1
|
Mezzasalma N, Spadini C, Spaggiari C, Annunziato G, Andreoli V, Prosperi A, Mochen L, Cavirani S, Grolli S, Taddei S, Costantino G, Cabassi CS. Antibacterial and antibiofilm activity of Eucalyptus globulus leaf extract, asiatic acid and ursolic acid against bacteria isolated from bovine mastitis. Front Vet Sci 2025; 12:1565787. [PMID: 40438412 PMCID: PMC12117823 DOI: 10.3389/fvets.2025.1565787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/25/2025] [Indexed: 06/01/2025] Open
Abstract
Antibiotics represent the first line therapy for bovine mastitis. However, the increasing prevalence of multidrug-resistant organisms (MDROs) highlights the need for alternative therapeutic approaches. This study evaluated the antimicrobial and antibiofilm activities of Eucalyptus globulus leaf extract (EGL-L), ursolic acid (UA) and asiatic acid (AA) against Staphylococcus aureus (SA), Streptococcus uberis (SU), Streptococcus agalactiae (SAG), and Enterococcus spp. (EN) isolated from bovine mastitis, 39.7% of which were MDROs. The minimal inhibitory concentration (MIC) assay demonstrated that all the compounds exhibited antimicrobial activity against the tested bacteria, including MDROs. However, EGL-L was less effective (p < 0.001) than UA or AA against field strains. UA was more effective against SAG and SU compared to SA (p < 0.001), whereas AA was more effective against SU than SA (p < 0.001). Conversely, EGL-L exhibited similar inhibitory effects on all bacteria. The biofilm-forming ability of the bacterial strains was also assessed, and the minimal biofilm inhibitory concentrations (MBICs) of the compounds were evaluated for moderate and strong biofilm producers. None of the compounds were able to completely inhibit biofilm formation. However, MBIC80 values within the tested concentration range were achieved for 15 out of 32 strains with EGL-L and for 27 out of 32 strains with UA and AA. These findings highlight a promising alternative to conventional antimicrobials for AA and UA, showing potential for topical intramammary use for the control and prevention of bovine mastitis, especially because of their efficacy against biofilm formation. Future research should focus on toxicity assessments and formulation development for potential topical administration.
Collapse
Affiliation(s)
| | - Costanza Spadini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | | | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), Brescia, Italy
| | - Lorenzo Mochen
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Sandro Cavirani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Stefano Grolli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Simone Taddei
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | |
Collapse
|
2
|
Cunha PC, de Souza PS, Rosseto AJD, Rodrigues IR, Dias RS, da Silva Duarte V, Porcellato D, da Silva CC, de Paula SO. Characterization of Newly Isolated Rosenblumvirus Phage Infecting Staphylococcus aureus from Different Sources. Microorganisms 2025; 13:664. [PMID: 40142556 PMCID: PMC11945092 DOI: 10.3390/microorganisms13030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Staphylococcus aureus is a globally significant pathogen associated with severe infections, foodborne illnesses, and animal diseases. Its control has become increasingly challenging due to the spread of antibiotic-resistant strains, highlighting the urgent need for effective alternatives. In this context, bacteriophages have emerged as promising biocontrol agents. This study aimed to characterize the newly isolated Staphylococcus phage CapO46 and evaluate its efficacy in reducing S. aureus in milk. Identified as a new species within the Rosenblumvirus genus, CapO46 exhibited a podovirus-like structure and a small linear dsDNA genome (17,107 bp), with no lysogeny-related, antimicrobial resistance, or virulence genes. Host range assays demonstrated its ability to infect all 31 S. aureus isolates from two different countries and in diverse environmental contexts, achieving high efficiency of plating (EOP > 0.5) in 64.5% of cases. Kinetic analyses revealed rapid adsorption and a short latent period, with a burst size of approximately 30 PFU/cell. In UHT whole-fat milk, CapO46 achieved a maximum reduction of 7.2 log10 CFU/mL in bacterial load after 12 h, maintaining significant suppression (1.6 log10 CFU/mL) after 48 h. Due to its genetic safety, high infectivity across multiple isolates, and antimicrobial activity in milk, CapO46 can be considered a promising candidate for S. aureus biocontrol applications.
