1
|
Di Cola G, Di Cola G, Fantilli A, Mamani V, Tamiozzo P, Martínez Wassaf M, Nates SV, Ré VE, Pisano MB. High circulation of hepatitis E virus (HEV) in pigs from the central region of Argentina without evidence of virus occurrence in pork meat and derived products. Res Vet Sci 2023; 164:105000. [PMID: 37708830 DOI: 10.1016/j.rvsc.2023.105000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Hepatitis E virus (HEV) is an emerging cause of viral hepatitis and pigs are considered a reservoir for the virus. HEV genotype 3 (HEV-3) has been reported in pigs, environmental matrices, and sporadic human cases in Argentina. We aimed to investigate HEV circulation in pigs from central Argentina and to assess the virus presence in pork meat and food products. Four types of samples obtained or derived from pigs collected in Córdoba province (Argentina) between 2019 and 2022, were tested: 276 serum samples were analyzed for anti-HEV antibody detection; stool (n = 20), pork meat (n = 71), and salami (n = 76) samples were studied for RNA-HEV detection, followed by sequencing and phylogenetic analyses. The positivity rate for anti-HEV antibodies was 80.1% (221/276). Eleven fecal samples (11/20) tested positive for RNA-HEV, from animals under 120 days of age. Three samples could be sequenced, and phylogenetic analyses revealed that they belonged to HEV-3 clade abchijklm, clustering close to strains previously detected in wastewater from Córdoba. None of the muscle meat or salami samples tested positive. A high HEV circulation in pigs was found, showing that these animals may play a significant role in the viral maintenance in the region, becoming a potential risk to the exposed population. Despite not detecting RNA-HEV in pork meat and salami in our study, we cannot rule out the possibility of foodborne transmission in Córdoba province.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Gabriel Di Cola
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta N° 36 - Km. 601, Río Cuarto, Córdoba, Argentina; Laboratorio de Salud Animal, Juan B. Justo 269, Río Cuarto, Córdoba, Argentina
| | - Anabella Fantilli
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Vanesa Mamani
- LACE Laboratorios, Av. Vélez Sarsfield 528, Córdoba, Argentina
| | - Pablo Tamiozzo
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta N° 36 - Km. 601, Río Cuarto, Córdoba, Argentina
| | | | - Silvia Viviana Nates
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
2
|
Turlewicz-Podbielska H, Augustyniak A, Wojciechowski J, Pomorska-Mól M. Hepatitis E Virus in Livestock-Update on Its Epidemiology and Risk of Infection to Humans. Animals (Basel) 2023; 13:3239. [PMID: 37893962 PMCID: PMC10603682 DOI: 10.3390/ani13203239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a public health problem worldwide and an important food pathogen known for its zoonotic potential. Increasing numbers of infection cases with human HEV are caused by the zoonotic transmission of genotypes 3 and 4, mainly by consuming contaminated, undercooked or raw porcine meat. Pigs are the main reservoir of HEV. However, it should be noted that other animal species, such as cattle, sheep, goats, and rabbits, may also be a source of infection for humans. Due to the detection of HEV RNA in the milk and tissues of cattle, the consumption of infected uncooked milk and meat or offal from these species also poses a potential risk of zoonotic HEV infections. Poultry infected by avian HEV may also develop symptomatic disease, although avian HEV is not considered a zoonotic pathogen. HEV infection has a worldwide distribution with different prevalence rates depending on the affected animal species, sampling region, or breeding system.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| |
Collapse
|
3
|
Viera-Segura O, Calderón-Flores A, Batún-Alfaro JA, Fierro NA. Tracing the History of Hepatitis E Virus Infection in Mexico: From the Enigmatic Genotype 2 to the Current Disease Situation. Viruses 2023; 15:1911. [PMID: 37766316 PMCID: PMC10536485 DOI: 10.3390/v15091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis E virus (HEV) is the major cause of acute viral hepatitis worldwide. This virus is responsible for waterborne outbreaks in low-income countries and zoonosis transmission in industrialized regions. Initially, considered self-limiting, HEV may also lead to chronic disease, and evidence supports that infection can be considered a systemic disease. In the late 1980s, Mexico became a hot spot in the study of HEV due to one of the first virus outbreaks in Latin America related to enterically transmitted viral non-A, non-B hepatitis. Viral stool particles recovered from Mexican viral hepatitis outbreaks represented the first identification of HEV genotype (Gt) 2 (Gt2) in the world. No new findings of HEV-Gt2 have been reported in the country, whereas this genotype has been found in countries on the African continent. Recent investigations in Mexico have identified other strains (HEV-Gt1 and -Gt3) and a high frequency of anti-HEV antibodies in animal and human populations. Herein, the potential reasons for the disappearance of HEV-Gt2 in Mexico and the advances in the study of HEV in the country are discussed along with challenges in studying this neglected pathogen. These pieces of information are expected to contribute to disease control in the entire Latin American region.
