1
|
Singh SM, Maurya RK, Moirangthem A. Homozygous Intragenic Deletion in WDR62 in Siblings with Primary Microcephaly. Mol Syndromol 2025; 16:33-37. [PMID: 39911176 PMCID: PMC11793880 DOI: 10.1159/000540108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Primary microcephaly is genetically heterogeneous. Despite the rapid evolution of scientific information and bioinformatic tools, etiology remains elusive in more than half of the affected population. A substantial fraction of these undiagnosed cases is anticipated to have large structural variations in one of the causative genes. This class of variations has been difficult to detect by exome sequencing. Case Presentation We report a sibling pair with global developmental delay, microcephaly, and brain abnormalities who were recruited under the Indian Undiagnosed Disease Program (I-UDP) for further evaluation after an uninformative initial exome sequencing. Conclusion Copy number analysis using whole genome sequencing data detected a large homozygous deletion of 9.78 kb encompassing exon 1 to exon 3 of WDR62 (OMIM*613583). These results were further validated by performing comparative quantification of the copy number of deleted exons in both siblings and parents.
Collapse
Affiliation(s)
- Suzena M Singh
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rajesh K Maurya
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
2
|
Guguin J, Chen TY, Cuinat S, Besson A, Bertiaux E, Boutaud L, Ardito N, Imaz Murguiondo M, Cabet S, Hamel V, Thomas S, Pain B, Edery P, Putoux A, Tang TK, Mazoyer S, Delous M. A Taybi-Linder syndrome-related RTTN variant impedes neural rosette formation in human cortical organoids. PLoS Genet 2024; 20:e1011517. [PMID: 39680576 PMCID: PMC11684760 DOI: 10.1371/journal.pgen.1011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/30/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns. Here, we report a patient presenting with TALS features but no pathogenic variants were found in RNU4ATAC, instead the homozygous RTTN c.2953A>G variant was detected by whole-exome sequencing. After deciphering the impact of the variant on the RTTN protein function at centrosome in engineered RTTN-depleted RPE1 cells and patient fibroblasts, we analysed neural stem cells (NSC) derived from CRISPR/Cas9-edited induced pluripotent stem cells and revealed major cell cycle and mitotic abnormalities, leading to aneuploidy, cell cycle arrest and cell death. In cortical organoids, we discovered an additional function of RTTN in the self-organisation of NSC into neural rosettes, by observing delayed apico-basal polarization of NSC. Altogether, these defects contributed to a marked delay of rosette formation in RTTN-mutated organoids, thus impeding their overall growth and shedding light on mechanisms leading to microcephaly.
Collapse
Affiliation(s)
- Justine Guguin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Silvestre Cuinat
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Eloïse Bertiaux
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Lucile Boutaud
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nolan Ardito
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | | | - Sara Cabet
- Service d’imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Université de Lyon, Lyon, France
| | - Virginie Hamel
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Bertrand Pain
- University of Lyon, Université de Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Tang K. Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| |
Collapse
|
3
|
Ricci A, Carradori S, Cataldi A, Zara S. Eg5 and Diseases: From the Well-Known Role in Cancer to the Less-Known Activity in Noncancerous Pathological Conditions. Biochem Res Int 2024; 2024:3649912. [PMID: 38939361 PMCID: PMC11211015 DOI: 10.1155/2024/3649912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Eg5 is a protein encoded by KIF11 gene and is primarily involved in correct mitotic cell division. It is also involved in nonmitotic processes such as polypeptide synthesis, protein transport, and angiogenesis. The scientific literature sheds light on the ubiquitous functions of KIF11 and its involvement in the onset and progression of different pathologies. This review focuses attention on two main points: (1) the correlation between Eg5 and cancer and (2) the involvement of Eg5 in noncancerous conditions. Regarding the first point, several tumors revealed an overexpression of this kinesin, thus pushing to look for new Eg5 inhibitors for clinical practice. In addition, the evaluation of Eg5 expression represents a crucial step, as its overexpression could predict a poor prognosis for cancer patients. Referring to the second point, in specific pathological conditions, the reduced activity of Eg5 can be one of the causes of pathological onset. This is the case of Alzheimer's disease (AD), in which Aβ and Tau work as Eg5 inhibitors, or in acquired immune deficiency syndrome (AIDS), in which Tat-mediated Eg5 determines the loss of CD4+ T-lymphocytes. Reduced Eg5 activity, due to mutations of KIF11 gene, is also responsible for pathological conditions such as microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability (MCLRI) and familial exudative vitreous retinopathy (FEVR). In conclusion, this review highlights the double impact that overexpression or loss of function of Eg5 could have in the onset and progression of different pathological situations. This emphasizes, on one hand, a possible role of Eg5 as a potential biomarker and new target in cancer and, on the other hand, the promotion of Eg5 expression/activity as a new therapeutic strategy in different noncancerous diseases.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
