1
|
Zhang Z, Li H, Wan Z, Su M, Zhang Y, Yang T, Ji X, Men J, Xing G, Han J, Ji Y, Zhang W, Chen H, Xu X, Fei J, Dong C, Yang Y, Wu Y, Yi Q, Pang W, Zhang M, Shi C, Zhen K, Wang D, Lei J, Wu S, Shu S, Zhang Y, Zhang S, Gao Q, Wan J, Xie W, Yang P, Zhang P, Zuo X, Jiang T, Zhai Z, Wang C. Whole genome sequencing identifies pathogenic genetic variants in Han Chinese patients with familial venous thromboembolism. Commun Biol 2025; 8:604. [PMID: 40221599 PMCID: PMC11993696 DOI: 10.1038/s42003-025-07935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/13/2025] [Indexed: 04/14/2025] Open
Abstract
Genetic factors play a pivotal role in determining venous thromboembolism (VTE) risk, particularly in cases of unprovoked early-onset VTE and those with a family history. While genome-wide association studies (GWAS) has advanced our understanding, high-quality whole-genome sequencing (WGS) from family-based studies is essential to elucidate the role of rare variants. In this study, we performed WGS on 216 individuals from 35 Han Chinese VTE pedigrees and validated findings in 99 high-heritability VTE cases using whole-exome sequencing. Functional impact was assessed via qPCR and Western Blot in HEK293T cells. Classical genes explained partial familial inheritance (20/35), while non-classical genes showed comparable effects on VTE recurrence and CTEPH. From 36 rare variants, 34 pedigrees (97%) were interpreted, with 29 variants reported for the first time. Notably, three novel variants, GP6 (c.G1094A:p.R365H), TET2 (c.G3451T:p.E1151X), and JAK2 (c.G380A:p.G127D), shared in two unrelated pedigrees each and are classified as low frequency in East Asians. Functional analyses revealed significant changes in GP6 and TET2 expression compared to the wild type. These findings provide novel insights into the genetic architecture of VTE and highlight GP6, TET2, and JAK2 as potential risk factors in East Asian populations, underscoring the clinical relevance of rare variants in VTE pathogenesis.
Collapse
Affiliation(s)
- Zhu Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Haobo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhaoman Wan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Mingming Su
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yu Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Yang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi, China
| | - Xiaofan Ji
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianlong Men
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoqiang Xing
- Department of Pulmonary and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong, China
| | - Jing Han
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaomao Xu
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, Beijing, China
| | - Jianwen Fei
- Department of Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong, China
| | - Chunling Dong
- Department of Pulmonary and Critical Care Medicine, Second Hospital, Jilin University, Jilin, China
| | - Yuanhua Yang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing, Wuxi, Jiangsu, China
| | - Qun Yi
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenyi Pang
- Department of Pulmonary and Critical Care Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chong Shi
- Beijing University of Chinese Medicine, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Kaiyuan Zhen
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dingyi Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jieping Lei
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Sinan Wu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical research and Data management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shi Shu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yunxia Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qian Gao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wanmu Xie
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Peng Zhang
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China.
| | - Taijiao Jiang
- State Key Laboratory of Respiratory Disease, The Key laboratory of Advanced Interdisciplinary Studies Center, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Zhenguo Zhai
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Lyu Y, Li H, Liu X, Zhang X, Chen Y, Fan G, Zhang H, Han Z, Guo Z, Weng H, Hu H, Li X, Zhang Z, Zhang Y, Xu F, Wang C, Wang D, Yang P, Zhai Z. Estimated Glomerular Filtration Rate Decline is Causally Associated with Acute Pulmonary Embolism: A Nested Case-Control and Mendelian Randomization Study. Thromb Haemost 2025. [PMID: 39401521 DOI: 10.1055/a-2439-5200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Renal dysfunction is highly prevalent among patients with pulmonary embolism (PE). This study combined population-based study and Mendelian randomization (MR) to observe the relationship between renal function and PE.A nested case-control study were performed using data of PE patients and controls were from two nationwide cohorts, the China pUlmonary thromboembolism REgistry Study (CURES) and China Health and Retirement Longitudinal Survey (CHARLS). Baseline characteristics were balanced using propensity score matching and inverse probability of treatment weighting. Restricted cubic spline models were applied for the relationship between estimated glomerular filtration rate (eGFR) decline and the risk of PE. Bidirectional two-sample MR analyses were performed using genome-wide association study summary statistics for eGFR involving 1,201,909 individuals and for PE from the FinnGen consortium.The nested case-control study including 17,547 participants (6,322 PE patients) found that eGFR distribution was significantly different between PE patients and controls (p < 0.001), PE patients had a higher proportion of eGFR < 60 mL/min/1.73 m2. eGFR below 88 mL/min/1.73 m2 was associated with a steep elevation in PE risk. MR analyses indicated a potential causal effect of eGFR decline on PE (odds ratio = 4·26, 95% confidence interval: 2·07-8·79), with no evidence of horizontal pleiotropy and reverse causality.Our findings support the hypothesis that renal function decline contributes to an elevated PE risk. Together with the high prevalence of chronic kidney diseases globally, there arises the necessity for monitoring and modulation of renal function in effective PE prevention.
