitudinal studies. Lipid profiles in different ages among healthy individuals could be harnessed as lipid biomarkers of healthy ageing with potential integration for the development of lipid-based ageing clock (lipid clock). The potential of a lipid clock includes the prediction of future morbidity or mortality, which will promote precision and healthy longevity medicine.
Collapse
Affiliation(s)
- Opeyemi Stella Ademowo
- Healthy Ageing and Mental Wellbeing Research Centre, Biomedical and Clinical Sciences, University of Derby, UK
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Andrea B Maier
- Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Lichtwald A, Ittermann T, Friedrich N, Lange AE, Winter T, Kolbe C, Allenberg H, Nauck M, Heckmann M. Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP). Int J Mol Sci 2024; 25:7552. [PMID: 39062795 PMCID: PMC11276627 DOI: 10.3390/ijms25147552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Intrauterine growth restriction leads to an altered lipid and amino acid profile in the cord blood at the end of pregnancy. Pre-pregnancy underweight is an early risk factor for impaired fetal growth. The aim of this study was to investigate whether a pre-pregnancy body mass index (ppBMI) of <18.5 kg/m2, as early as at the beginning of pregnancy, is associated with changes in the umbilical cord metabolome. In a sample of the Survey of Neonates in Pomerania (SNIP) birth cohort, the cord blood metabolome of n = 240 newborns of mothers with a ppBMI of <18.5 kg/m2 with n = 208 controls (ppBMI of 18.5-24.9 kg/m2) was measured by NMR spectrometry. A maternal ppBMI of <18.5 kg/m2 was associated with increased concentrations of HDL4 cholesterol, HDL4 phospholipids, VLDL5 cholesterol, HDL 2, and HDL4 Apo-A1, as well as decreased VLDL triglycerides and HDL2 free cholesterol. A ppBMI of <18.5 kg/m2 combined with poor intrauterine growth (a gestational weight gain (GWG) < 25th percentile) was associated with decreased concentrations of total cholesterol; cholesterol transporting lipoproteins (LDL4, LDL6, LDL free cholesterol, and HDL2 free cholesterol); LDL4 Apo-B; total Apo-A2; and HDL3 Apo-A2. In conclusion, maternal underweight at the beginning of pregnancy already results in metabolic changes in the lipid profile in the cord blood, but the pattern changes when poor GWG is followed by pre-pregnancy underweight.
Collapse
Affiliation(s)
- Alexander Lichtwald
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
| | - Till Ittermann
- Institute for Community Medicine, Division SHIP—Clinical Epidemiological Research, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Nele Friedrich
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (N.F.); (T.W.); (M.N.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Anja Erika Lange
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
| | - Theresa Winter
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (N.F.); (T.W.); (M.N.)
| | - Claudia Kolbe
- Department of Gynecology and Obstetrics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Heike Allenberg
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (N.F.); (T.W.); (M.N.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
- German Centre for Child and Adolescent Health (DZKL), Partner Site Greifswald/Rostock, 17475 Greifswald, Germany
| |
Collapse
|
11
|
Brammer-Robbins E, Nouri MZ, Griffin EK, Aristizabal-Henao JJ, Denslow ND, Bowden JA, Larkin IV, Martyniuk CJ. Lipidomics and plasma hormone analysis differentiate reproductive and pregnancy statuses in Florida manatees (Trichechus manatus latirostris). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101231. [PMID: 38643744 DOI: 10.1016/j.cbd.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Florida manatees (Trichechus manatus latirostris) are protected as a threatened species, and data are lacking regarding their reproductive physiology. This study aimed to (1) quantify plasma steroid hormones in Florida manatees from two field sites, Crystal River and Indian River Lagoon, at different gestational stages and to (2) identify individual lipids associated with pregnancy status. Ultra-high performance liquid chromatography-tandem mass spectrometric analysis was used to measure plasma steroid hormones and lipids. Pregnant female manatees were morphometrically distinct from male and non-pregnant female manatees, characterized by larger body weight and maximal girth. Progesterone concentrations in manatees were also elevated during early gestation versus late gestation. Cholesterol, an important metabolic lipid, and precursor for reproductive steroids, was not different between groups. Mass spectrometry quantified 949 lipids. Plasma concentrations of glycerophospholipids, glycerolipids, sphingolipids, acylcarnitines, and cholesteryl esters were associated with pregnancy status in the Florida manatee. Most of the lipid species associated with pregnancy were triacylglycerides, phosphatidylethanolamines, and ether-linked phosphatidylethanolamines, which may serve as energy sources for fetal development. This research contributes to improving knowledge of manatee reproductive physiology by providing data on plasma steroid hormones relative to reproductive status and by identifying plasma lipids that may be important for pregnancy. Elucidation of lipid species directly associated with pregnancy has the potential to serve as a diagnostic approach to identify pregnant individuals in fresh and archived samples. These biochemical and morphometric indicators of reproductive status advance the understanding of manatee physiology.