Collapse
Affiliation(s)
- Oliver Viera-Segura
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Calderón-Flores
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julio A. Batún-Alfaro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nora A. Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Wu JY, Meng XX, Wei YR, Bolati H, Lau EHY, Yang XY. Prevalence of Hepatitis E Virus (HEV) in Feral and Farmed Wild Boars in Xinjiang, Northwest China. Viruses 2022; 15:78. [PMID: 36680118 PMCID: PMC9867238 DOI: 10.3390/v15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hepatitis E virus (HEV) causes infections in humans and a wide range of animal hosts. Wild boar is an important natural reservoir of HEV genotypes 3−6 (HEV-3−HEV-6), but comparative analysis of HEV infections in both feral and farmed wild boars remains limited. In this study, samples from 599 wild boars were collected during 2017−2020, including 121 feral wild boars (collected 121 fecal, 121 serum, and 89 liver samples) and 478 farmed wild boars (collected 478 fecal and 478 serum samples). The presence of anti-HEV IgG antibodies were detected by the HEV-IgG enzyme-linked immunosorbent assay (ELISA) kit. HEV RNA was detected by reverse transcription polymerase chain reaction (RT-PCR), targeting the partial ORF1 genes from fecal and liver samples, and the obtained genes were further genotyped by phylogenetic analysis. The results showed that 76.2% (95% CI 72.1−79.9) of farmed wild boars tested anti-HEV IgG seropositive, higher than that in feral wild boars (42.1%, 95% CI 33.2−51.5, p < 0.001). HEV seropositivity increased with age. Wild boar HEV infection presented a significant geographical difference (p < 0.001), but not between sex (p = 0.656) and age (p = 0.347). HEV RNA in fecal samples was detected in 13 (2.2%, 95% CI 1.2−3.7) out of 599 wild boars: 0.8% (95% CI 0.0−4.5, 1/121) of feral wild boars and 2.5% (95% CI 1.3−4.3, 12/478) of farmed wild boars. Phylogenetic analysis showed that all these viruses belonged to genotype HEV-4, and further grouped into sub-genotypes HEV-4a, HEV-4d, and HEV-4h, of which HEV-4a was first discovered in the wild boar populations in China. Our results suggested that farms could be a setting for amplification of HEV. The risk of HEV zoonotic transmission via rearing and consumption of farmed wild boars should be further assessed.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
- School of Public Health, Xinjiang Medical University, Urumqi 830016, China
| | - Xiao-Xiao Meng
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Yu-Rong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Hongduzi Bolati
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Eric H. Y. Lau
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xue-Yun Yang
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
5
|
Pisano MB, Mirazo S, Re VE. Hepatitis E Virus Infection: Is It Really a Problem in Latin America? Clin Liver Dis (Hoboken) 2020; 16:108-113. [PMID: 33005391 PMCID: PMC7508784 DOI: 10.1002/cld.931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/17/2020] [Indexed: 02/04/2023] Open
Abstract
Watch a video presentation of this article.