Collapse
Affiliation(s)
- Yanshuang Lyu
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haobo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xin Liu
- Department of Nephrology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Xiaomeng Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yinong Chen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Guohui Fan
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhifa Han
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhuangjie Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haoyi Weng
- Shenzhen WeGene Clinical Laboratory, Shenzhen, China
- Wegene Shenzhen Zaozhidao Technology Co., Ltd, Shenzhen, China
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and ngineering, Central South University, Changsha, China
| | - Huiyuan Hu
- First Clinical College, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Xincheng Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Feiya Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- First Clinical College, Xi'an Jiaotong University, Xi'an, ShaanXi, China
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- China China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Dingyi Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhenguo Zhai
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- First Clinical College, Xi'an Jiaotong University, Xi'an, ShaanXi, China
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- China China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Guo M, Zhao X, Zhao X, Wang G, Ren X, Chen A, Jiang X, Zhang Y, Cheng X, Yu X, Wang H, Li F, Ning Z, Qu L. Genomic and transcriptomic analyses reveal the genetic basis of leg diseases in laying hens. Poult Sci 2025; 104:104887. [PMID: 39970519 PMCID: PMC11880710 DOI: 10.1016/j.psj.2025.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
In recent years, while monitoring commercial laying hens during the brooding period, we noticed that some chicks exhibited an abnormal lameness phenomenon. Systematic tests were carried out for pathogens including, but not limited to, common diseases such as viral arthritis, mycoplasma synoviae, Marek's disease and encephalomyelitis. However, the absence of these pathogens in these chicks rules out these common diseases as a direct cause of limping and points to genetic factors. Leg disorders in laying hens pose significant welfare challenges and result in considerable economic losses within the poultry industry. To address this issue, we conducted a comprehensive genomic and transcriptomic analysis to uncover the genetic basis of leg diseases in laying hens. Our study involved 74 laying hens with leg diseases and 60 healthy controls from three different strains. Radiographic identification and resequencing were performed to analyze genetic loci and candidate genes. Transcriptomic analysis was also conducted on cartilage tissues from both groups. Four potential single nucleotide polymorphism (SNP) loci located on chromosomes 4 and 33 were identified through genome-wide association studies (GWAS). Notably, the functional candidate gene SORCS2 has been particularly implicated in the pathogenesis of leg disease. A total of 1,515 differentially expressed genes (DEGs) were identified through transcriptomic analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant enrichment in pathways such as cytoskeletal protein binding, cell cycle regulation, and muscle cell cytoskeleton organization. Notably, the calcium signaling and the extracellular matrix (ECM)-receptor interaction pathways were associated with the development of leg diseases. The integration of genomic and transcriptomic data identified key genetic loci and candidate genes associated with leg health, providing a genetic foundation for improving disease resistance in laying hens. Our findings offer valuable insights for the development of selective breeding strategies to reduce the incidence of leg disorders in laying hens, thereby enhancing their welfare and productivity.
Collapse
Affiliation(s)
- Menghan Guo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhao
- Xingrui Agricultural Stock Breeding, Baoding 072550, Hebei Province, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jiang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofan Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huie Wang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China
| | - Fugui Li
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Luo X, Chen L, Xu J, Li J. Naoxintong Is Involved in the Coagulation Regulation of Warfarin Through the MAPK Pathway. Pharmgenomics Pers Med 2025; 18:35-46. [PMID: 39906888 PMCID: PMC11792639 DOI: 10.2147/pgpm.s489820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Objective To explore the effect of Naoxintong (NXT) on warfarin anticoagulation therapy and its potential mechanism. Methods TCSMP, SwissTargetprediction, SuperPred, SEA, and Batmanic-TCM were used to search for active ingredients and targets of NXT and warfarin; the DisGENT database was used to find disease targets of coagulation disorders. Cytoscape software was applied to construct the "drug-target"network; the protein interaction network (PPI) was used to study the protein-protein interaction. GO and KEGG were used for functional analysis. The effect of NXT on warfarin anticoagulation was then tested in rats by analyzing coagulation factors in blood before and after drug administration. The expression of MAPK in the liver tissue was determined by Western blot. Results The top five components of NXT affecting warfarin anticoagulation degree value were MOL000098, MOL000422, MOL000006, MOL000358, and MOL000449. TP53, AKT1, SRC, TNF, HSP90AA1, STAT3, JUN, IL6, EGFR, and ESR1 were the core targets of NXT, while MAPK9, MAP3K5, MAPK8, and MAPK1 in the MAPK family were important targets of NXT in the coagulation process. In vivo testing indicated that NXT may be able to participate in the regulation of the warfarin coagulation process through multiple targets and multiple pathways, which may be related to MAPK. Conclusion Our data suggests that NXT is involved in the coagulation regulation of warfarin through the MAPK pathway.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No. 1 People’s Hospital, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Ling Chen
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No. 1 People’s Hospital, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Jingsong Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| |
Collapse
|
5
|
Filip C, Matasariu DR, Ursache A, Dimitriu CD, Filip C, Boiculese VL, Socolov DG. Exploring Biomarkers to Predict Thrombogenic Risk in Pregnancy. J Clin Med 2025; 14:932. [PMID: 39941603 PMCID: PMC11818711 DOI: 10.3390/jcm14030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Normal pregnancy and the postpartum period are characterized by thrombotic predisposition. Consequently, monitoring coagulation markers and conducting risk assessments are essential in preventing thrombotic events that negatively impact both the mother and the child. In medical practice, fibrinogen/fibrin degradation products (FDPs) are the main coagulation markers currently investigated in pregnancy. Methods: We investigated proteins C and S, antiphospholipid antibodies (APLs), human factor V, and beta-2-glycoprotein 1 or apolipoprotein H (APOH) levels to determine whether there is any difference between normal third-trimester pregnancies and pregnant women in late pregnancy who end up developing deep vein thrombosis (DVT). Results: Our data show a significant correlation between protein C levels and the number of weeks of pregnancy, as well as statistically significant differences between healthy pregnant women and pregnant women with DVT in terms of the values of FDP, protein S, and APL. The DVT group had higher FDP levels but lower AFL and protein S values. Conclusions: Given the significant prothrombotic correlation that exists between proteins C and S, we propose that variations in their levels can serve as valuable markers in the evaluation of thrombotic risk during the final stages of pregnancy.
