1
|
Li H, Yang F, Bai B, Jiang Z, Li B, Fu G, Hu X. Tumor associated chromosomal instability drives colorectal adenoma to adenocarcinoma progression based on 17 year follow up evidence. Sci Rep 2025; 15:13733. [PMID: 40258890 PMCID: PMC12012205 DOI: 10.1038/s41598-025-96921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. Adenomas, precursors to CRC, can be diagnosed early, but the genetic events leading to adenoma-adenocarcinoma conversion remain unclear. This study explored the role of chromosomal instabilities (CINs) in this conversion. Over a 17-year follow-up period, 119 adenomas were analyzed using low-coverage whole-genome sequencing (LC-WGS) and Ultrasensitive Chromosomal Aneuploidy Detector. Risk factors for adenocarcinoma development were identified through logistic regression analysis, and survival was assessed using Kaplan-Meier curves. CIN was found in 32% of adenomas, with a higher incidence in high-grade adenomas (P = 0.0359). Common chromosomal changes included loss of 18q, 1p, and 17p and gain of 8q (MYC), 20q, and 7p (EGFR). During the 17-year follow-up, 88 patients experienced recurrence, including 40 cases of adenomas and 48 cases of progression to adenocarcinoma. CIN was identified in 40% of progression cases, 33.6% of adenoma recurrence cases, and 26% of nonrecurrent cases. A strong genetic linkage was observed before and after tumor transformation, with a high match between the tumors and matched prior adenomas. CIN was significantly associated with disease progression (HR: 2.5, 95% CI: 1.4-4.5, P = 0.00162) and was an independent risk factor. Additionally, MFN2 gene copy number deletion was linked to recurrence and/or progression after resection, with reduced expression in tumor tissues. In conclusion, CIN is a key risk factor for adenoma recurrence and progression, and MFN2 gene copy number deletion is associated with adverse outcomes, providing insights for more accurate clinical prognostication of adenoma-to-adenocarcinoma transformation.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Fang Yang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Bing Li
- Data & Science, Burning Rock Biotech, Guangzhou, 510300, Guangdong, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Wang Z, Pan H, Zhou J, Wan D. CBLN2 overexpression inhibits colorectal cancer progression and improves immunotherapy responses. Int Immunopharmacol 2025; 144:113566. [PMID: 39577217 DOI: 10.1016/j.intimp.2024.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Cerebellin 2 (CBLN2) has critical roles in regulating neuronal function, however, its functions in cancer are poorly studied. In our project, we found that CBLN2 expression is significantly downregulated in colorectal carcinoma (CRC), which is related to poor outcomes of CRC patients. In addition, we found that CBLN2 is closely associated with immune infiltrates in CRC samples, especially CD8 + T cells. Mechanistically, we discovered that CBLN2 could inhibit STAT3-induced PD-L1 and beta-catenin activation in CRC. Further experiments revealed that CBLN2 overexpression could inhibit oncogenic properties of CRC cells in vitro and CRC tumor growth in vivo. What's more, we also confirmed that the activation of CBLN2 could improve the efficiency of immune checkpoint blockade (ICB) treatment in the MC38 CRC model. In conclusion, the CBLN2-STAT3 axis may act as a novel potential target for CRC treatment.
Collapse
Affiliation(s)
- Zeyu Wang
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongjing Pan
- Department of Oncology, China Pharmaceutical University Affiliated Shanghai GoBroad Cancer Hospital, Shanghai 200131,China
| | - Jun Zhou
- Department of Oncology, China Pharmaceutical University Affiliated Shanghai GoBroad Cancer Hospital, Shanghai 200131,China.