Collapse
Affiliation(s)
- Paloma Cavalcante Cunha
- Department of Microbiology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.C.C.); (C.C.d.S.)
| | - Pedro Samuel de Souza
- Department of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.S.d.S.); (A.J.D.R.); (I.R.R.); (R.S.D.)
| | - Ana Julia Dill Rosseto
- Department of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.S.d.S.); (A.J.D.R.); (I.R.R.); (R.S.D.)
| | - Isabella Ribeiro Rodrigues
- Department of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.S.d.S.); (A.J.D.R.); (I.R.R.); (R.S.D.)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.S.d.S.); (A.J.D.R.); (I.R.R.); (R.S.D.)
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (V.d.S.D.); (D.P.)
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (V.d.S.D.); (D.P.)
| | - Cynthia Canêdo da Silva
- Department of Microbiology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.C.C.); (C.C.d.S.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil; (P.S.d.S.); (A.J.D.R.); (I.R.R.); (R.S.D.)
| |
Collapse
|
3
|
Debruyn E, Ghumman NZ, Peng J, Tiwari HK, Gogoi-Tiwari J. Alternative approaches for bovine mastitis treatment: A critical review of emerging strategies, their effectiveness and limitations. Res Vet Sci 2025; 185:105557. [PMID: 39892204 DOI: 10.1016/j.rvsc.2025.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND This review examined alternative treatments for bovine mastitis, driven by the rising issue of antibiotic resistance that limits the effectiveness of antibiotic therapies. As few new antibiotics are being developed, exploring non-antibiotic options is essential. METHOD Data were gathered by searching five databases, including PubMed, Scopus, Google Scholar, NCBI, and CABI, for articles on alternative treatments for bovine mastitis. Full texts of relevant studies published from 2013 onwards, both in vitro and in vivo, were screened and retrieved. A deductive approach was used to identify key themes from the review. Data were presented using tables and graphs created with R software for visualisation. RESULTS Eligible studies included 69 articles tapered from an initial search of 1696 after removing duplicates and irrelevant records. Phytotherapy was found to be the most extensively researched approach, demonstrating significant effectiveness against mastitis pathogens, including multidrug-resistant Staphylococcus aureus, coagulase-negative S. aureus (CoNS), Escherichia coli, different species of Streptococci, though concerns about the degradation of active compounds in milk and variability in natural product composition exist. Bacteriophage therapy also showed promise, with studies indicating its effectiveness and low risk of inducing bacterial resistance. Treatments such as Trisodium citrate, pheromonicin-NM, and lactoferrin therapy exhibited statistically significant results, particularly against biofilm formation, a major challenge in mastitis management. Many of these treatments lacked extensive in vivo validation. The review highlights the geographic concentration of research, predominantly in countries like China and India, and emphasises the need for more standardised protocols to improve comparison across studies. CONCLUSION The review highlighted phytotherapy, followed by bacteriophage therapy, as the next most researched alternative treatment for mastitis, effective against various pathogens despite concerns about compound degradation. Future research should prioritise the long-term effects of these therapies and their real-world effectiveness in enhancing dairy cow welfare and improving productivity in dairy operations.
Collapse
Affiliation(s)
- Ella Debruyn
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
| | - Nauman Zaheer Ghumman
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
| | - Jiaxin Peng
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
| | - Harish Kumar Tiwari
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology, Guwahati (IITG), Guwahati, Assam, India; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jully Gogoi-Tiwari
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia.