Collapse
Affiliation(s)
- Catalina Filip
- Department of Vascular Surgery, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania;
- Department of Vascular Surgery, CHU “Gabriel Montpied”, 63000 Clermont-Ferrand, France
| | - Daniela Roxana Matasariu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (A.U.); (D.G.S.)
- Department of Obstetrics and Gynecology, Cuza Voda Hospital, 700038 Iasi, Romania
| | - Alexandra Ursache
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (A.U.); (D.G.S.)
| | - Cristina Daniela Dimitriu
- Department of Morpho-Functional Sciences II, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania;
| | - Cristiana Filip
- Department of Biochemistry, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania;
| | - Vasile Lucian Boiculese
- Biostatistics, Department of Preventive Medicine and Interdisciplinarity, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania;
| | - Demetra Gabriela Socolov
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Grigore T. Popa”, 700111 Iasi, Romania; (A.U.); (D.G.S.)
- Department of Obstetrics and Gynecology, Cuza Voda Hospital, 700038 Iasi, Romania
| |
Collapse
|
6
|
Kvasnicka T, Cifkova R, Zenahlikova Z, Bobcikova P, Syruckova A, Sevcik M, Dusková D, Kvasnicka J. The Prevalence of the Thrombotic SNPs rs6025, rs1799963, rs2066865, rs2289252 and rs8176719 in Patients with Venous Thromboembolism in the Czech Population. Clin Appl Thromb Hemost 2025; 31:10760296251324202. [PMID: 40094632 PMCID: PMC11915282 DOI: 10.1177/10760296251324202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
IntroductionStudy aimed to determine the occurrence of 5 thrombosis-related single-nucleotide polymorphisms (SNPs) in patients with venous thromboembolism (VTE) (n = 2630) and a control group (n = 2637) in the Czech population.MethodsThe following gene SNPs were detected in both groups: F5 Leiden (rs6025), F2 (rs1799963), FGG, fibrinogen gamma' (rs2066865), F11 (rs2289252) and ABO (rs8176719). Statistical analysis was performed using SAS statistical software with population genetics tools.ResultsHeterozygotes for F5 Leiden were associated with a 5.58-fold and homozygotes F5 Leiden with a 33.46-fold increased risk of VTE. At SNP rs1799963 (F2, prothrombin), only heterozygotes had a significant 3.9-fold increased risk of VTE. The findings at SNP rs2066865 (fibrinogen gamma', FGG) showed a 1.37-fold increased risk of VTE for FGG heterozygotes and a 1.77-fold increased risk of VTE for FGG homozygotes. There is also a significant 1.42-fold increase risk of VTE in the heterozygotes and a 1.80-fold increase risk of VTE in the homozygotes of the SNP rs 2289252 (F11). Further higher increases in the risk of VTE in both variants were found in patients with VTE at rs8176719 (ABO, non-O). It corresponds to a 2.2-fold increase in the risk of VTE in heterozygotes and a 3.5-fold increase in the risk of VTE in homozygotes.ConclusionBesides F5 Leiden and prothrombin mutation, the study suggests that the gene polymorphisms of FGG (rs2066865), F11 (rs2289252) and ABO (rs8176719) play a role as an independent heritable risk factor for VTE in the Czech population.
Collapse
Affiliation(s)
- Tomas Kvasnicka
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Renata Cifkova
- Center for Cardiovascular Prevention, first Faculty of Medicine, Charles University and Thomayer University Hospital, Prague,
Czech Republic
| | - Zuzana Zenahlikova
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petra Bobcikova
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Alena Syruckova
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Sevcik
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Daniela Dusková
- 1st Department of Medicine, Division of Hematology, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Blood Transfusion, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Kvasnicka
- 1st Department of Medicine, Division of Hematology, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
He A, Hong Z, Jing Z, Ma H, Li H. Causal relationship between circulating plasma lipids and atopic dermatitis risk: potential drug targets and therapeutic strategies. Arch Dermatol Res 2024; 317:47. [PMID: 39589539 DOI: 10.1007/s00403-024-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/25/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
This study leverages the most up-to-date lipidomic data to provide fresh perspectives on the treatment and prevention of atopic dermatitis. The analysis utilized genome-wide association study (GWAS) data on 179 circulating plasma lipids and AD GWAS data. The primary analysis method employed was the inverse variance weighting (IVW) method, and several sensitivity analyses were conducted to ensure the reliability of the results. Additionally, summary-data-based MR (SMR) and colocalization analysis were utilized to investigate the underlying biological pathways of AD. After rigorous analyses, the IVW method utilized in TSMR analysis pinpointed six plasma lipids with potentially reduced AD risk when elevated. Subsequently, MVMR analysis revealed that there is no independent causal effect of different lipids within the same subtype on AD. Bidirectional MR analysis did not indicate reverse causality, and SMR analysis suggested FADS1 and FADS2 as potential drug targets for AD treatment. This MR study demonstrated a causal relationship between specific plasma lipid levels and AD risk at the genetic level, which can be used for clinical screening of AD plasma lipid biomarkers and provides a novel perspective on potential therapeutic strategies.