Collapse
Affiliation(s)
- María Belén Pisano
- Facultad de Ciencias MédicasInstituto de Virología “Dr. J. M. Vanella”CONICETUniversidad Nacional de CórdobaEnfermera Gordillo Gómez s/nCórdobaArgentina
| | - Santiago Mirazo
- Sección VirologíaFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Viviana E. Re
- Facultad de Ciencias MédicasInstituto de Virología “Dr. J. M. Vanella”CONICETUniversidad Nacional de CórdobaEnfermera Gordillo Gómez s/nCórdobaArgentina
| |
Collapse
|
6
|
Modiyinji AF, Sanding GMAM, Atsama MA, Monamele CG, Nola M, Njouom R. Serological and molecular investigation of hepatitis E virus in pigs reservoirs from Cameroon reveals elevated seroprevalence and presence of genotype 3. PLoS One 2020; 15:e0229073. [PMID: 32040501 PMCID: PMC7010275 DOI: 10.1371/journal.pone.0229073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/03/2022] Open
Abstract
Background Hepatitis E virus (HEV) is a zoonotic pathogen of which pigs have been established as reservoirs. In the present study, we investigated the presence of HEV among pigs in the Center and Littoral regions of Cameroon and performed the molecular characterization of positive strains. Methodology A total of 453 serum and stool samples were randomly collected from pigs in slaughterhouses in Obala, Douala and Yaounde. All samples were examined for the presence of anti-HEV IgG and IgM antibodies using ELISA assays. IgM positive stool samples were tested for HEV RNA using an RT-PCR assay, followed by a nested PCR assay for sequencing and phylogenetic analysis. Results Overall, 216 samples (47.7%, 95% CI: 43.1%-52.3%) were positive for at least one of the serological markers of HEV infection. Amongst these, 21.0% were positives for anti-HEV IgM, 17.7% for anti-HEV IgG, and 9.1% for both. A total of eight stool samples (5.9%) were positive for HEV RNA by nested RT-PCR. Phylogenetic analysis showed that the retrieved sequences clustered within HEV genotype 3. Conclusion This study shows a high prevalence of anti-HEV antibodies and the circulation of genotype 3 in the swine population in Cameroon. Subsequent studies will be needed to elucidate the zoonotic transmission of HEV from pigs to humans in Cameroon.
Collapse
Affiliation(s)
- Abdou Fatawou Modiyinji
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
- Department of Animals Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | | | | | - Moise Nola
- Department of Animals Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
7
|
Shirazi R, Pozzi P, Wax M, Bar-Or I, Asulin E, Lustig Y, Mendelson E, Ben-Ari Z, Schwartz E, Mor O. Hepatitis E in pigs in Israel: seroprevalence, molecular characterisation and potential impact on humans. ACTA ACUST UNITED AC 2019; 23. [PMID: 30621824 PMCID: PMC6290533 DOI: 10.2807/1560-7917.es.2018.23.49.1800067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IntroductionThe zoonotic hepatitis E virus (HEV) genotype 3 (HEV-G3) has become a common cause of acute and chronic hepatitis among humans worldwide. In Israel, while HEV-3 sequences have previously been detected in sewage, only the non-zoonotic HEV-G1 genotype has been found in samples from human patients.AimIn this pilot study, we aimed to assess the status of HEV in a sample of the swine population and among swine farm workers in Israel.MethodsPig blood (n = 141) and faecal samples (n = 39), pig farm sewage samples (n = 8) and blood from farm workers (n = 24) were collected between February 2016 and October 2017. Anti-HEV IgG was detected using the Wantai assay. HEV RNA was analysed with the RealStar HEV kit. HEV open reading frame 1 fragments amplified from representative HEV RNA-positive samples were used for phylogenetic analysis.ResultsOverall prevalence of HEV antibodies in pigs was 75.9% (107/141). HEV RNA was detected in plasma (2.1%, 3/141), faecal (22.8%, 18/79) and pig sewage (4/8) samples. Pig and sewage-derived viral sequences clustered with previously identified human sewage HEV-G3 sequences. Most pig farms workers (23 of 24) were HEV-seropositive; none was viraemic or reported previous clinical signs.ConclusionsThis study showed that domestic pigs in Israel are infected with HEV-G3. The high HEV seropositivity of the farm workers together with the previous identification of this virus in human sewage suggests circulation to humans. The clinical impact of these findings on public health should be further explored.