| |
Collapse
|
4
|
Banar M, Kamyab H, Torkashvand N, Zahraei Salehi T, Sepehrizadeh Z, Shahverdi AR, Pourmand MR, Yazdi MH. A novel broad-spectrum bacteriophage cocktail against methicillin-resistant Staphylococcus aureus: Isolation, characterization, and therapeutic potential in a mastitis mouse model. PLoS One 2025; 20:e0316157. [PMID: 39813201 PMCID: PMC11734958 DOI: 10.1371/journal.pone.0316157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics. This study evaluated the therapeutic potency of a novel bacteriophage cocktail against MRSA mastitis. Two new bacteriophages (vB_SauR_SW21 and vB_SauR_SW25) with potent lytic activity against MRSA were isolated and characterized. The one-step growth curve displayed a rapid latent period (20-35 min) and substantial burst size (418 and 316 PFU/ cell). In silico analyses have confirmed the absence of antimicrobial resistance or virulence factor-encoding genes within their genomes. According to the results, combining these phages augmented their host range and virulence. The phage cocktail significantly reduced bacterial burden in a BALB/c mastitis model, demonstrating efficacy comparable to antibiotic treatment. Moreover, its administration led to decreased concentrations of IL-1β and TNF-α compared to the negative control group. The bacteriophage cocktail (SW21-SW25) exhibits a promising profile for therapeutic applications and may represent a novel substitute to antibiotics for managing MRSA bovine mastitis.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Torkashvand
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zafar N, Aslam MA, Rahman SU, Saqib M. Isolation and characterization of bacteriophages targeting methicillin-resistant Staphylococcus aureus (MRSA) from burn patients and sewage water: a genomic and proteomic study. Int Microbiol 2024:10.1007/s10123-024-00618-3. [PMID: 39638914 DOI: 10.1007/s10123-024-00618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The spectrum of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) ranges from minor conditions to potentially life-threatening diseases. The rising antibiotic resistance in MRSA often leads to treatment failures, underscoring the urgent need for novel eradication strategies. This study focuses on isolating MRSA from burn patients, determining its antibiogram profile, and isolating and characterizing bacteriophages from sewage water that target MRSA, alongside conducting genomic analysis of the phages. A total of 70 samples were collected from burn patients, with MRSA identification and characterization performed using a combination of biochemical and molecular techniques, as well as antibiotic sensitivity testing. Based on host range analysis, a specific phage (phage-3) was selected for detailed characterization, including proteomic analysis, genetic mapping, phylogenetic studies, and analysis of open reading frames (ORFs) and motifs. The prevalence of MRSA in the samples was found to be 28.6%. Antibiotic susceptibility tests indicated that 94% of the MRSA isolates were sensitive to tobramycin and gentamicin, while vancomycin exhibited the lowest sensitivity, with only 2% effectiveness. Using the soft agar overlay method, three bacteriophages (phage-1, phage-2, and phage-3) were successfully isolated from sewage water. Among these, phage-3 exhibited the broadest host range. Further analysis showed that phage-3 demonstrated optimal activity at pH levels between 6 and 8, and within a temperature range of 20-40 °C. Phage-3 also displayed a rapid adsorption phase within the first 0-5 min, and its one-step growth curve revealed a latent period lasting up to 30 min, followed by a significant increase in titer from 30 to 50 min. Proteomic analysis of phage-3 identified the presence of 33 kDa and 65 kDa proteins. Phylogenetic analysis showed that phage-3 shares 96.6% similarity with Mammallicoccus phage vB_MscM-PMS3. The ORF analysis identified 80 potential ORFs within the phage's entire genome.