Collapse
Affiliation(s)
- Ao He
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China.
| | - Zhisheng Hong
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoyi Jing
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haoteng Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hainan Li
- Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| |
Collapse
|
8
|
Xiong J, Liao Y, Yang L, Wei Y, Li D, Zhao Y, Zheng Q, Qi W, Liang F. Relationship between human serum metabolites and angina pectoris: a Mendelian randomization study. Postgrad Med J 2024; 100:811-819. [PMID: 38832627 DOI: 10.1093/postmj/qgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE We aimed to explore the causal relationship between human serum metabolites and angina pectoris. METHODS This study used two-sample Mendelian randomization (MR) analysis to assess the association between 486 serum metabolites and angina pectoris. The analytical methods employed to reduce study bias included inverse variance weighted, MR-Egger, and weighted median method. A comprehensive sensitivity analysis was performed using the leave-one-out method, while instrumental variable pleiotropy was tested with MR-Pleiotropy RESidual Sum and Outlier. Metabolic pathways of angina-associated metabolites were analysed on the MetaboAnalyst metabolomics analysis tool platform. RESULTS In this study, 42 serum metabolites were found to be strongly associated with angina pectoris. They mainly belonged to seven groups: amino acids, carbohydrates, cofactors and vitamins, lipids, nucleotides, unknown metabolites, and exogenous substances. Pipecolate posed the highest risk for the development of angina pectoris among the 42 serum metabolites. The main metabolic pathways associated with angina pectoris were glycine, serine, threonine metabolism, primary bile acid biosynthesis, and caffeine metabolism. CONCLUSION We identified 25 high-risk and 17 protective human serum metabolites associated with angina pectoris. Their associated major metabolic pathways were also determined. The serum metabolite pipecolate was significantly and positively correlated with the risk of angina pectoris. This finding may serve as a valuable reference for testing serum markers associated with angina pectoris.
Collapse
Affiliation(s)
- Jian Xiong
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Ying Liao
- College of Acupuncture and Tuina, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530001, China
| | - Liyuan Yang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Ying Wei
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Dehua Li
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
- Department of Acupuncture and Moxibustion, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Yi Zhao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhua Zheng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Wenchuan Qi
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| |
Collapse
|
9
|
Yu J, Meng S, Xuan T, Wang Z, Qu L, Cao F, Li J. Identification of hsa-miR-193a-5p-SURF4 axis related to the gut microbiota-metabolites- cytokines in lung cancer based on Mendelian randomization study and bioinformatics analysis. Discov Oncol 2024; 15:475. [PMID: 39331265 PMCID: PMC11436685 DOI: 10.1007/s12672-024-01359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Lung cancer is a significant disease that affects people's physical and mental health. Currently, the treatment outcomes still do not meet clinical needs, and the causes of the disease are still unclear, therefore further exploration is needed. METHODS We analyzed the exposure factors of lung cancer, including gut microbiota, serum metabolites, and cytokines, through Mendelian randomization studies and bioinformatics analysis. We identified common SNPs and performed gene annotation, leading to the discovery of the key gene SURF4, which may affect the onset of lung cancer. We validated the oncogenic function and mechanism of SURF4 through public data analysis using GO and KEGG, and constructed a ceRNA network, revealing the lung cancer oncogenic pathway involving lncRNA/pseudogene-microRNA-SURF4. RESULTS We first conducted a Mendelian randomization analysis on 418 gut microbiota, 1400 serum metabolites, and 41 cytokines in relation to lung cancer. We found that 16 gut microbiota, 29 serum metabolites, and 2 cytokines were closely associated with lung cancer. Further comparison of all differential SNPs revealed that rs550057 on chromosome 9 was a common SNP among these three exposure factors, indicating its crucial role in lung cancer formation. Through gene functional annotation using R language, we found that the expression of 15 genes, including SURF4, was influenced by rs550057. By querying these 15 genes from public databases for their differential expression and prognosis in lung cancer, we found significant differences in SURF4, MED22, and RPL7A. Furthermore, by querying the expression and correlation coefficients of upstream microRNAs of these three genes through the starBase website, we found that hsa-miR-193a-5p-SURF4 had the most significant effect on lung cancer. Through GO and KEGG analysis of SURF4-related genes, we identified the molecular pathways associated metabolic synthesis and microbial infection related to the promotion of lung cancer by SURF4. This validated the results of the previous Mendelian randomization study. Furthermore, we constructed a ceRNA network for SURF4 and identified two upstream differentially expressed pseudogenes and nine lncRNAs, confirming the functionality of the pseudogene/lncRNA-microRNA-SUFR4 pathway. CONCLUSIONS In summary, we have elucidated the regulatory role of the pseudogene/lncRNA-microRNA-SUFR4 pathway in the progression of lung cancer, combining the research hotspots of gut microbiota-serum metabolites-cytokines. We have also confirmed the pathway and mechanism through SURF4 and its related genes promoting lung cancer formation. This may provide effective therapeutic methods for lung cancer and serve as a potential prognostic marker.
Collapse
Affiliation(s)
- Jie Yu
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
- Shandong University Cancer Center, Jinan, 250117, Shandong, China
- Shandong Provincial Key Laboratory of Precision Oncology, Jinan, 250117, Shandong, China
| | - Sibo Meng
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Tiantian Xuan
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Zhanmei Wang
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Linli Qu
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Fangli Cao
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Jiaxin Li
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China.
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Li H, Duo M, Zhang Z, Weng H, Liu D, Zhang Y, Xi L, Zou B, Li H, Chen G, Zuo X, Ito K, Xie W, Yang P, Wang C, Zhai Z. Blood cell traits and venous thromboembolism in East Asians: Observational and genetic evidence. iScience 2024; 27:110671. [PMID: 39262796 PMCID: PMC11387690 DOI: 10.1016/j.isci.2024.110671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Previous studies have indicated that various blood cell traits are associated with a higher risk of venous thromboembolism (VTE). However, the causal relationship remains uncertain. We collected data from the China pulmonary thromboembolism registry study and the China pulmonary health study, using propensity score matching and two-sample Mendelian randomization analyses with summary statistics from genome-wide association studies of blood cell traits and VTE in the East Asian population. Our findings revealed that platelet (PLT) count and hemoglobin (Hb) levels were significantly higher in VTE patients compared to the general population (p value <0.01). Genetically predicted Hb levels were positively associated with VTE, with an odds ratio (OR) of 2.38 (1.13-5.01), p value = 0.022. Similarly, genetically predicted PLT count was positively correlated with VTE, with an OR of 1.33 (1.02-1.74), p value = 0.038. These results suggest a causal relationship and potential targets for prevention.