4
|
Alrifai MT, Alrumayyan Y, Baarmah D, Alrumayyan A, Altuwaijri W, AlMuqbil M, Eyaid W, Swaid A, Almutairi F, Alfadhel M. Genetic Microcephaly in a Saudi Population: Unique Spectrum of Affected Genes Including a Novel One. J Child Neurol 2024; 39:209-217. [PMID: 38847106 DOI: 10.1177/08830738241252848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Background: Genetic microcephaly is linked to an increased risk of developmental disabilities, epilepsy, and motor impairment. The aim of this study is to describe the spectrum of identifiable genetic etiologies, clinical characteristics, and radiologic features of genetic microcephaly in patients referred to a tertiary center in Saudi Arabia. Method: This is a retrospective chart review study of all patients with identifiable genetic microcephaly presenting to a tertiary center in Saudi Arabia. The patients' demographics, clinical, laboratory, radiologic, and molecular findings were collected. Results: Of the total 128 cases referred, 52 cases (40%) had identifiable genetic causes. Monogenic disorders were found in 48 cases (92%), whereas chromosomal disorders were found in only 4 cases (8%). Developmental disability was observed in 40 cases (84%), whereas only 8 cases (16%) had borderline IQ or mild developmental delay. Epilepsy was seen in 29 cases (56%), and motor impairment was seen in 26 cases (50%). Brain magnetic resonance imaging (MRI) revealed abnormalities in 26 (50%) of the cohort. Hereditary neurometabolic disorders were seen in 7 (15%) of the 48 cases with monogenic disorders. The most common gene defect was ASPM, which is responsible for primary microcephaly type 5 and was seen in 10 cases (19%). A novel PLK1 gene pathogenic mutation was seen in 3 cases (6%). Conclusion: Single gene defect is common in this Saudi population, with the ASPM gene being the most common. Hereditary neurometabolic disorders are a common cause of genetic microcephaly. Furthermore, we propose the PKL1 gene mutation as a possible novel cause of genetic microcephaly.
Collapse
Affiliation(s)
- Muhammad Talal Alrifai
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Yousof Alrumayyan
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Duaa Baarmah
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ahmed Alrumayyan
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Waleed Altuwaijri
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Mohammed AlMuqbil
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulrahman Swaid
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Fuad Almutairi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ma H, Zhu L, Yang X, Ao M, Zhang S, Guo M, Dai X, Ma X, Zhang X. Genetic and phenotypic analysis of 225 Chinese children with developmental delay and/or intellectual disability using whole-exome sequencing. BMC Genomics 2024; 25:391. [PMID: 38649797 PMCID: PMC11034079 DOI: 10.1186/s12864-024-10279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.
Collapse
Affiliation(s)
- Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Lina Zhu
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Xiao Yang
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Shunxiang Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xiuwei Ma
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China.
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China.
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China.
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
| |
Collapse
|
6
|
Haddad L, Hadi E, Leibovitz Z, Lev D, Shalev Y, Gindes L, Lerman-Sagie T. Small size, big problems: insights and difficulties in prenatal diagnosis of fetal microcephaly. Front Neurosci 2024; 18:1347506. [PMID: 38533444 PMCID: PMC10964924 DOI: 10.3389/fnins.2024.1347506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Microcephaly is a sign, not a diagnosis. Its incidence varies widely due to the differences in the definition and the population being studied. It is strongly related to neurodevelopmental disorders. Differences in definitions and measurement techniques between fetuses and newborns pose a great challenge for the diagnosis and prognostication of fetal microcephaly. A false positive diagnosis can result (in countries where it is legal) in erroneous termination of pregnancy, where a false negative diagnosis might lead to the birth of a microcephalic newborn. Microcephaly in growth restricted fetuses deserves special attention and separate evaluation as it is an important prognostic factor, and not necessarily part of the general growth retardation. Several genetic syndromes incorporating microcephaly and intrauterine growth retardation (IUGR) are discussed. Deceleration of the head circumference (HC) growth rate even when the HC is still within normal limits might be the only clue for developing microcephaly and should be considered during fetal head growth follow up. Combining additional parameters such as a positive family history, associated anomalies, and new measurement parameters can improve prediction in about 50% of cases, and thus should be part of the prenatal workup. Advances in imaging modalities and in prenatal genetic investigation along with the emergence of new growth charts can also improve diagnostic accuracy. In this article, we review the different definitions and etiologies of fetal microcephaly, discuss difficulties in diagnosis, investigate the reasons for the low yield of prenatal diagnosis, and provide improvement suggestions. Finally, we suggest an updated algorithm that will aid in the diagnosis and management of fetal microcephaly.