Collapse
Affiliation(s)
- Elizabeth Brammer-Robbins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America.
| | - Mohammad-Zaman Nouri
- Access Genetics & OralDNA Labs, Eden Prairie, MN 55344, United States of America
| | - Emily K Griffin
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | | | - Nancy D Denslow
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America; Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America; Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, United States of America
| | - Iske V Larkin
- Aquatic Animal Health Program, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida Gainesville, FL, United States of America
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America; Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
12
|
Song Y, Lu R, Yu G, Rahman ML, Chen L, Zhu Y, Tsai MY, Fiehn O, Chen Z, Zhang C. Longitudinal lipidomic profiles during pregnancy and associations with neonatal anthropometry: findings from a multiracial cohort. EBioMedicine 2023; 98:104881. [PMID: 38006745 PMCID: PMC10709105 DOI: 10.1016/j.ebiom.2023.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Maternal lipidomic profiling offers promise for characterizing lipid metabolites during pregnancy, but longitudinal data are limited. This study aimed to examine associations of longitudinal lipidomic profiles during pregnancy with multiple neonatal anthropometry using data from a multiracial cohort. METHODS We measured untargeted plasma lipidome profiles among 321 pregnant women from the NICHD Fetal Growth Study-Singletons using plasma samples collected longitudinally during four study visits at gestational weeks (GW) 10-14, 15-26, 23-31, and 33-39, respectively. We evaluated individual lipidomic metabolites at each study visit in association with neonatal anthropometry. We also evaluated the associations longitudinally by constructing lipid networks using weighted correlation network analysis and common networks using consensus network analysis across four visits using linear mixed-effects models with the adjustment of false discover rate. FINDINGS Multiple triglycerides (TG) were positively associated with birth weight (BW), BW Z-score, length and head circumference, while some cholesteryl ester (CE), phosphatidylcholine (PC), sphingomyelines (SM), phosphatidylethanolamines (PE), and lysophosphatidylcholines (LPC 20:3) families were inversely associated with BW, length, abdominal and head circumference at different GWs. Longitudinal trajectories of TG, PC, and glucosylcermides (GlcCer) were associated with BW, and CE (18:2) with BW z-score, length, and sum of skinfolds (SS), while some PC and PE were significantly associated with abdominal and head circumference. Modules of TG at GW 10-14 and 15-26 mainly were associated with BW. At GW 33-39, two networks of LPC (20:3) and of PC, TG, and CE, showed inverse associations with abdominal circumference. Distinct trajectories within two consensus modules with changes in TG, CE, PC, and LPC showed significant differences in BW and length. INTERPRETATION The results demonstrated that longitudinal changes of TGs during early- and mid-pregnancy and changes of PC, LPC, and CE during late-pregnancy were significantly associated with neonatal anthropometry. FUNDING National Institute of Child Health and Human Development intramural funding.