Collapse
Affiliation(s)
- Haobo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengjie Duo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Haoyi Weng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Dong Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Linfeng Xi
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bingzhang Zou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huiwen Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Chen
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wanmu Xie
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chen Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Jin Y, Zhou H, Jin X, Wang J. Deciphering the lipid-cancer nexus: comprehensive Mendelian randomization analysis of the associations between lipid profiles and digestive system cancer susceptibility. Lipids Health Dis 2024; 23:202. [PMID: 38937739 PMCID: PMC11209958 DOI: 10.1186/s12944-024-02191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Digestive system cancers represent a significant global health challenge and are attributed to a combination of demographic and lifestyle changes. Lipidomics has emerged as a pivotal area in cancer research, suggesting that alterations in lipid metabolism are closely linked to cancer development. However, the causal relationship between specific lipid profiles and digestive system cancer risk remains unclear. METHODS Using a two-sample Mendelian randomization (MR) approach, we elucidated the causal relationships between lipidomic profiles and the risk of five types of digestive system cancer: stomach, liver, esophageal, pancreatic, and colorectal cancers. The aim of this study was to investigate the effect impact of developing lipid profiles on the risk of digestive system cancers utilizing data from public databases such as the GWAS Catalog and the UK Biobank. The inverse‒variance weighted (IVW) method and other strict MR methods were used to evaluate the potential causal links. In addition, we performed sensitivity analyses and reverse MR analyses to ensure the robustness of the results. RESULTS Significant causal relationships were identified between certain lipidomic traits and the risk of developing digestive system cancers. Elevated sphingomyelin (d40:1) levels were associated with a reduced risk of developing gastric cancer (odds ratio (OR) = 0.68, P < 0.001), while elevated levels of phosphatidylcholine (16:1_20:4) increased the risk of developing esophageal cancer (OR = 1.31, P = 0.02). Conversely, phosphatidylcholine (18:2_0:0) had a protective effect against colorectal cancer (OR = 0.86, P = 0.036). The bidirectional analysis did not suggest reverse causality between cancer risk and lipid levels. Strict MR methods demonstrated the robustness of the above causal relationships. CONCLUSION Our findings underscore the significant causal relationships between specific lipidomic traits and the risk of developing various digestive system cancers, highlighting the potential of lipid profiles in informing cancer prevention and treatment strategies. These results reinforce the value of MR in unraveling complex lipid-cancer interactions, offering new avenues for research and clinical application.
Collapse
Affiliation(s)
- Yongyan Jin
- Nursing Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Zhou
- Nursing Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310000, Zhejiang, China
| | - Xiaoli Jin
- Department of Gastroenterology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Jun Wang
- Department of Gastroenterology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
12
|
Jiang C, Lin J, Xie B, Peng M, Dai Z, Mai S, Chen Q. Causal association between circulating blood cell traits and pulmonary embolism: a mendelian randomization study. Thromb J 2024; 22:49. [PMID: 38863024 PMCID: PMC11167760 DOI: 10.1186/s12959-024-00618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Pulmonary embolism (PE) is a life-threatening thromboembolic disease for which there is limited evidence for effective prevention and treatment. Our goal was to determine whether genetically predicted circulating blood cell traits could influence the incidence of PE. METHODS Using single variable Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) analyses, we identified genetic associations between circulating blood cell counts and lymphocyte subsets and PE. GWAS blood cell characterization summary statistics were compiled from the Blood Cell Consortium. The lymphocyte subpopulation counts were extracted from summary GWAS statistics for samples from 3757 individuals that had been analyzed by flow cytometry. GWAS data related to PE were obtained from the FinnGen study. RESULTS According to the SVMR and reverse MR, increased levels of circulating white blood cells (odds ratio [OR]: 0.88, 95% confidence interval [CI]: 0.81-0.95, p = 0.0079), lymphocytes (OR: 0.90, 95% CI: 0.84-0.97, p = 0.0115), and neutrophils (OR: 0.88, 95% CI: 0.81-0.96, p = 0.0108) were causally associated with PE susceptibility. MVMR analysis revealed that lower circulating lymphocyte counts (OR: 0.84, 95% CI: 0.75-0.94, p = 0.0139) were an independent predictor of PE. According to further MR results, this association may be primarily related to HLA-DR+ natural killer (NK) cells. CONCLUSIONS Among European populations, there is a causal association between genetically predicted low circulating lymphocyte counts, particularly low HLA-DR+ NK cells, and an increased risk of PE. This finding supports observational studies that link peripheral blood cells to PE and provides recommendations for predicting and preventing this condition.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianing Lin
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Suyin Mai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
13
|
Su C, Wan S, Ding J, Ni G, Ding H. Blood lipids mediate the effects of gut microbiome on endometriosis: a mendelian randomization study. Lipids Health Dis 2024; 23:110. [PMID: 38627726 PMCID: PMC11020997 DOI: 10.1186/s12944-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND There is evidence for an association between the gut microbiome and endometriosis. However, their causal relationship and the mediating role of lipid metabolism remain unclear. METHODS Using genome-wide association study (GWAS) data, we conducted a bidirectional Mendelian randomization (MR) analysis to investigate the causal relationships between gut microbiome and endometriosis. The inverse variance weighted (IVW) method was used as the primary model, with other MR models used for comparison. Sensitivity analysis based on different statistical assumptions was used to evaluate whether the results were robust. A two-step MR analysis was further conducted to explore the mediating effects of lipids, by integrating univariable MR and the multivariate MR method based on the Bayesian model averaging method (MR-BMA). RESULTS We identified four possible intestinal bacteria genera associated with the risk of endometriosis through the IVW method, including Eubacterium ruminantium group (odds ratio [OR] = 0.881, 95% CI: 0.795-0.976, P = 0.015), Anaerotruncus (OR = 1.252, 95% CI: 1.028-1.525, P = 0.025), Olsenella (OR = 1.110, 95% CI: 1.007-1.223, P = 0.036), and Oscillospira (OR = 1.215, 95% CI: 1.014-1.456, P = 0.035). The further two-step MR analysis identified that the effect of Olsenella on endometriosis was mediated by triglycerides (proportion mediated: 3.3%; 95% CI = 1.5-5.1%). CONCLUSION This MR study found evidence for specific gut microbiomes associated with the risk of endometriosis, which might partially be mediated by triglycerides.