Collapse
Affiliation(s)
- Leila Haddad
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Obstetrics & Gynecology Ultrasound Unit, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Hadi
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Diagnostic Ultrasound Unit, The Institute of Obstetrical and Gynecological Imaging, Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
| | - Zvi Leibovitz
- Obstetrics & Gynecology Ultrasound Unit, Bnai Zion Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute, Haifa, Israel
| | - Dorit Lev
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Medical Genetics Unit, Wolfson Medical Center, Holon, Israel
| | - Yoseph Shalev
- Obstetrics & Gynecology Ultrasound Unit, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Gindes
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Obstetrics & Gynecology Ultrasound Unit, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
7
|
Romano F, Amadori E, Madia F, Severino M, Capra V, Rizzo R, Barone R, Corradi B, Maragliano L, Shams Nosrati MS, Falace A, Striano P, Zara F, Scala M. Case Report: Novel biallelic moderately damaging variants in RTTN in a patient with cerebellar dysplasia. Front Pediatr 2023; 11:1326552. [PMID: 38178912 PMCID: PMC10764497 DOI: 10.3389/fped.2023.1326552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Rotatin, encoded by the RTTN gene, is a centrosomal protein with multiple, emerging functions, including left-right specification, ciliogenesis, and neuronal migration. Recessive variants in RTTN are associated with a neurodevelopmental disorder with microcephaly and malformations of cortical development known as "Microcephaly, short stature, and polymicrogyria with seizures" (MSSP, MIM #614833). Affected individuals show a wide spectrum of clinical manifestations like intellectual disability, poor/absent speech, short stature, microcephaly, and congenital malformations. Here, we report a subject showing a distinctive neuroradiological phenotype and harboring novel biallelic variants in RTTN: the c.5500A>G, p.(Asn1834Asp), (dbSNP: rs200169343, ClinVar ID:1438510) and c.19A>G, p.(Ile7Val), (dbSNP: rs201165599, ClinVar ID:1905275) variants. In particular brain magnetic resonance imaging (MRI) showed a peculiar pattern, with cerebellar hypo-dysplasia, and multiple arachnoid cysts in the lateral cerebello-medullary cisterns, in addition to left Meckel cave. Thus, we compare his phenotypic features with current literature, speculating a possible role of newly identified RTTN variants in his clinical picture, and supporting a relevant variability in this emerging condition.
Collapse
Affiliation(s)
- Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Child Neuropsichiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Rizzo
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Beatrice Corradi
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Antonio Falace
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
8
|
Mori T, Zhou M, Tabuchi K. Diverse Clinical Phenotypes of CASK-Related Disorders and Multiple Functional Domains of CASK Protein. Genes (Basel) 2023; 14:1656. [PMID: 37628707 PMCID: PMC10454856 DOI: 10.3390/genes14081656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CASK-related disorders are a form of rare X-linked neurological diseases and most of the patients are females. They are characterized by several symptoms, including microcephaly with pontine and cerebellar hypoplasia (MICPCH), epilepsy, congenital nystagmus, and neurodevelopmental disorders. Whole-genome sequencing has identified various mutations, including nonsense and missense mutations, from patients with CASK-related disorders, revealing correlations between specific mutations and clinical phenotypes. Notably, missense mutations associated with epilepsy and intellectual disability were found throughout the whole region of the CASK protein, while missense mutations related to microcephaly and MICPCH were restricted in certain domains. To investigate the pathophysiology of CASK-related disorders, research groups have employed diverse methods, including the generation of CASK knockout mice and the supplementation of CASK to rescue the phenotypes. These approaches have yielded valuable insights into the identification of functional domains of the CASK protein associated with a specific phenotype. Additionally, recent advancements in the AI-based prediction of protein structure, such as AlphaFold2, and the application of genome-editing techniques to generate CASK mutant mice carrying missense mutations from patients with CASK-related disorders, allow us to understand the pathophysiology of CASK-related disorders in more depth and to develop novel therapeutic methods for the fundamental treatment of CASK-related disorders.