Collapse
Affiliation(s)
- Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Ruijin Lu
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Guoqi Yu
- Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohammad L Rahman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Yeiyi Zhu
- Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, 451 Health Sciences Drive, Davis, CA, USA
| | - Zhen Chen
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Cuilin Zhang
- Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
13
|
Zheng W, Zhang KX, Yuan XX, Luo JY, Wang J, Song W, Liang SN, Wang XX, Guo CM, Li GH. Maternal weight, blood lipids, and the offspring weight trajectories during infancy and early childhood in twin pregnancies. World J Pediatr 2023; 19:961-971. [PMID: 36877432 DOI: 10.1007/s12519-023-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND The intrauterine environment has a profound and long-lasting influence on the health of the offspring. However, its impact on the postnatal catch-up growth of twin children remains unclarified. Therefore, this study aimed to explore the maternal factors in pregnancy associated with twin offspring growth. METHODS This study included 3142 live twin children born to 1571 mothers from the Beijing Birth Cohort Study conducted from 2016 to 2021 in Beijing, China. Original and corrected weight-for-age standard deviation scores of the twin offspring from birth to 36 months of age were calculated according to the World Health Organization Child Growth Standards. The corresponding weight trajectories were identified by the latent trajectory model. Maternal factors in pregnancy associated with the weight trajectories of the twin offspring were examined after adjustment for potential confounders. RESULTS Five weight trajectories of the twin children were identified, with 4.9% (154/3142) exhibiting insufficient catch-up growth, 30.6% (961/3142), and 46.8% (1469/3142) showing adequate catch-up growth from different birth weights, and 15.0% (472/3142) and 2.7% (86/3142) showing various degrees of excessive catch-up growth. Maternal short stature [adjusted odds ratio (OR) = 0.691, 95% confidence interval (CI) = 0.563-0.848, P = 0.0004] and lower total gestational weight gain (GWG) (adjusted OR = 0.774, 95% CI = 0.616-0.972, P = 0.03) were associated with insufficient catch-up growth of the offspring. Maternal stature (adjusted OR = 1.331, 95% CI = 1.168-1.518, P < 0.001), higher pre-pregnancy body mass index (BMI) (adjusted OR = 1.230, 95% CI = 1.090-1.387, P < 0.001), total GWG (adjusted OR = 1.207, 95% CI = 1.068-1.364, P = 0.002), GWG rate (adjusted OR = 1.165, 95% CI = 1.027-1.321, P = 0.02), total cholesterol (TC) (adjusted OR = 1.150, 95% CI = 1.018-1.300, P = 0.03) and low-density lipoprotein-cholesterol (LDL-C) (adjusted OR = 1.177, 95% CI = 1.041-1.330) in early pregnancy were associated with excessive growth of the offspring. The pattern of weight trajectories was similar between monochorionic and dichorionic twins. Maternal height, pre-pregnancy BMI, GWG, TC and LDL-C in early pregnancy were positively associated with excess growth in dichorionic twins, yet a similar association was observed only between maternal height and postnatal growth in monochorionic twins. CONCLUSION This study identified the effect of maternal stature, weight status, and blood lipid profiles during pregnancy on postnatal weight trajectories of the twin offspring, thereby providing a basis for twin pregnancy management to improve the long-term health of the offspring.
Collapse
Affiliation(s)
- Wei Zheng
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ke-Xin Zhang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Xian-Xian Yuan
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Jin-Ying Luo
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Jia Wang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wei Song
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Sheng-Nan Liang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Xiao-Xin Wang
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Cui-Mei Guo
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Guang-Hui Li
- Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
14
|
Salihovic S, Lamichane S, Hyötyläinen T, Orešič M. Recent advances towards mass spectrometry-based clinical lipidomics. Curr Opin Chem Biol 2023; 76:102370. [PMID: 37473482 DOI: 10.1016/j.cbpa.2023.102370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
The objective of this review is to provide a comprehensive summary of the latest methodological advancements and emerging patterns in utilizing lipidomics in clinical research.In this review, we assess the recent advancements in lipidomics methodologies that exhibit high levels of selectivity and sensitivity, capable of generating numerous molecular lipid species from limited quantities of biological matrices. The reviewed studies demonstrate that molecular lipid signatures offer new opportunities for precision medicine by providing sensitive diagnostic tools for disease prediction and monitoring. Moreover, the latest innovations in microsampling techniques have the potential to make a substantial contribution to clinical lipidomics. The review also shows that more work is needed to harmonize results across diverse lipidomics platforms and avoid significant errors in analysis and reporting. The increased implementation of internal standards and standard reference materials in analytical workflows will aid in this direction.