Collapse
Affiliation(s)
- Rachel Shirazi
- These authors contributed equally to this article.,Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Paolo Pozzi
- Israel Ministry of Agriculture and Rural Development Plant Protection and Inspection Services, Veterinary Services Beit Dagan, Beit Dagan, Israel.,These authors contributed equally to this article
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Itay Bar-Or
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Efrat Asulin
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Ella Mendelson
- School of Public Health, Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.,Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Ziv Ben-Ari
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Liver Diseases Center, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Eli Schwartz
- Center for Geographic Medicine and Tropical Diseases, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Mor
- School of Public Health, Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.,Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
8
|
Tsachev I, Baymakova M, Ciccozzi M, Pepovich R, Kundurzhiev T, Marutsov P, Dimitrov KK, Gospodinova K, Pishmisheva M, Pekova L. Seroprevalence of Hepatitis E Virus Infection in Pigs from Southern Bulgaria. Vector Borne Zoonotic Dis 2019; 19:767-772. [PMID: 31017536 DOI: 10.1089/vbz.2018.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) has been isolated from humans and several animals' species. During the last years, the knowledge of HEV infection dramatically changed and enriched. The aim of this study was to estimate the seroprevalence of HEV in industrial pigs in different districts of Southern Bulgaria. Three hundred sixty swine serum samples were tested for anti-HEV IgG antibodies. The samples were collected from four industrial farms from three districts of Southern Bulgaria. HEV-specific antibodies in porcine serum were detected by enzyme-linked immunosorbent assay (PrioCHECK HEV Ab porcine). The overall HEV seroprevalence was 60.3%. The seropositivity varied widely depending on age groups and investigated farms. The overall prevalence in weaners was 25%, in fattening pigs 75.8%, and in group of sows was found the highest HEV positivity of 80%. The occurrence of HEV positivity in sows and fattening pigs presented odds ratio (OR) = 17.200 (95% confidence interval [CI]: 8.8-33.7) and OR = 11.342 (95% CI: 6.1-21.0), respectively, compared to weaners. The study indicated that HEV is widespread in industrial farms in Bulgaria and presented high seroprevalence in pigs. The results found that HEV seropositivity showed age dependency. The National Health Authorities should raise awareness of HEV and its zoonotic potential.
Collapse
Affiliation(s)
- Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Universita Campus Bio-Medico di Roma, Rome, Italy
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, Sofia, Bulgaria
| | - Plamen Marutsov
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Kiril K Dimitrov
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Krasimira Gospodinova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, General Hospital, Pazardzhik, Bulgaria
| | - Liliya Pekova
- Department of Infectious Diseases, Stara Zagora University Hospital, Stara Zagora, Bulgaria
| |
Collapse
|
9
|
Liang QL, Nie LB, Zou Y, Hou JL, Chen XQ, Bai MJ, Gao YH, Hu GX, Zhu XQ. Serological evidence of hepatitis E virus and influenza A virus infection in farmed wild boars in China. Acta Trop 2019; 192:87-90. [PMID: 30738024 DOI: 10.1016/j.actatropica.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) and influenza A virus (IAV) are two important pathogens which can infect humans and various animals causing public health problems. In this study, the seroprevalence and risk factors associated with HEV and IAV infection in farmed wild boars were investigated in China. A total of 758 serum samples were collected from farmed wild boars between 2015 and 2016, and antibodies against HEV and IAV were examined by enzyme-linked immunosorbent assay (ELISA) using commercially available kits. The overall prevalence of anti-HEV antibodies was 24.54% (186/758, 95% CI 21.48-27.60) in farmed wild boars. There were statistically significant differences in the HEV seroprevalence in farmed wild boars of different ages (<22 days: 8.33%; 22-66 days: 18.89%; >66 days: 26.36%) (P < 0.05) and different genders (50.00% in male and 23.49% in female) (P < 0.01). However, there was no statistically significant difference in the HEV seroprevalence in farmed wild boars of different regions and different years. The overall IAV seroprevalence was 5.80% (44/758, 95% CI 4.14-7.46), and there was no statistically significant difference in the IAV seroprevalence in farmed wild boars of different ages and genders, collected from different regions and different years. Our results indicate that HEV and IAV infections in farmed wild boars may pose a potential risk for human infection. To our knowledge, this is the first report of HEV and IAV seroprevalence in farmed wild boars in China, which provides baseline data for further studies and for control of HEV and IAV infection in farmed wild boars.