Collapse
Affiliation(s)
- Takuma Mori
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Katsuhiko Tabuchi
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| |
Collapse
|
9
|
Wang Y, Fu F, Lei T, Zhen L, Deng Q, Zhou H, Ma C, Cheng K, Huang R, Li R, Yu Q, Li L, Han J, Yang X, Li D, Liao C. Genetic diagnosis of fetal microcephaly at a single tertiary center in China. Front Genet 2023; 14:1112153. [PMID: 37229200 PMCID: PMC10203430 DOI: 10.3389/fgene.2023.1112153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background: Microcephaly is common in patients with neuropsychiatric problems, and it is usually closely related to genetic causes. However, studies on chromosomal abnormalities and single-gene disorders associated with fetal microcephaly are limited. Objective: We investigated the cytogenetic and monogenic risks of fetal microcephaly and evaluated their pregnancy outcomes. Methods: We performed a clinical evaluation, high-resolution chromosomal microarray analysis (CMA), and trio exome sequencing (ES) on 224 fetuses with prenatal microcephaly and closely followed the pregnancy outcome and prognosis. Results: Among 224 cases of prenatal fetal microcephaly, the diagnosis rate was 3.74% (7/187) for CMA and 19.14% (31/162) for trio-ES. Exome sequencing identified 31 pathogenic or likely pathogenic (P/LP) single nucleotide variants (SNVs) in 25 genes associated with fetal structural abnormalities in 37 microcephaly fetuses; 19 (61.29%) of which occurred de novo. Variants of unknown significance (VUS) was found in 33/162 (20.3%) fetuses. The gene variant involved included the single gene MPCH 2 and MPCH 11, which is associated with human microcephaly, and HDAC8, TUBGCP6, NIPBL, FANCI, PDHA1, UBE3A, CASK, TUBB2A, PEX1, PPFIBP1, KNL1, SLC26A4, SKIV2L, COL1A2, EBP, ANKRD11, MYO18B, OSGEP, ZEB2, TRIO, CLCN5, CASK, and LAGE3. The live birth rate of fetal microcephaly in the syndromic microcephaly group was significantly higher than that in the primary microcephaly group [62.9% (117/186) vs 31.56% (12/38), p = 0.000]. Conclusion: We conducted a prenatal study by conducting CMA and ES for the genetic analysis of fetal microcephaly cases. CMA and ES had a high diagnostic rate for the genetic causes of fetal microcephaly cases. In this study, we also identified 14 novel variants, which expanded the disease spectrum of microcephaly-related genes.
Collapse
Affiliation(s)
- You Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunling Ma
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuxia Yu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lushan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Fitriasari S, Trainor PA. Gene-environment interactions in the pathogenesis of common craniofacial anomalies. Curr Top Dev Biol 2022; 152:139-168. [PMID: 36707210 DOI: 10.1016/bs.ctdb.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Craniofacial anomalies often exhibit phenotype variability and non-mendelian inheritance due to their multifactorial origin, involving both genetic and environmental factors. A combination of epidemiologic studies, genome-wide association, and analysis of animal models have provided insight into the effects of gene-environment interactions on craniofacial and brain development and the pathogenesis of congenital disorders. In this chapter, we briefly summarize the etiology and pathogenesis of common craniofacial anomalies, focusing on orofacial clefts, hemifacial microsomia, and microcephaly. We then discuss how environmental risk factors interact with genes to modulate the incidence and phenotype severity of craniofacial anomalies. Identifying environmental risk factors and dissecting their interaction with different genes and modifiers is central to improved strategies for preventing craniofacial anomalies.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
11
|
Sánchez-Luquez KY, Carpena MX, Karam SM, Tovo-Rodrigues L. The contribution of whole-exome sequencing to intellectual disability diagnosis and knowledge of underlying molecular mechanisms: A systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108428. [PMID: 35905832 DOI: 10.1016/j.mrrev.2022.108428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 01/01/2023]
Abstract
Whole-exome sequencing (WES) is useful for molecular diagnosis, family genetic counseling, and prognosis of intellectual disability (ID). However, ID molecular diagnosis ascertainment based on WES is highly dependent on de novo mutations (DNMs) and variants of uncertain significance (VUS). The quantification of DNM frequency in ID molecular diagnosis ascertainment and the biological mechanisms common to genes with VUS may provide objective information about WES use in ID diagnosis and etiology. We aimed to investigate and estimate the rate of ID molecular diagnostic assessment by WES, quantify the contribution of DNMs to this rate, and biologically and functionally characterize the genes whose mutations were identified through WES. A PubMed/Medline, Web of Science, Scopus, Science Direct, BIREME, and PsycINFO systematic review and meta-analysis was performed, including studies published between 2010 and 2022. Thirty-seven articles with data on ID molecular diagnostic yield using the WES approach were included in the review. WES testing accounted for an overall diagnostic rate of 42% (Confidence interval (CI): 35-50%), while the estimate restricted to DNMs was 11% (CI: 6-18%). Genetic information on mutations and genes was extracted and split into two groups: (1) genes whose mutation was used for positive molecular diagnosis, and (2) genes whose mutation led to uncertain molecular diagnosis. After functional enrichment analysis, in addition to their expected roles in neurodevelopment, genes from the first group were enriched in epigenetic regulatory mechanisms, immune system regulation, and circadian rhythm control. Genes from uncertain diagnosis cases were enriched in the renin angiotensin pathway. Taken together, our results support WES as an important approach to the molecular diagnosis of ID. The results also indicated relevant pathways that may underlie the pathogenesis of ID with the renin-angiotensin pathway being suggested to be a potential pathway underlying the pathogenesis of ID.