Collapse
Affiliation(s)
- Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Santosh Lamichane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Powell TL, Uhlson C, Madi L, Berry KZ, Chassen SS, Jansson T, Ferchaud-Roucher V. Fetal sex differences in placental LCPUFA ether and plasmalogen phosphatidylethanolamine and phosphatidylcholine contents in pregnancies complicated by obesity. Biol Sex Differ 2023; 14:66. [PMID: 37770949 PMCID: PMC10540428 DOI: 10.1186/s13293-023-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. METHODS In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC-MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini-Hochberg false discovery rate adjustment to account for multiple testing. RESULTS Levels of ester PC containing DHA and ARA were profoundly reduced by 60-92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51-84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43-61% in male, but not female, fetuses of obese mothers. CONCLUSIONS We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.
Collapse
Affiliation(s)
- Theresa L Powell
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charis Uhlson
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lana Madi
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin Zemski Berry
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie S Chassen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Ferchaud-Roucher
- Nantes Université, CHU Nantes, INRAE UMR 1280 PhAN, CRNH Ouest, 44000, Nantes, France.
- Nantes Université, INRAE, UMR 1280 PhAN, CHU Hôtel Dieu, HNB1, 1 place Alexis Ricordeau, 44093, Nantes, France.
| |
Collapse
|
16
|
Potenza A, Gorla G, Carrozzini T, Bersano A, Gatti L, Pollaci G. Lipidomic Approaches in Common and Rare Cerebrovascular Diseases: The Discovery of Unconventional Lipids as Novel Biomarkers. Int J Mol Sci 2023; 24:12744. [PMID: 37628924 PMCID: PMC10454673 DOI: 10.3390/ijms241612744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke remains a major cause of death and disability worldwide. Identifying new circulating biomarkers able to distinguish and monitor common and rare cerebrovascular diseases that lead to stroke is of great importance. Biomarkers provide complementary information that may improve diagnosis, prognosis and prediction of progression as well. Furthermore, biomarkers can contribute to filling the gap in knowledge concerning the underlying disease mechanisms by pointing out novel potential therapeutic targets for personalized medicine. If many "conventional" lipid biomarkers are already known to exert a relevant role in cerebrovascular diseases, the aim of our study is to review novel "unconventional" lipid biomarkers that have been recently identified in common and rare cerebrovascular disorders using novel, cutting-edge lipidomic approaches.
Collapse
Affiliation(s)
- Antonella Potenza
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (G.G.); (T.C.); (G.P.)
| | - Gemma Gorla
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (G.G.); (T.C.); (G.P.)
| | - Tatiana Carrozzini
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (G.G.); (T.C.); (G.P.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Laura Gatti
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (G.G.); (T.C.); (G.P.)
| | - Giuliana Pollaci
- Laboratory of Neurobiology and UCV, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (G.G.); (T.C.); (G.P.)