| | - Dong Wan
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
3
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
4
|
Yuan W, Zhang J, Chen H, Zhuang Y, Zhou H, Li W, Qiu W, Zhou H. Natural compounds modulate the mechanism of action of tumour-associated macrophages against colorectal cancer: a review. J Cancer Res Clin Oncol 2024; 150:502. [PMID: 39546016 PMCID: PMC11568041 DOI: 10.1007/s00432-024-06022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Colorectal cancer (CRC) exhibits a substantial morbidity and mortality rate, with its aetiology and pathogenesis remain elusive. It holds significant importance within the tumour microenvironment (TME) and exerts a crucial regulatory influence on tumorigenesis, progression, and metastasis. TAMs possess the capability to foster CRC pathogenesis, proliferation, invasion, and metastasis, as well as angiogenesis, immune evasion, and tumour resistance. Furthermore, TAMs can mediate the prognosis of CRC. In this paper, we review the mechanisms by which natural compounds target TAMs to exert anti-CRC effects from the perspective of the promotional effects of TAMs on CRC, mainly regulating the polarization of TAMs, reducing the infiltration and recruitment of TAMs, enhancing the phagocytosis of macrophages, and regulating the signalling pathways and cytokines, and discuss the potential value and therapeutic strategies of natural compounds-targeting the TAMs pathway in CRC clinical treatment.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiexiang Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Huang Y, Huang Y, Cai Z, Ferrari MW, Li C, Zhang T, Lyu G, Wang Z. MiR-21-3p inhibitor exerts myocardial protective effects by altering macrophage polarization state and reducing excessive mitophagy. Commun Biol 2024; 7:1371. [PMID: 39438580 PMCID: PMC11496525 DOI: 10.1038/s42003-024-07050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic heart failure (CHF) is closely associated with inflammation and mitochondrial dysfunction in cardiomyocytes. This study attempts to investigate the effects of microRNA-21-3p (miR-21-3p) on macrophage polarization and mitophagy in CHF. Here we found miR-21-3p was upregulated in CHF and negatively correlated with carnitine palmitoyl transferase 1A (CPT1A). L-palmitoyl carnitine (L-PC) exacerbated isoproterenol (ISO)-induced myocardial structural disruption and fibrosis in rats, which was exacerbated by miR-21-3p. Mechanistically, miR-21-3p accelerated M1 macrophage polarization. Both miR-21-3p inhibitor and CPT1A overexpression suppressed mitophagy. The inhibition of CPT1A on mitophagy was reversed by miR-21-3p. MiR-21-3p targeted CPT1A mRNA and co-localized with CPT1A protein in cardiomyocytes. In the co-culture system of M1 macrophages and H9c2 cells, miR-21-3p mimics in H9c2 cells promoted M1 polarization, whereas miR-21-3p inhibitor reduced M1 phenotype. M1 macrophages exacerbated H9c2 cell damage. These findings support the potential therapeutic targeting of miR-21-3p to regulate inflammation and mitophagy by inducing CPT1A in CHF.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yalin Huang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhaoling Cai
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Markus W Ferrari
- Department of Internal Medicine 1, Helios-HSK Clinics, Wiesbaden, Germany
| | - Chengyi Li
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianzhang Zhang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Collaborative Innovation Center for Maternal and Infant Health Service Application Technology of Education Ministry, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Zhenhua Wang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
6
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
7
|
Du Y, Chen Y, Yan Z, Yang J, Da M. Zinc finger protein 263 promotes colorectal cancer cell progression by activating STAT3 and enhancing chemoradiotherapy resistance. Sci Rep 2024; 14:21827. [PMID: 39294234 PMCID: PMC11410824 DOI: 10.1038/s41598-024-72636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Zinc finger protein 263 (ZNF263) is frequently upregulated in various tumor types; however, its function and regulatory mechanism in colorectal cancer (CRC) have not yet been elucidated. In this study, the expression of ZNF263 was systematically examined using data from The Cancer Genome Atlas database and samples from patients with CRC. The results indicated that high expression of ZNF263 in CRC tissues is significantly associated with tumor grade, lymph node metastasis and disant metastasis. Additionally, overexpression of ZNF263 significantly promoted the proliferation, invasion, migration, and epithelial-mesenchymal transition of CRC cells, while also increasing signal transducer and activator of transcription 3 (STAT3) expression and mRNA stability. Conversely, knockdown of ZNF263 inhibited the malignant behavior of CRC cells and decreased STAT3 expression and mRNA stability. Further mechanism studies using chromatin immunoprecipitation (CHIP) and luciferase assays verified that ZNF263 directly binds to the STAT3 promoter. Rescue experiments demonstrated that the knockdown or overexpression of STAT3 could significantly reverse the effects of ZNF263 on CRC cells. Additionally, our study found that overexpression of ZNF263 enhanced the resistance of CRC cells to the chemoradiotherapy. In summary, this study not only elucidated the significant role of ZNF263 in CRC but also proposed novel approaches and methodologies for the diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Yadan Du
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yawen Chen
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zaihua Yan
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jian Yang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Mingxu Da
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Peng H, Zhang J, Yang Z, Chen L, Chen J, Cai C. Prediction of the survival status and tumor microenvironment in colorectal cancer through genotyping analysis based on toll-like receptors. Saudi J Gastroenterol 2024; 30:243-251. [PMID: 38813725 PMCID: PMC11379252 DOI: 10.4103/sjg.sjg_424_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks third in both the incidence and mortality rates among male and female cancers, and it is the leading digestive system cancer. Due to the inter- and intratumor heterogeneity of cancer, the TNM system is insufficient for predicting prognosis, necessitating the use of molecular biomarkers for prognostic prediction. Toll-like receptors (TLRs) have been associated with CRC survival rates. This study focused on the investigation of the role and potential value of TLRs in CRC genotyping to aid in immunotherapy for CRC patients. METHODS Differential gene expression analysis was performed on CRC transcriptomic data from The Cancer Genome Atlas database. TLRs were referred from the literature, and their intersection with differentially expressed genes (DEGs) in CRC yielded TLR-DEGs. The expression patterns of TLR-DEGs were predicted using the STRING website, and copy number variations of TLR-DEGs were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on TLR-DEGs. ConsensusClusterPlus R package was used for clustering CRC patients, and ESTIMATE and GSEAbase were employed to analyze immune characteristics of different subtypes. Immune phenotyping scores and tumor immune dysfunction and exclusion scores were evaluated. DEGs of different subtypes were analyzed, followed by GO and KEGG enrichment analyses, the protein-protein interaction (PPI) network analysis, and further selection of hub genes. The sensitivity of drugs was assessed using the identified hub genes. RESULTS We identified 37 TLR-DEGs, and the PPI analysis revealed their coexpression, although they were distributed on different chromosomes. Enrichment analyses indicated that the 37 TLR-DEGs were linked to cancer cell immune response. Based on these TLR-DEGs, CRC patients were classified into three subtypes. Cluster2 exhibited lower survival rates and higher immune infiltration levels and predicted poorer response to immune checkpoint inhibitor therapy. The intersection of DEGs from cluster2 and cluster1 with DEGs from cluster2 and cluster3 yielded a set of 426 commonly shared DEGs. Enrichment analyses revealed that these shared DEGs might regulate immune cell viability. Eight common hub genes for different subtypes were further identified to predict drug-related correlations. CONCLUSION The developed TLR genotyping was used to predict the survival status and tumor microenvironment of CRC, providing a foundation for understanding the molecular mechanisms of TLR signaling and deepening its clinical significance.