Collapse
Affiliation(s)
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Simone M Karam
- Postgraduate Program in Public Health, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | | |
Collapse
|
12
|
Cingöz S, Soydemir D, Öner TÖ, Karaca E, Özden B, Kurul SH, Bayram E, Coe BP, Nickerson DA, Eichler EE. Novel biallelic variants affecting the OTU domain of the gene OTUD6B associate with severe intellectual disability syndrome and molecular dynamics simulations. Eur J Med Genet 2022; 65:104497. [PMID: 35430327 PMCID: PMC9448893 DOI: 10.1016/j.ejmg.2022.104497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Intellectual developmental disorder with dysmorphic facies, seizures, and distal limb anomalies (IDDFSDA) is an autosomal recessive multisystem disorder caused by compound heterozygous or homozygous variants in the gene OTUD6B. Herein, we describe novel pathogenic compound heterozygous variants in OTUD6B identified via whole-exome sequencing in an index case exhibited the severe IDDFSDA phenotype. The potential pathogenicity of the novel frameshift and missense variants in the index case was investigated using in silico tools. The truncating frameshift variant in one allele was predicted to undergo degradation via nonsense-mediated decay of the mRNA molecule. To predict the severity of the damage to the protein caused by the missense variant in the other allele and its effects on phenotypic severity was further investigated together with a previously reported first homozygous missense variant in the same domain in another patient with a less severe IDDFSDA phenotype using structural modeling and molecular dynamics (MD) simulations for the first time. Based on these analyzes, it is anticipated that Tyr216Cys in the earlier reported case with less severe IDDFSDA will lead to localized destabilization, whereas Ile274Arg in the presented index case with the severe IDDFSDA phenotype will lead to significant distortion in the overall fold of OTUD6B. Our findings suggest that compound LOF and ultrarare missense variants may be contribute to the underlying variability expressivity associated with this disorder. In conclusion, our findings support that the clinical severity could be related with the predicted functional severity of the variations in OTUD6B. However, additional functional studies are required.
Collapse
Affiliation(s)
- Sultan Cingöz
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
| | - Didem Soydemir
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Tülay Öncü Öner
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Özden
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Semra Hız Kurul
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Turkey
| | - Erhan Bayram
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Masih S, Moirangthem A, Shambhavi A, Rai A, Mandal K, Saxena D, Nilay M, Agrawal N, Srivastava S, Sait H, Phadke SR. Deciphering the molecular landscape of microcephaly in 87 Indian families by exome sequencing. Eur J Med Genet 2022; 65:104520. [PMID: 35568357 DOI: 10.1016/j.ejmg.2022.104520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
Microcephaly is a frequent feature of neurodevelopmental disorders (NDDs). Our study presents the heterogeneous spectrum of genetic disorders in patients with microcephaly either in isolated form or in association with other neurological and extra-neural abnormalities. We present data of 91 patients from 87 unrelated families referred to our clinic during 2016-2020 and provide a comprehensive clinical and genetic landscape in the studied cohort. Molecular diagnosis using exome sequencing was made in 45 families giving a yield of 51.7%. In 9 additional families probable causative variants were detected. We identified disease causing variations in 49 genes that are involved in different functional pathways Among these, 36 had an autosomal recessive pattern, 8 had an autosomal dominant pattern (all inherited de novo), and 5 had an X-linked pattern. In 41 probands where sequence variations in autosomal recessive genes were identified 31 were homozygotes (including 16 from non-consanguineous families). The study added 28 novel pathogenic/likely pathogenic variations. The study also calls attention to phenotypic variability and expansion in spectrum as well as uncovers genes where microcephaly is not reported previously or is a rare finding. We here report phenotypes associated with the genes for ultra-rare NDDs with microcephaly namely ATRIP, MINPP1, PNPLA8, AIMP2, ANKLE2, NCAPD2 and TRIT1.
Collapse
Affiliation(s)
- Suzena Masih
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Archana Rai
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mayank Nilay
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Neha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Somya Srivastava
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Haseena Sait
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
14
|