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
17
|
Bartho LA, Keenan E, Walker SP, MacDonald TM, Nijagal B, Tong S, Kaitu'u-Lino TJ. Plasma lipids are dysregulated preceding diagnosis of preeclampsia or delivery of a growth restricted infant. EBioMedicine 2023; 94:104704. [PMID: 37421807 PMCID: PMC10344703 DOI: 10.1016/j.ebiom.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Lipids serve as multifunctional metabolites that have important implications for the pregnant mother and developing fetus. Abnormalities in lipids have emerged as potential risk factors for pregnancy diseases, such as preeclampsia and fetal growth restriction. The aim of this study was to assess the potential of lipid metabolites for detection of late-onset preeclampsia and fetal growth restriction. METHODS We used a case-cohort of 144 maternal plasma samples at 36 weeks' gestation from patients before the diagnosis of late-onset preeclampsia (n = 22), delivery of a fetal growth restricted infant (n = 55, defined as <5th birthweight centile), gestation-matched controls (n = 72). We performed liquid chromatography-tandem mass spectrometry (LC-QQQ) -based targeted lipidomics to identify 421 lipids, and fitted logistic regression models for each lipid, correcting for maternal age, BMI, smoking, and gestational diabetes. FINDINGS Phosphatidylinositol 32:1 (AUC = 0.81) and cholesterol ester 17:1 (AUC = 0.71) best predicted the risk of developing preeclampsia or delivering a fetal growth restricted infant, respectively. Five times repeated five-fold cross validation demonstrated the lipids alone did not out-perform existing protein biomarkers, soluble tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) for the prediction of preeclampsia or fetal growth restriction. However, lipids combined with sFlt-1 and PlGF measurements improved disease prediction. INTERPRETATION This study successfully identified 421 lipids in maternal plasma collected at 36 weeks' gestation from participants who later developed preeclampsia or delivered a fetal growth restricted infant. Our results suggest the predictive capacity of lipid measurements for gestational disorders holds the potential to improve non-invasive assessment of maternal and fetal health. FUNDING This study was funded by a grant from National Health and Medical Research Council.
Collapse
Affiliation(s)
- Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Emerson Keenan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
18
|
Young MF, Nguyen PH, Tran LM, Khuong LQ, Hendrix S, Martorell R, Ramakrishnan U. Maternal preconception BMI and gestational weight gain are associated with weight retention and maternal and child body fat at 6-7 years postpartum in the PRECONCEPT cohort. Front Nutr 2023; 10:1114815. [PMID: 37305082 PMCID: PMC10254082 DOI: 10.3389/fnut.2023.1114815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/03/2023] [Indexed: 06/13/2023] Open
Abstract
Background There is limited evidence from prospective cohorts in low-resource settings on the long-term impact of pre-pregnancy body mass index (PPBMI) and gestational weight gain (GWG) on postpartum weight retention (PPWR) and maternal and child body composition. Objectives We examined the associations between PPBMI and timing of GWG on PPWR at 1, 2, and 6-7 years and maternal and child percent body fat at 6-7 years. Methods We used data from the PRECONCEPT study (NCT01665378) that included prospectively collected data on 864 mother-child pairs from preconception through 6-7 years postpartum. The key outcomes were PPWR at 1, 2, and 6-7 years, and maternal and child percent body fat at 6-7 years that was measured using bioelectric impedance. Maternal conditional GWG (CGWG) was defined as window-specific weight gains (< 20wk, 21-29wk, and ≥ 30wk), uncorrelated with PPBMI and all prior body weights. PPBMI and CGWG were calculated as standardized z-scores to allow for relative comparisons of a 1 standard deviation (SD) increase in weight gain for each window. We used multivariable linear regressions to examine the associations, adjusting for baseline demographic characteristics, intervention, breastfeeding practices, diet and physical activity. Results Mean (SD) PPBMI and GWG were 19.7 (2.1) kg/m2 and 10.2 (4.0) kg, respectively. Average PPWR at 1, 2, and 6-7 years was 1.1, 1.5 and 4.3 kg, respectively. A one SD increase in PPBMI was associated with a decrease in PPWR at 1 year (β [95% CI]: -0.21 [-0.37, -0.04]) and 2 years (-0.20 [-0.39, -0.01]); while a one SD in total CGWG was associated with an increase in PPWR at 1 year (1.01 [0.85,1.18]), 2 years (0.95 [0.76, 1.15]) and 6-7 years (1.05 [0.76, 1.34]). Early CGWG (< 20 weeks) had the greatest association with PPWR at each time point as well as with maternal (0.67 [0.07, 0.87]) and child (0.42 [0.15, 0.69]) percent body fat at 6-7 years. Conclusion Maternal nutrition before and during pregnancy may have long-term implications for PPWR and body composition. Interventions should consider targeting women preconception and early in pregnancy to optimize maternal and child health outcomes.