Collapse
Affiliation(s)
- Chang Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| | - Su Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Guantai Ni
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Huafeng Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China.
| |
Collapse
|
14
|
Cao Y, Ai M, Liu C. The impact of lipidome on breast cancer: a Mendelian randomization study. Lipids Health Dis 2024; 23:109. [PMID: 38622701 PMCID: PMC11017498 DOI: 10.1186/s12944-024-02103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE This study aims to investigate the association between specific lipidomes and the risk of breast cancer (BC) using the Two-Sample Mendelian Randomization (TSMR) approach and Bayesian Model Averaging Mendelian Randomization (BMA-MR) method. METHOD The study analyzed data from large-scale GWAS datasets of 179 lipidomes to assess the relationship between lipidomes and BC risk across different molecular subtypes. TSMR was employed to explore causal relationships, while the BMA-MR method was carried out to validate the results. The study assessed heterogeneity and horizontal pleiotropy through Cochran's Q, MR-Egger intercept tests, and MR-PRESSO. Moreover, a leave-one-out sensitivity analysis was performed to evaluate the impact of individual single nucleotide polymorphisms on the MR study. RESULTS By examining 179 lipidome traits as exposures and BC as the outcome, the study revealed significant causal effects of glycerophospholipids, sphingolipids, and glycerolipids on BC risk. Specifically, for estrogen receptor-positive BC (ER+ BC), phosphatidylcholine (P < 0.05) and phosphatidylinositol (OR: 0.916-0.966, P < 0.05) within glycerophospholipids play significant roles, along with the importance of glycerolipids (diacylglycerol (OR = 0.923, P < 0.001) and triacylglycerol, OR: 0.894-0.960, P < 0.05)). However, the study did not observe a noteworthy impact of sphingolipids on ER+BC. In the case of estrogen receptor-negative BC (ER- BC), not only glycerophospholipids, sphingolipids (OR = 1.085, P = 0.008), and glycerolipids (OR = 0.909, P = 0.002) exerted an influence, but the protective effect of sterols (OR: 1.034-1.056, P < 0.05) was also discovered. The prominence of glycerolipids was minimal in ER-BC. Phosphatidylethanolamine (OR: 1.091-1.119, P < 0.05) was an important causal effect in ER-BC. CONCLUSIONS The findings reveal that phosphatidylinositol and triglycerides levels decreased the risk of BC, indicating a potential protective role of these lipid molecules. Moreover, the study elucidates BC's intricate lipid metabolic pathways, highlighting diverse lipidome structural variations that may have varying effects in different molecular subtypes.
Collapse
Affiliation(s)
- Yuchen Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan, Beijing, 100144, China
| | - Meichen Ai
- Southern Medical University, Guangzhou, 510515, China
| | - Chunjun Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan, Beijing, 100144, China.
| |
Collapse
|
15
|
He C, Chu J, Li Y, Dang Y, Xue K, Cai C. Reassessing the Risk of Venous Thromboembolism (VTE) Events in Women. Clin Appl Thromb Hemost 2024; 30:10760296241305108. [PMID: 39648738 PMCID: PMC11626654 DOI: 10.1177/10760296241305108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
This research aims to reassess women's risk of venous thromboembolism (VTE) events. We conducted an in-depth analysis of the environmental risk factors associated with VTE and their interactions with gender while also exploring the genetic underpinnings of the disease. VTE is identified as a multifactorial condition influenced by a combination of genetic, non-predisposing, and predisposing environmental factors. We further investigated the genetic basis of VTE, focusing on the identification and analysis of risk loci, as well as gene interaction networks and genetic analyses, which offer significant insights into the pathogenesis of VTE. Recognizing the critical role of gender in assessing VTE risk and developing prevention strategies, this research underscores the necessity of adopting an integrated perspective that accounts for individual vulnerabilities at both genetic and environmental levels to formulate effective preventive measures.