Collapse
Affiliation(s)
- Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, People's Republic of China
| | - Lan-Bi Nie
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, People's Republic of China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Xiao-Qing Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, People's Republic of China
| | - Meng-Jie Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Yun-Hang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, People's Republic of China
| | - Gui-Xue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, People's Republic of China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| |
Collapse
|
10
|
Motoya T, Umezawa M, Goto K, Doi I, Nagata N, Ikeda Y, Sakuta A, Sasaki N, Ishii K. High prevalence of hepatitis E virus infection among domestic pigs in Ibaraki Prefecture, Japan. BMC Vet Res 2019; 15:87. [PMID: 30866949 PMCID: PMC6416891 DOI: 10.1186/s12917-019-1816-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is prevalent in pigs and may serve as a reservoir for human infection. However, data on HEV infections in pigs in Ibaraki Prefecture, Japan, are limited. Here, we clarified the process and course of HEV in naturally infected pigs. Serum (n = 160) and liver (n = 110) samples were collected from pigs at the slaughterhouse. Furthermore, serum samples were collected from 45 breeding sows and serum and feces samples were collected from 7 piglets once a week (raised until 166 days of age). HEV antigen and antibodies were evaluated, and the genotype was identified based on molecular phylogenetic tree analysis. RESULTS The samples collected from the slaughterhouse revealed that few pigs were HEV carriers but most possessed anti-HEV antibodies. Most breeding sows possessed antibodies, and the piglets excreted HEV on the farm at approximately 10 weeks of age. One pig was initially infected, and in a few weeks, the other pigs living in the same sty became infected. CONCLUSIONS Most pigs in Ibaraki Prefecture were with HEV. On the farm, most piglets were infected with HEV by the time they reached slaughter age. We confirmed that HEV infection is successively transmitted among piglets living in the same sty.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan. .,Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - Masahiro Umezawa
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Keiko Goto
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Ikuko Doi
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Yoshiaki Ikeda
- Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, 310-0852, Japan
| | - Atsushi Sakuta
- Swine Laboratory, Ibaraki Prefectural Livestock Research Center, Inashiki, Ibaraki, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
11
|
Sotomayor-González A, Trujillo-Ortega ME, Taboada-Ramírez BI, Sandoval-Jaime C, Sarmiento-Silva RE. Phylogenetic Analysis and Characterization of the Complete Hepatitis E Virus Genome (Zoonotic Genotype 3) in Swine Samples from Mexico. Viruses 2018; 10:v10080391. [PMID: 30049969 PMCID: PMC6115897 DOI: 10.3390/v10080391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging public health problem with an estimated 20 million infections each year. In Mexico, Orthohepevirus A, genotype 2, has been reported in humans, but genotype 3 has only been reported in swine (zoonotic). No diagnostic tests are publicly available in Mexico, and only partial sequences have been reported from swine samples. Hence, research is necessary to determine circulating strains, understand the features and dynamics of infection on pig farms, determine how to implement surveillance programs, and to assess public health risks. In this study, a next-generation sequencing (NGS) approach was applied to obtain a complete genome of swine HEV. Liver, feces, and bile samples were taken at slaughterhouses and a farm in Mexico. RT-PCR was used to determine positive samples and confirmed by Sanger sequencing. Of the 64 slaughterhouse samples, one bile sample was positive (B1r) (1.56%). Of 21 sample pools from farm animals, 14 were positive (66.66%), representing all stages of production. A complete sequence strain MXCDg3_B1c|_2016 was obtained from the bile of a domestic swine in the fattening stage. In addition, two partial sequences—MXCDg3_H2cons|_2016 (1473 nt) and MXCDg3_C3Acons|_2016 (4777 nt)—were obtained from sampled farm animals. Comparison with all reported genome HEV sequences showed similarity to genotype 3 subgenotype a (G3a), which has been previously reported in acute cases of human hepatitis in the US, Colombia, China, and Japan.
Collapse
Affiliation(s)
- Alicia Sotomayor-González
- Laboratory of Virology, Microbiology and Immunology Department, Veterinary Medicine and Husbandry Faculty, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| | - María E Trujillo-Ortega
- Academic Council of the Biological, Chemical and Medical Sciences, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
- Swine Medicine and Husbandry Department, Veterinary Medicine and Husbandry Faculty, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| | - Blanca I Taboada-Ramírez
- Biotechnology Institute (IBT), National Autonomous University of Mexico (UNAM), Cuernavaca 62209, Morelos, Mexico.
| | - Carlos Sandoval-Jaime
- Biotechnology Institute (IBT), National Autonomous University of Mexico (UNAM), Cuernavaca 62209, Morelos, Mexico.
| | - Rosa E Sarmiento-Silva
- Laboratory of Virology, Microbiology and Immunology Department, Veterinary Medicine and Husbandry Faculty, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
12
|
Bura M, Michalak M, Łagiedo-Żelazowska M, Bukowska A, Bura A, Mozer-Lisewska I. HEV seroprevalence can significantly change after re-assessment. J Med Virol 2018; 90:783-785. [PMID: 29388686 DOI: 10.1002/jmv.25039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Maciej Bura
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | - Aleksandra Bura
- Department of Infectious Diseases, Joseph Strus Multidisciplinary City Hospital in Poznan, Poznań, Poland
| | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|