Collapse
Affiliation(s)
- Melissa F. Young
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Phuong Hong Nguyen
- Poverty, Health and Nutrition Division, International Food Policy Research Institute (IFPRI), Washington, DC, United States
- Thai Nguyen University of Pharmacy and Medicine, Thai Nguyen, Vietnam
| | - Lan Mai Tran
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | | | - Sara Hendrix
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Reynaldo Martorell
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
19
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
20
|
Bendt AK, Mir SA, Maier AB, Goh J, Low ICC, Lee JKW, Koh AS, Wenk MR, Adamski J. Lessons from the Singapore cohorts showcase symposium-open call for collaborations. Eur J Epidemiol 2023:10.1007/s10654-023-00999-1. [PMID: 37119423 DOI: 10.1007/s10654-023-00999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Affiliation(s)
- Anne K Bendt
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Sartaj Ahmad Mir
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, National University of Singapore, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Jason K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jerzy Adamski
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany.
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Law SH, Chan HC, Ke GM, Kamatam S, Marathe GK, Ponnusamy VK, Ke LY. Untargeted Lipidomic Profiling Reveals Lysophosphatidylcholine and Ceramide as Atherosclerotic Risk Factors in apolipoprotein E Knockout Mice. Int J Mol Sci 2023; 24:ijms24086956. [PMID: 37108120 PMCID: PMC10138920 DOI: 10.3390/ijms24086956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Swetha Kamatam
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
22
|
Kvasnička A, Najdekr L, Dobešová D, Piskláková B, Ivanovová E, Friedecký D. Clinical lipidomics in the era of the big data. Clin Chem Lab Med 2023; 61:587-598. [PMID: 36592414 DOI: 10.1515/cclm-2022-1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023]
Abstract
Lipidomics as a branch of metabolomics provides unique information on the complex lipid profile in biological materials. In clinically focused studies, hundreds of lipids together with available clinical information proved to be an effective tool in the discovery of biomarkers and understanding of pathobiochemistry. However, despite the introduction of lipidomics nearly twenty years ago, only dozens of big data studies using clinical lipidomics have been published to date. In this review, we discuss the lipidomics workflow, statistical tools, and the challenges of standartisation. The consequent summary divided into major clinical areas of cardiovascular disease, cancer, diabetes mellitus, neurodegenerative and liver diseases is demonstrating the importance of clinical lipidomics. In these publications, the potential of lipidomics for prediction, diagnosis or finding new targets for the treatment of selected diseases can be seen. The first of these results have already been implemented in clinical practice in the field of cardiovascular diseases, while in other areas we can expect the application of the results summarized in this review in the near future.
Collapse
Affiliation(s)
- Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Lukáš Najdekr
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czechia
| | - Dana Dobešová
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Barbora Piskláková
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Eliška Ivanovová
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
23
|
Chen L, Mir SA, Bendt AK, Chua EWL, Narasimhan K, Tan KML, Loy SL, Tan KH, Shek LP, Chan J, Yap F, Meaney MJ, Chan SY, Chong YS, Gluckman PD, Eriksson JG, Karnani N, Wenk MR. Plasma lipidomic profiling reveals metabolic adaptations to pregnancy and signatures of cardiometabolic risk: a preconception and longitudinal cohort study. BMC Med 2023; 21:53. [PMID: 36782297 PMCID: PMC9926745 DOI: 10.1186/s12916-023-02740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Adaptations in lipid metabolism are essential to meet the physiological demands of pregnancy and any aberration may result in adverse outcomes for both mother and offspring. However, there is a lack of population-level studies to define the longitudinal changes of maternal circulating lipids from preconception to postpartum in relation to cardiometabolic risk factors. METHODS LC-MS/MS-based quantification of 689 lipid species was performed on 1595 plasma samples collected at three time points in a preconception and longitudinal cohort, Singapore PREconception Study of long-Term maternal and child Outcomes (S-PRESTO). We mapped maternal plasma lipidomic profiles at preconception (N = 976), 26-28 weeks' pregnancy (N = 337) and 3 months postpartum (N = 282) to study longitudinal lipid changes and their associations with cardiometabolic risk factors including pre-pregnancy body mass index, body weight changes and glycaemic traits. RESULTS Around 56% of the lipids increased and 24% decreased in concentration in pregnancy before returning to the preconception