Collapse
Affiliation(s)
- Changhuai He
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Chu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Li H, Zhang Z, Qiu Y, Weng H, Yuan S, Zhang Y, Zhang Y, Xi L, Xu F, Ji X, Hao R, Yang P, Chen G, Zuo X, Zhai Z, Wang C. Proteome-wide mendelian randomization identifies causal plasma proteins in venous thromboembolism development. J Hum Genet 2023; 68:805-812. [PMID: 37537391 PMCID: PMC10678328 DOI: 10.1038/s10038-023-01186-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Genome-wide association studies (GWAS) have identified numerous risk loci for venous thromboembolism (VTE), but it is challenging to decipher the underlying mechanisms. We employed an integrative analytical pipeline to transform genetic associations to identify novel plasma proteins for VTE. Proteome-wide association studies (PWAS) were determined by functional summary-based imputation leveraging data from a genome-wide association analysis (14,429 VTE patients, 267,037 controls), blood proteomes (1348 cases), followed by Mendelian randomization, Bayesian colocalization, protein-protein interaction, and pathway enrichment analysis. Twenty genetically regulated circulating protein abundances (F2, F11, ABO, PLCG2, LRP4, PLEK, KLKB1, PROC, KNG1, THBS2, SERPINA1, RARRES2, CEL, GP6, SERPINE2, SERPINA10, OBP2B, EFEMP1, F5, and MSR1) were associated with VTE. Of these 13 proteins demonstrated Mendelian randomized correlations. Six proteins (F2, F11, PLEK, SERPINA1, RARRES2, and SERPINE2) had strong support in colocalization analysis. Utilizing multidimensional data, this study suggests PLEK, SERPINA1, and SERPINE2 as compelling proteins that may provide key hints for future research and possible diagnostic and therapeutic targets for VTE.
Collapse
Affiliation(s)
- Haobo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhu Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuting Qiu
- Capital Medical University, Beijing, China
| | - Haoyi Weng
- WeGene, Shenzhen, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yunxia Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Capital Medical University, Beijing, China
| | - Linfeng Xi
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Capital Medical University, Beijing, China
| | - Feiya Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Capital Medical University, Beijing, China
| | - Xiaofan Ji
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Risheng Hao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Capital Medical University, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Gang Chen
- WeGene, Shenzhen, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xianbo Zuo
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
17
|
Weng H, Li H, Zhang Z, Zhang Y, Xi L, Zhang D, Deng C, Wang D, Chen R, Chen G, Tang S, Zuo X, Yang P, Zhai Z, Wang C. Association between uric acid and risk of venous thromboembolism in East Asian populations: a cohort and Mendelian randomization study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 39:100848. [PMID: 37565068 PMCID: PMC10410163 DOI: 10.1016/j.lanwpc.2023.100848] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Background Serum uric acid (SUA) levels have been associated with an increased risk and recurrence of venous thromboembolism (VTE) in European populations, but the potential causal relationship remains unclear. Large-scale studies on the association between SUA and VTE in East Asian populations are lacking, despite the high prevalence of hyperuricemia in this region. To address this, we conducted a cohort analysis and a two-sample Mendelian randomization (MR) study in East Asian populations. Methods We collected data on VTE patients from the China Pulmonary Thromboembolism Registry Study (CURES) and compared them to controls obtained from the China Health and Retirement Longitudinal Survey (CHARLS). Propensity score matching (PSM) and cubic-spline models were applied to assess the effect of SUA on VTE risk while adjusting for multiple covariates. We also performed two-sample MR analyses to infer potential causality based on summary statistics from Genome-wide Association Studies (GWAS) of SUA and VTE in the East Asian population. Findings We found that the SUA levels were higher in VTE patients (317.95 mmol/L) compared to the general population (295.75 mmol/L), and SUA ≥ 325 mmol/L was associated with an increased risk of VTE recurrence (P-value = 0.0001). The univariable MR suggested a causal relationship between elevated SUA and higher VTE risk (Pinverse variance weighted < 0.05), and multivariable MR showed that elevated SUA levels continued to promote the development of VTE after adjusting for multiple covariates (Pmultivariable residual < 0.05). Sensitivity analyses produced similar results for these estimations. Interpretation Our study provides evidence supporting a robust positive association between SUA and VTE in the East Asian population, and MR analyses suggest that this association is likely to be causal. Our findings underscore the importance of monitoring SUA levels in VTE prevention and call for urgent action to address the growing burden of hyperuricemia in the Asia-Pacific region. Funding This research was funded by Beijing Nova Program (No. Z211100002121057), National Natural Science Foundation of China (No. 82100065 and No. 62350004), CAMS Innovation Fund for Medical Sciences (No. 2021-I2M-1-061 and No. 2021-1-I2M-001), Elite Medical Professionals project of China-Japan Friendship Hospital (No. ZRJY2021-QM12), National Key Research and Development Project (No. 2021YFF1201200 and No. 2022YFC3341004).
Collapse
Affiliation(s)
- Haoyi Weng
- Shenzhen WeGene Clinical Laboratory, China; WeGene, Shenzhen Zaozhidao Technology Co. Ltd, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Haobo Li
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| | - Yu Zhang
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
- China-Japan Friendship Hospital, Capital Medical University, China
| | - Linfeng Xi
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
- China-Japan Friendship Hospital, Capital Medical University, China
| | - Di Zhang
- Shenzhen WeGene Clinical Laboratory, China; WeGene, Shenzhen Zaozhidao Technology Co. Ltd, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Chao Deng
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, China
| | - Dingyi Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, China; National Center for Respiratory Medicine, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; National Clinical Research Center for Respiratory Diseases, China
| | - Ruoyan Chen
- Shenzhen WeGene Clinical Laboratory, China; WeGene, Shenzhen Zaozhidao Technology Co. Ltd, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Gang Chen
- Shenzhen WeGene Clinical Laboratory, China; WeGene, Shenzhen Zaozhidao Technology Co. Ltd, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Senwei Tang
- Shenzhen WeGene Clinical Laboratory, China; WeGene, Shenzhen Zaozhidao Technology Co. Ltd, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, China; Department of Pharmacy, China-Japan Friendship Hospital, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; National Center for Respiratory Medicine, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| | - Chen Wang
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| |
Collapse
|
18
|
Tao Y, Ma J, Feng Y, Gao C, Wu T, Xia Y, Cheng Z, Zhang Y, Liu T, Hu Y, Tang LV. Tissue-type plasminogen activator (tPA) homozygous Tyr471His mutation associates with thromboembolic disease. MedComm (Beijing) 2023; 4:e392. [PMID: 37808270 PMCID: PMC10556205 DOI: 10.1002/mco2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) encoded by PLAT is a major mediator that promotes fibrinolysis and prevents thrombosis. Pathogenetic mutations in PLAT associated with venous thromboembolism have rarely been reported. Here, we report the first case of a homozygous point mutation c.1411T>C (p.Y471H) in PLAT leading to thromboembolic events and conduct related functional studies. The corresponding tPA mutant protein (tPA-Y471H) and wild-type tPA (tPA-WT) were synthesized in vitro, and mutant mice (PLATH/H mice) were constructed. The molecular docking and surface plasmon resonance results indicated that the mutation impeded the hydrogen-bonding interactions between the protease domain of tPA and the kringle 4 domain of plasminogen, and the binding affinity of tPA and plasminogen was significantly reduced with a difference of one order of magnitude. mRNA half-life assay showed that the half-life of tPA-Y471H was shortened. The inferior vena cava thrombosis model showed that the rate of venous thrombosis in PLATH/H mice was 80% compared with 53% in wild-type mice. Our data suggested a novel role for the protease domain of tPA in efficient plasminogen activation, and demonstrated that this tPA mutation could reduce the fibrinolysis function of the body and lead to an increased propensity for thrombosis.