Collapse
Affiliation(s)
- Huaidu Peng
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| | - Junshuo Zhang
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| | - Zehuang Yang
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| | - Lixin Chen
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| | - Jinhong Chen
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| | - Chudong Cai
- Department of General Surgery, Shantou Central Hospital of Guangdong Province, Shantou, China
| |
Collapse
|
9
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
10
|
Tang N, Yang Y, Xie Y, Yang G, Wang Q, Li C, Liu Z, Huang JA. CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS. Front Immunol 2024; 15:1344805. [PMID: 38440722 PMCID: PMC10909908 DOI: 10.3389/fimmu.2024.1344805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Acute lung injury (ALI)/severe acute respiratory distress syndrome (ARDS) is a serious clinical syndrome characterized by a high mortality rate. The pathophysiological mechanisms underlying ALI/ARDS remain incompletely understood. Considering the crucial role of immune infiltration and macrophage polarization in the pathogenesis of ALI/ARDS, this study aims to identify key genes associated with both ALI/ARDS and M1 macrophage polarization, employing a combination of bioinformatics and experimental approaches. The findings could potentially reveal novel biomarkers for the diagnosis and management of ALI/ARDS. Methods Gene expression profiles relevant to ALI were retrieved from the GEO database to identify co-upregulated differentially expressed genes (DEGs). GO and KEGG analyses facilitated functional annotation and pathway elucidation. PPI networks were constructed to identify hub genes, and differences in immune cell infiltration were subsequently examined. The expression of hub genes in M1 versus M2 macrophages was evaluated using macrophage polarization datasets. The diagnostic utility of CD274 (PD-L1) for ARDS was assessed by receiver operating characteristic (ROC) analysis in a validation dataset. Experimental confirmation was conducted using two LPS-induced M1 macrophage models and an ALI mouse model. The role of CD274 (PD-L1) in M1 macrophage polarization and associated proinflammatory cytokine production was further investigated by siRNA-mediated silencing. Results A total of 99 co-upregulated DEGs were identified in two ALI-linked datasets. Enrichment analysis revealed that these DEGs were mainly involved in immune-inflammatory pathways. The following top 10 hub genes were identified from the PPI network: IL-6, IL-1β, CXCL10, CD274, CCL2, TLR2, CXCL1, CCL3, IFIT1, and IFIT3. Immune infiltration analysis revealed a significantly increased abundance of M1 and M2 macrophages in lung tissue from the ALI group compared to the control group. Subsequent analysis confirmed that CD274 (PD-L1), a key immunological checkpoint molecule, was highly expressed within M1 macrophages. ROC analysis validated CD274 (PD-L1) as a promising biomarker for the diagnosis of ARDS. Both in vitro and in vivo experiments supported the bioinformatics analysis and confirmed that the JAK-STAT3 pathway promotes CD274 (PD-L1) expression on M1 macrophages. Importantly, knockdown of CD274 (PD-L1) expression potentiated M1 macrophage polarization and enhanced proinflammatory cytokines production. Conclusion This study demonstrates a significant correlation between CD274 (PD-L1) and M1 macrophages in ALI/ARDS. CD274 (PD-L1) functions as a negative regulator of M1 polarization and the secretion of proinflammatory cytokines in macrophages. These findings suggest potential new targets for the diagnosis and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Nana Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Yifei Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Guohui Yang
- Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Chang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Jian-an Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Zhu J, Liu W, Bian Z, Ma Y, Kang Z, Jin J, Li X, Ge S, Hao Y, Zhang H, Xie Y. Lactobacillus plantarum Zhang-LL Inhibits Colitis-Related Tumorigenesis by Regulating Arachidonic Acid Metabolism and CD22-Mediated B-Cell Receptor Regulation. Nutrients 2023; 15:4512. [PMID: 37960165 PMCID: PMC10648432 DOI: 10.3390/nu15214512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1β, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.
Collapse
Affiliation(s)
- Jingxin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yumeng Ma
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zixin Kang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Shaoyang Ge
- Beijing HEYIYUAN BIOTECHNOLOGY Co., Ltd., Beijing 100088, China;
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China;
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| |
Collapse
|
12
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|