concentration at postpartum, whereas around 11% of the lipids went through significant changes in pregnancy and their concentrations did not revert to the preconception concentrations. We observed a significant association of body weight changes with lipid changes across different physiological states, and lower circulating concentrations of phospholipids and sphingomyelins in pregnant mothers with higher pre-pregnancy BMI. Fasting plasma glucose and glycated haemoglobin (HbA1c) concentrations were lower whereas the homeostatic model assessment of insulin resistance (HOMA-IR), 2-h post-load glucose and fasting insulin concentrations were higher in pregnancy as compared to both preconception and postpartum. Association studies of lipidomic profiles with these glycaemic traits revealed their respective lipid signatures at three physiological states. Assessment of glycaemic traits in relation to the circulating lipids at preconception with a large sample size (n = 936) provided an integrated view of the effects of hyperglycaemia on plasma lipidomic profiles. We observed a distinct relationship of lipidomic profiles with different measures, with the highest percentage of significant lipids associated with HOMA-IR (58.9%), followed by fasting insulin concentration (56.9%), 2-h post-load glucose concentration (41.8%), HbA1c (36.7%), impaired glucose tolerance status (31.6%) and fasting glucose concentration (30.8%). CONCLUSIONS We describe the longitudinal landscape of maternal circulating lipids from preconception to postpartum, and a comprehensive view of trends and magnitude of pregnancy-induced changes in lipidomic profiles. We identified lipid signatures linked with cardiometabolic risk traits with potential implications both in pregnancy and postpartum life. Our findings provide insights into the metabolic adaptations and potential biomarkers of modifiable risk factors in childbearing women that may help in better assessment of cardiometabolic health, and early intervention at the preconception period. TRIAL REGISTRATION ClinicalTrials.gov, NCT03531658.
Collapse
Affiliation(s)
- Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore. .,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Sartaj Ahmad Mir
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore, Singapore, Singapore.
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Esther W L Chua
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | | | - See Ling Loy
- KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Lynette P Shek
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jerry Chan
- KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Fabian Yap
- KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montréal, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Folkhalsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore, Singapore, Singapore.,Bioniformatics Institute, A*STAR, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Muglia LJ, Benhalima K, Tong S, Ozanne S. Maternal factors during pregnancy influencing maternal, fetal, and childhood outcomes. BMC Med 2022; 20:418. [PMID: 36320027 PMCID: PMC9623926 DOI: 10.1186/s12916-022-02632-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Enhancing pregnancy health is known to improve the mother's and offspring's life-long well-being. The maternal environment, encompassing genetic factors, impacts of social determinants, the nutritional/metabolic milieu, and infections and inflammation, have immediate consequences for the in utero development of the fetus and long-term programming into childhood and adulthood. Moreover, adverse pregnancy outcomes such as preterm birth or preeclampsia, often attributed to the maternal environmental factors listed above, have been associated with poor maternal cardiometabolic health after pregnancy. In this BMC Medicine article collection, we explore a broad spectrum of maternal characteristics across pregnancy and postnatal phenotypes, anticipating substantial cross-fertilization of new understanding and shared mechanisms around diverse outcomes. Advances in the ability to leverage 'omics across different platforms (genome, transcriptome, proteome, metabolome, microbiome, lipidome), large high-dimensional population databases, and unique cohorts are generating exciting new insights: The first articles in this collection highlight the role of placental biomarkers of preterm birth, metabolic influences on fetal and childhood growth, and the impact of common pre-existing maternal disorders, obesity and smoking on pregnancy outcomes, and the child's health. As the collection grows, we look forward to seeing the connections emerge across maternal, fetal, and childhood outcomes that will foster new insights and preventative strategies for women.
Collapse
Affiliation(s)
- Louis J Muglia
- Burroughs Wellcome Fund, Research Triangle Park, Durham, NC, USA.
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Stephen Tong
- University of Melbourne, Melbourne, Australia
- Mercy Perinatal, Heidelberg, Australia
| | | |
Collapse
|
25
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|