Collapse
Affiliation(s)
- Yanyi Tao
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiewen Ma
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanzheng Feng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chenggang Gao
- Department of Critical Care MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Wu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yunqing Xia
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Cheng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Zhang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Liu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang V. Tang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
19
|
Li H, Zhang Z, Weng H, Xie W, Yang P, Zhai Z, Wang C. Reply to author: "uric acid's influence on venous thromboembolism in East Asia". THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 39:100915. [PMID: 37771474 PMCID: PMC10523258 DOI: 10.1016/j.lanwpc.2023.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Haobo Li
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| | - Haoyi Weng
- Shenzhen WeGene Clinical Laboratory, China; WeGene, Shenzhen Zaozhidao Technology Co. Ltd, China; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, China
| | - Wanmu Xie
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| | - Chen Wang
- National Center for Respiratory Medicine, China; State Key Laboratory of Respiratory Health and Multimorbidity, China; National Clinical Research Center for Respiratory Diseases, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, China
| |
Collapse
|
20
|
Ji L, Shu P. Letter to the editor: "uric acid's influence on venous thromboembolism in East Asia". THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 39:100914. [PMID: 37771475 PMCID: PMC10523261 DOI: 10.1016/j.lanwpc.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Lixian Ji
- Department of Rheumatology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Peng Shu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
21
|
Natae SF, Merzah MA, Sándor J, Ádány R, Bereczky Z, Fiatal S. A combination of strongly associated prothrombotic single nucleotide polymorphisms could efficiently predict venous thrombosis risk. Front Cardiovasc Med 2023; 10:1224462. [PMID: 37745125 PMCID: PMC10511882 DOI: 10.3389/fcvm.2023.1224462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Background Venous thrombosis (VT) is multifactorial trait that contributes to the global burden of cardiovascular diseases. Although abundant single nucleotide polymorphisms (SNPs) provoke the susceptibility of an individual to VT, research has found that the five most strongly associated SNPs, namely, rs6025 (F5 Leiden), rs2066865 (FGG), rs2036914 (F11), rs8176719 (ABO), and rs1799963 (F2), play the greatest role. Association and risk prediction models are rarely established by using merely the five strongly associated SNPs. This study aims to explore the combined VT risk predictability of the five SNPs and well-known non-genetic VT risk factors such as aging and obesity in the Hungarian population. Methods SNPs were genotyped in the VT group (n = 298) and control group (n = 400). Associations were established using standard genetic models. Genetic risk scores (GRS) [unweighted GRS (unGRS), weighted GRS (wGRS)] were also computed. Correspondingly, the areas under the receiver operating characteristic curves (AUCs) for genetic and non-genetic risk factors were estimated to explore their VT risk predictability in the study population. Results rs6025 was the most prevalent VT risk allele in the Hungarian population. Its risk allele frequency was 3.52-fold higher in the VT group than that in the control group [adjusted odds ratio (AOR) = 3.52, 95% CI: 2.50-4.95]. Using all genetic models, we found that rs6025 and rs2036914 remained significantly associated with VT risk after multiple correction testing was performed. However, rs8176719 remained statistically significant only in the multiplicative (AOR = 1.33, 95% CI: 1.07-1.64) and genotypic models (AOR = 1.77, 95% CI: 1.14-2.73). In addition, rs2066865 lost its significant association with VT risk after multiple correction testing was performed. Conversely, the prothrombin mutation (rs1799963) did not show any significant association. The AUC of Leiden mutation (rs6025) showed better discriminative accuracy than that of other SNPs (AUC = 0.62, 95% CI: 0.57-0.66). The wGRS was a better predictor for VT than the unGRS (AUC = 0.67 vs. 0.65). Furthermore, combining genetic and non-genetic VT risk factors significantly increased the AUC to 0.89 with statistically significant differences (Z = 3.924, p < 0.0001). Conclusions Our study revealed that the five strongly associated SNPs combined with non-genetic factors could efficiently predict individual VT risk susceptibility. The combined model was the best predictor of VT risk, so stratifying high-risk individuals based on their genetic profiling and well-known non-modifiable VT risk factors was important for the effective and efficient utilization of VT risk preventive and control measures. Furthermore, we urged further study that compares the VT risk predictability in the Hungarian population using the formerly discovered VT SNPs with the novel strongly associated VT SNPs.
Collapse
Affiliation(s)
- Shewaye Fituma Natae
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Mohammed Abdulridha Merzah
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|