Collapse
Affiliation(s)
- Nishat Zafar
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
| | | | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Królikowska D, Szymańska M, Krzyżaniak M, Guziński A, Matusiak R, Kajdanek A, Kaczorek-Łukowska E, Maszewska A, Wójcik EA, Dastych J. A New Approach for Phage Cocktail Design in the Example of Anti-Mastitis Solution. Pathogens 2024; 13:839. [PMID: 39452711 PMCID: PMC11510089 DOI: 10.3390/pathogens13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The studies on phage therapy have shown an overall protective effect of phages in bacterial infections, thus providing an optimistic outlook on the future benefits of phage-based technologies for treating bacterial diseases. However, the therapeutic effect is highly affected by the proper composition of phage cocktails. The rational approach to the design of bacteriophage cocktails, which is the subject of this study, allowed for development of an effective anti-mastitis solution, composed of virulent bacteriophages acting on Escherichia coli and Staphylococcus aureus. Based on the in-depth bioinformatic characterization of bacteriophages and their in vitro evaluation, the cocktail of five phages against E. coli and three against S. aureus strains was composed. Its testing in the milk model experiment revealed a reduction in the number of S. aureus of 45% and 30% for E. coli strains, and in the study of biofilm prevention, it demonstrated 99% inhibition of biofilm formation for all tested S. aureus strains and a minimum of 50% for 50% of E. coli strains. Such insights justify the need for rational design of cocktails for phage therapy and indicate the potential of the developed cocktail in the treatment of diseased animals, but this requires further investigations to evaluate its in vivo efficacy.
Collapse
Affiliation(s)
- Daria Królikowska
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Marta Szymańska
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Marta Krzyżaniak
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Arkadiusz Guziński
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Rafał Matusiak
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Agnieszka Kajdanek
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland;
| | - Agnieszka Maszewska
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Ewelina A. Wójcik
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Jarosław Dastych
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| |
Collapse
|
7
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
8
|
Son HM, Duc HM. Prevalence and Phage-Based Biocontrol of Methicillin-Resistant Staphylococcus aureus Isolated from Raw Milk of Cows with Subclinical Mastitis in Vietnam. Antibiotics (Basel) 2024; 13:638. [PMID: 39061320 PMCID: PMC11273874 DOI: 10.3390/antibiotics13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
S. aureus, particularly methicillin-resistant S. aureus, has been recognized as a main cause of bovine mastitis and food poisoning. This study investigated the prevalence, antibiotic resistance, and phage-based biocontrol of S. aureus and methicillin-resistant S. aureus isolated from raw milk of cows with subclinical mastitis. The results showed that the prevalence of S. aureus and methicillin-resistant S. aureus was 12% (48/400) and 1.5% (6/400), respectively. The S. aureus isolates were highly resistant to penicillin (72.92%), erythromycin (43.75%), and tetracycline (39.58%). Out of 48 S. aureus isolates, 6 were identified as methicillin-resistant strains. Among them, one isolate was found to harbor the sea gene. A total of 5 phages were recovered from 50 pork and 50 chicken meat samples, 1 from pork and 4 from chicken meat samples. Phage PSA2 capable of lysing all 6 methicillin-resistant isolates was selected for characterization. The use of phage PSA2 completely inactivated methicillin-resistant S. aureus SA33 in raw milk at both 24 °C and 4 °C, indicating its potential as a promising antibacterial agent in controlling methicillin-resistant S. aureus in raw milk and treating bovine mastitis.
Collapse
Affiliation(s)
- Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam;
- Laboratory of Veterinary Microbiology, Center of Research Excellence and Innovation, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| | - Hoang Minh Duc
- Laboratory of Veterinary Microbiology, Center of Research Excellence and Innovation, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12400, Vietnam
| |
Collapse
|
9
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
10
|