Zhang Y, Nie Y, Mu Y, Zheng J, Xu X, Zhang F, Shu J, Liu Y. A de novo variant in CASK gene causing intellectual disability and brain hypoplasia: a case report and literature review. Ital J Pediatr 2022; 48:73. [PMID: 35550617 PMCID: PMC9097383 DOI: 10.1186/s13052-022-01248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background The pathogenic variation of CASK gene can cause CASK related mental disorders. The main clinical manifestations are microcephaly with pontine and cerebellar hypoplasia, X-linked mental disorders with or without nystagmus and FG syndrome. The main pathogenic mechanism is the loss of function of related protein caused by variant. We reported a Chinese male newborn with a de novo variant in CASK gene. Case presentation We present an 18-day-old baby with growth retardation and brain hypoplasia. Whole-exome sequencing was performed, which detected a hemizygous missense variant c.764G > A of CASK gene. The variant changed the 255th amino acid from Arg to His. Software based bioinformatics analyses were conducted to infer its functional effect. Conclusions In this paper, a de novo variant of CASK gene was reported. Moreover, a detailed description of all the cases described in the literature is reported. CASK variants cause a variety of clinical phenotypes. Its diagnosis is difficult due to the lack of typical clinical symptoms. Genetic testing should be performed as early as possible if this disease is suspected. This case provides an important reference for the diagnosis and treatment of future cases.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Yanyan Nie
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yu Mu
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jie Zheng
- Graduate College of Tianjin Medical University, Tianjin, China
| | - Xiaowei Xu
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Fang Zhang
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China. .,Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| |
Collapse
|
15
|
Identification of Pathogenic Mutations in Primary Microcephaly- (MCPH-) Related Three Genes CENPJ, CASK, and MCPH1 in Consanguineous Pakistani Families. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3769948. [PMID: 35281599 PMCID: PMC8913137 DOI: 10.1155/2022/3769948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Microcephaly (MCPH) is a developmental anomaly of the brain known by reduced cerebral cortex and underdeveloped intellectual disability without additional clinical symptoms. It is a genetically and clinically heterogenous disorder. Twenty-five genes (involved in spindle positioning, Wnt signaling, centriole biogenesis, DNA repair, microtubule dynamics, cell cycle checkpoints, and transcriptional regulation) causing MCPH have been identified so far. Pakistani population has contributed in the identification of many MCPH genes. WES of three large consanguineous families revealed three pathogenic variants of MCPH1, CENPJ, and CASK. One novel (c.1254delT) deletion variant of MCPH1 and one known (c.18delC) deletion variant of CENPJ were identified in family 1 and 2, respectively. In addition to this, we also identified a missense variant (c.1289G>A) of CASK in males individuals in family 3. Missense mutation in the CASK gene is frequent in the boys with intellectual disability and autistic traits which are the common features that are associated with FG Syndrome 4. The study reports novel and reported mutant alleles disrupting the working of genes vital for normal brain functioning. The findings of this study enhance our understanding about the genetic architecture of primary microcephaly in our local pedigrees and add to the allelic heterogeneity of 3 known MCPH genes. The data generated will help to develop specific strategies to reduce the high incidence rate of MCPH in Pakistani population.
Collapse
|
16
|
Dai D, Mei M, Hu L, Cao Y, Wang X, Wang L, Lu Y, Yang L, Dong X, Wang H, Wu B, Qian L. Prevalence of monogenic disease in paediatric patients with a predominant respiratory phenotype. Arch Dis Child 2022; 107:141-147. [PMID: 34134972 PMCID: PMC8785068 DOI: 10.1136/archdischild-2021-322058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study aimed to investigate the prevalence and clinical characteristics of monogenic disease in paediatric patients with a predominant respiratory phenotype. METHODS Exome sequencing was performed in a cohort of 971 children with a predominant respiratory phenotype and suspected genetic aetiology. A total of 140 positive cases were divided into subgroups based on recruitment age and the primary biological system(s) involved. RESULTS There were 140 (14.4%) patients with a positive molecular diagnosis, and their primary clinical manifestations were respiratory distress (12.9%, 18 of 140), respiratory failure (12.9%, 18 of 140) and recurrent/persistent lower respiratory infections (66.4%, 93 of 140). Primary immunodeficiency (49.3%), multisystem malformations/syndromes (17.9%), and genetic lung disease (16.4%) were the three most common genetic causes in the cohort, and they varied among the age subgroups. A total of 72 (51.4%) patients had changes in medical management strategies after genetic diagnosis, and the rate in those with genetic lung disease (82.6%, 19 of 23) was far higher than that in patients with genetic disease with lung involvement (45.3%, 53 of 117) (p=0.001). CONCLUSION Our findings demonstrate that exome sequencing is a valuable diagnostic tool for monogenic diseases in children with a predominant respiratory phenotype, and the genetic spectrum varies with age. Taken together, genetic diagnoses provide invaluable clinical and prognostic information that may also facilitate the development of precision medicine for paediatric patients.