Meidaninikjeh S, Mohammadi P, Elikaei A. A simplified method of bacteriophage preparation for transmission electron microscope. J Virol Methods 2024; 328:114951. [PMID: 38750823 DOI: 10.1016/j.jviromet.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Bacteriophages are viruses that infect bacteria. Researchers use different methods to study the characteristics of bacteriophages. Transmission electron microscope (TEM) is considered the best method to analyze these characteristics. However, the quality of TEM micrographs is significantly influenced by the preparation methods used to prepare the bacteriophages sample. In this study, researchers compared two different methods for preparing the bacteriophage samples. In one method was used SM buffer, while in the other used deionized water. The results were analyzed by TEM and compared with each other. Additionally, the viability of bacteriophage in deionized water and SM buffer at 4°C was determined through plaque assay within 72 hours. TEM micrographs showed that the quality of bacteriophage sample prepared with deionized water is superior to those prepared with SM buffer. Furthermore, the titer of the bacteriophages did not show a significant reduction during 72 hours in both SM and deionized water. In conclusion, the results suggested that preparation method can significantly impact the quality of TEM micrographs. Using sterile deionized water for the preparation of bacteriophages is a simple way to improve the quality of TEM micrographs and it is advisable to send the samples to the laboratory within 72 hours.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
11
|
Pyzik E, Urban-Chmiel R, Kurek Ł, Herman K, Stachura R, Marek A. Bacteriophages for Controlling Staphylococcus spp. Pathogens on Dairy Cattle Farms: In Vitro Assessment. Animals (Basel) 2024; 14:683. [PMID: 38473068 DOI: 10.3390/ani14050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Pathogenic Staphylococcus spp. strains are significant agents involved in mastitis and in skin and limb infections in dairy cattle. The aim of this study was to assess the antibacterial effectiveness of bacteriophages isolated from dairy cattle housing as potential tools for maintaining environmental homeostasis. The research will contribute to the use of phages as alternatives to antibiotics. The material was 56 samples obtained from dairy cows with signs of limb and hoof injuries. Staphylococcus species were identified by phenotypic, MALDI-TOF MS and PCR methods. Antibiotic resistance was determined by the disc diffusion method. Phages were isolated from cattle housing systems. Phage activity (plaque forming units, PFU/mL) was determined on double-layer agar plates. Morphology was examined using TEM microscopy, and molecular characteristics were determined with PCR. Among 52 strains of Staphylococcus spp., 16 were used as hosts for bacteriophages. Nearly all isolates (94%, 15/16) showed resistance to neomycin, and 87% were resistant to spectinomycin. Cefuroxime and vancomycin were the most effective antibiotics. On the basis of their morphology, bacteriophages were identified as class Caudoviricetes, formerly Caudovirales, families Myoviridae-like (6), and Siphoviridae-like (9). Three bacteriophages of the family Myoviridae-like, with the broadest spectrum of activity, were used for further analysis. This study showed a wide spectrum of activity against the Staphylococcus spp. strains tested. The positive results indicate that bacteriophages can be used to improve the welfare of cattle.
Collapse
Affiliation(s)
- Ewelina Pyzik
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Łukasz Kurek
- Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Klaudia Herman
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Rafał Stachura
- Agromarina Company, Kulczyn-Kolonia 48, 22-235 Hańsk Pierwszy, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| |
Collapse
|
12
|
Touza-Otero L, Landin M, Diaz-Rodriguez P. Fighting antibiotic resistance in the local management of bovine mastitis. Biomed Pharmacother 2024; 170:115967. [PMID: 38043445 DOI: 10.1016/j.biopha.2023.115967] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine mastitis is a widespread infectious disease with a significant economic burden, accounting for 80 % of the antibiotic usage in dairy animals. In recent years, extensive research has focused on using biomimetic approaches such as probiotics, bacteriocins, bacteriophages, or phytochemicals as potential alternatives to antibiotics. The local administration of therapeutic molecules through the intramammary route is one of the most commonly strategies to manage bovine mastitis. This review highlights the most important findings in this field and discusses their local application in mastitis therapy. In contrast to antibiotics, the proposed alternatives are not limited to promote bacterial death but consider other factors associated to the host microenvironments. To this end, the proposed biomimetic strategies can modulate different stages of infection by modifying the local microbiota, preventing oxidative stress, reducing bacterial adhesion to epithelial cells, modulating the immune response, or mediating the inflammatory process. Numerous in vitro studies support the antimicrobial, antibiofilm or antioxidant properties of these alternatives. However, in vivo studies incorporating these components within pharmaceutical formulations with potential clinical application are limited. The development of secure, stable, and effective drug delivery systems based on the proposed options is necessary to achieve real alternatives to antibiotics in the clinic.
Collapse
Affiliation(s)
- Lara Touza-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Dehari D, Kumar DN, Chaudhuri A, Kumar A, Kumar R, Kumar D, Singh S, Nath G, Agrawal AK. Bacteriophage entrapped chitosan microgel for the treatment of biofilm-mediated polybacterial infection in burn wounds. Int J Biol Macromol 2023; 253:127247. [PMID: 37802451 DOI: 10.1016/j.ijbiomac.2023.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria are most commonly present in burn wound infections. Multidrug resistance (MDR) and biofilm formation make it difficult to treat these infections. Bacteriophages (BPs) are proven as an effective therapy against MDR as well as biofilm-associated wound infections. In the present work, a naturally inspired bacteriophage cocktail loaded chitosan microparticles-laden topical gel has been developed for the effective treatment of these infections. Bacteriophages against MDR S. aureus (BPSAФ1) and P. aeruginosa (BPPAФ1) were isolated and loaded separately and in combination into the chitosan microparticles (BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs), which were later incorporated into the SEPINEO™ P 600 gel (BPSAФ1-CHMPs-gel, BPPAФ1-CHMPs-gel, and MBP-CHMPs-gel). BPs were characterized for their morphology, lytic activity, burst size, and hemocompatibility, and BPs belongs to Caudoviricetes class. Furthermore, BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs had an average particle size of 1.19 ± 0.11, 1.42 ± 0.21, and 2.84 ± 0.28 μm, respectively, and expressed promising in vitro antibiofilm eradication potency. The ultrasound and photoacoustic imaging in infected burn wounds demonstrated improved wound healing reduced inflammation and increased oxygen saturation following treatment with BPs formulations. The obtained results suggested that the incorporation of the BPs in the MP-gel protected the BPs, sustained the BPs release, and improved the antibacterial activity.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Akshay Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Rajesh Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
14
|
Dehari D, Chaudhuri A, Kumar DN, Anjum M, Kumar R, Kumar A, Kumar D, Nath G, Agrawal AK. A Bacteriophage-Loaded Microparticle Laden Topical Gel for the Treatment of Multidrug-Resistant Biofilm-Mediated Burn Wound Infection. AAPS PharmSciTech 2023; 24:165. [PMID: 37552374 DOI: 10.1208/s12249-023-02620-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
Klebsiella pneumoniae is regarded as one of the most profound bacteria isolated from the debilitating injuries caused by burn wounds. In addition, the multidrug resistance (MDR) and biofilm formation make treating burn patients with clinically available antibiotics difficult. Bacteriophage therapy has been proven an effective alternative against biofilm-mediated wound infections caused by MDR bacterial strains. In the current study, the bacteriophage (BPKPФ1) against MDR Klebsiella pneumoniae was isolated and loaded into the chitosan microparticles (CHMPs), which was later incorporated into the Sepineo P 600 to convert into a gel (BPKPФ1-CHMP-gel). BPKPФ1 was characterized for lytic profile, morphological class, and burst size, which revealed that the BPKPФ1 belongs to the family Siphoviridae. Moreover, BPKPФ1 exhibited a narrow host range with 128 PFU/host cell of burst size. The BPKPФ1-loaded CHMPs showed an average particle size of 1.96 ± 0.51 μm, zeta potential 32.16 ± 0.41 mV, and entrapment efficiency in the range of 82.44 ± 1.31%. Further, the in vitro antibacterial and antibiofilm effectiveness of BPKPФ1-CHMPs-gel were examined. The in vivo potential of the BPKPФ1-CHMPs-gel was assessed using a rat model with MDR Klebsiella pneumoniae infected burn wound, which exhibited improved wound contraction (89.22 ± 0.48%) in 28 days with reduced inflammation, in comparison with different controls. Data in hand suggest the potential of bacteriophage therapy to be developed as personalized therapy in case of difficult-to-treat bacterial infections.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Meraj Anjum
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Rajesh Kumar
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Akshay Kumar
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India.
| |
Collapse
|
15
|
Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10:1160350. [PMID: 37404775 PMCID: PMC10315858 DOI: 10.3389/fvets.2023.1160350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|