Collapse
Affiliation(s)
- Dan Dai
- Division of Pulmonary Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Mei Mei
- Division of Pulmonary Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Division of Pulmonary Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Liling Qian
- Division of Pulmonary Medicine, Children's Hospital of Fudan University, Shanghai, China .,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
17
|
Kerkeni N, Kharrat M, Maazoul F, Boudabous H, M’rad R, Trabelsi M. Novel RAB3GAP1 Mutation in the First Tunisian Family With Warburg Micro Syndrome. J Clin Neurol 2022; 18:214-222. [PMID: 35196747 PMCID: PMC8926778 DOI: 10.3988/jcn.2022.18.2.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Nesrine Kerkeni
- University of Tunis El Manar, Faculty of Medicine of Tunis, Laboratory of Human Genetics LR99ES10, Tunis, Tunisia
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, Laboratory of Human Genetics LR99ES10, Tunis, Tunisia
| | - Faouzi Maazoul
- University of Tunis El Manar, Faculty of Medicine of Tunis, Laboratory of Human Genetics LR99ES10, Tunis, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Hela Boudabous
- Department of Paediatrics, Rabta Hospital, Tunis, Tunisia
| | - Ridha M’rad
- University of Tunis El Manar, Faculty of Medicine of Tunis, Laboratory of Human Genetics LR99ES10, Tunis, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mediha Trabelsi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Laboratory of Human Genetics LR99ES10, Tunis, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
18
|
Nawaz MS, Einarsson G, Bustamante M, Gisladottir RS, Walters GB, Jonsdottir GA, Skuladottir AT, Bjornsdottir G, Magnusson SH, Asbjornsdottir B, Unnsteinsdottir U, Sigurdsson E, Jonsson PV, Palmadottir VK, Gudjonsson SA, Halldorsson GH, Ferkingstad E, Jonsdottir I, Thorleifsson G, Holm H, Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Stefansson H, Thorgeirsson TE, Ulfarsson MO, Stefansson K. Thirty novel sequence variants impacting human intracranial volume. Brain Commun 2022; 4:fcac271. [PMID: 36415660 PMCID: PMC9677475 DOI: 10.1093/braincomms/fcac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial volume, measured through magnetic resonance imaging and/or estimated from head circumference, is heritable and correlates with cognitive traits and several neurological disorders. We performed a genome-wide association study meta-analysis of intracranial volume (n = 79 174) and found 64 associating sequence variants explaining 5.0% of its variance. We used coding variation, transcript and protein levels, to uncover 12 genes likely mediating the effect of these variants, including GLI3 and CDK6 that affect cranial synostosis and microcephaly, respectively. Intracranial volume correlates genetically with volumes of cortical and sub-cortical regions, cognition, learning, neonatal and neurological traits. Parkinson's disease cases have greater and attention deficit hyperactivity disorder cases smaller intracranial volume than controls. Our Mendelian randomization studies indicate that intracranial volume associated variants either increase the risk of Parkinson's disease and decrease the risk of attention deficit hyperactivity disorder and neuroticism or correlate closely with a confounder.
Collapse
Affiliation(s)
- Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | - Rosa S Gisladottir
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Humanities, University of Iceland, Saemundargata 2, 102 Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Engilbert Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Psychiatry, Landspitali-National University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Palmi V Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Geriatric Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Vala Kolbrun Palmadottir
- Department of Internal Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Egil Ferkingstad
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
19
|
Exome Sequencing Reveals Novel Variants and Expands the Genetic Landscape for Congenital Microcephaly. Genes (Basel) 2021; 12:genes12122014. [PMID: 34946966 PMCID: PMC8700965 DOI: 10.3390/genes12122014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.
Collapse
|
20
|
Ip E, McNeil C, Grimison P, Scheinberg T, Tudini E, Ho G, Scott RJ, Brown C, Sandroussi C, Guitera P, Spurdle AB, Goodwin A. Catastrophic chemotherapy toxicity leading to diagnosis of Fanconi anaemia due to FANCD1/BRCA2 during adulthood: description of an emerging phenotype. J Med Genet 2021; 59:912-915. [PMID: 34697207 DOI: 10.1136/jmedgenet-2021-108072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
Fanconi anaemia due to biallelic loss of BRCA2 (Fanconi anaemia subtype D1) is traditionally diagnosed during childhood with cancer rates historically reported as 97% by 5.2 years. This report describes an adult woman with a history of primary ovarian failure, who was diagnosed with gastrointestinal adenocarcinoma and BRCA2-associated Fanconi anaemia at 23 years of age, only after she suffered severe chemotherapy toxicity. The diagnostic challenges include atypical presentation, initial false-negative chromosome fragility testing and variant classification. It highlights gastrointestinal adenocarcinoma as a consideration for adults with biallelic BRCA2 pathogenic variants with implications for surveillance. After over 4 years, the patient has no evidence of gastrointestinal cancer recurrence although the tumour was initially considered only borderline resectable. The use of platinum-based chemotherapy, to which heterozygous BRCA2 carriers are known to respond, may have had a beneficial anticancer effect, but caution is advised given its extreme immediate toxicity at standard dosing. Fanconi anaemia should be considered as a cause for women with primary ovarian failure of unknown cause and referral to cancer genetic services recommended when there is a family history of cancer in the hereditary breast/ovarian cancer spectrum.
Collapse
Affiliation(s)
- Emilia Ip
- Cancer Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Catriona McNeil
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Grimison
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Tahlia Scheinberg
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Clinical Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Emma Tudini
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rodney J Scott
- Division of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Christina Brown
- Haematology Unit, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Department of Hepatobiliary and Upper Gastrointestinal Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Pascale Guitera
- Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Melanoma Institute Australia, North Sydney, New South Wales, Australia.,Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Annabel Goodwin
- Cancer Genetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia .,Medical Oncology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
21
|
Klau J, Abou Jamra R, Radtke M, Oppermann H, Lemke JR, Beblo S, Popp B. Exome first approach to reduce diagnostic costs and time - retrospective analysis of 111 individuals with rare neurodevelopmental disorders. Eur J Hum Genet 2021; 30:117-125. [PMID: 34690354 PMCID: PMC8738730 DOI: 10.1038/s41431-021-00981-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
This single-center study aims to determine the time, diagnostic procedure, and cost saving potential of early exome sequencing in a cohort of 111 individuals with genetically confirmed neurodevelopmental disorders. We retrospectively collected data regarding diagnostic time points and procedures from the individuals' medical histories and developed criteria for classifying diagnostic procedures in terms of requirement, followed by a cost allocation. All genetic variants were re-evaluated according to ACMG recommendations and considering the individuals' phenotype. Individuals who developed first symptoms of their underlying genetic disorder when Next Generation Sequencing (NGS) diagnostics were already available received a diagnosis significantly faster than individuals with first symptoms before this cutoff. The largest amount of potentially dispensable diagnostics was found in genetic, metabolic, and cranial magnetic resonance imaging examinations. Out of 407 performed genetic examinations, 296 (72.7%) were classified as potentially dispensable. The same applied to 36 (27.9%) of 129 cranial magnetic resonance imaging and 111 (31.8%) of 349 metabolic examinations. Dispensable genetic examinations accounted 302,947.07€ (90.2%) of the total 335,837.49€ in potentially savable costs in this cohort. The remaining 32,890.42€ (9.8%) are related to non-required metabolic and cranial magnetic resonance imaging diagnostics. On average, the total potentially savable costs in our study amount to €3,025.56 per individual. Cost savings by first tier exome sequencing lie primarily in genetic, metabolic, and cMRI testing in this German cohort, underscoring the utility of performing exome sequencing at the beginning of the diagnostic pathway and the potential for saving diagnostic costs and time.
Collapse
Affiliation(s)
- Julia Klau
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Radtke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.,Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Skadi Beblo
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
22
|
Nisar H, Wajid B, Shahid S, Anwar F, Wajid I, Khatoon A, Sattar MU, Sadaf S. Whole-genome sequencing as a first-tier diagnostic framework for rare genetic diseases. Exp Biol Med (Maywood) 2021; 246:2610-2617. [PMID: 34521224 DOI: 10.1177/15353702211040046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rare diseases affect nearly 300 million people globally with most patients aged five or less. Traditional diagnostic approaches have provided much of the diagnosis; however, there are limitations. For instance, simply inadequate and untimely diagnosis adversely affects both the patient and their families. This review advocates the use of whole genome sequencing in clinical settings for diagnosis of rare genetic diseases by showcasing five case studies. These examples specifically describe the utilization of whole genome sequencing, which helped in providing relief to patients via correct diagnosis followed by use of precision medicine.
Collapse
Affiliation(s)
- Haseeb Nisar
- Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54000, Pakistan.,School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Bilal Wajid
- Department of Electrical Engineering, University of Engineering and Technology, Lahore 54000, Pakistan.,Ibn Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan.,Department of Computer Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Faria Anwar
- Out Patient Department, Mayo Hospital, Lahore 54000, Pakistan
| | - Imran Wajid
- Ibn Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan
| | - Asia Khatoon
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Mian Usman Sattar
- Institute of Social Sciences, Istanbul Commerce University, Istanbul, Turkey
| | - Saima Sadaf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
23
|
Duerinckx S, Désir J, Perazzolo C, Badoer C, Jacquemin V, Soblet J, Maystadt I, Tunca Y, Blaumeiser B, Ceulemans B, Courtens W, Debray F, Destree A, Devriendt K, Jansen A, Keymolen K, Lederer D, Loeys B, Meuwissen M, Moortgat S, Mortier G, Nassogne M, Sekhara T, Van Coster R, Van Den Ende J, Van der Aa N, Van Esch H, Vanakker O, Verhelst H, Vilain C, Weckhuysen S, Passemard S, Verloes A, Aeby A, Deconinck N, Van Bogaert P, Pirson I, Abramowicz M. Phenotypes and genotypes in non-consanguineous and consanguineous primary microcephaly: High incidence of epilepsy. Mol Genet Genomic Med 2021; 9:e1768. [PMID: 34402213 PMCID: PMC8457702 DOI: 10.1002/mgg3.1768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/06/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.
Collapse
Affiliation(s)
- Sarah Duerinckx
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Julie Désir
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Cindy Badoer
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Valérie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Julie Soblet
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | - Isabelle Maystadt
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Yusuf Tunca
- Department of Medical GeneticsGülhane Faculty of Medicine & Gülhane Training and Research HospitalUniversity of Health Sciences TurkeyAnkaraTurkey
| | | | | | | | | | - Anne Destree
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | | | - Anna Jansen
- Universitair Ziekenhuis Brussel (UZ Brussel)Centrum Medische GeneticaUniversiteit Brussel (VUB)BrusselsBelgium
| | - Kathelijn Keymolen
- Universitair Ziekenhuis Brussel (UZ Brussel)Centrum Medische GeneticaUniversiteit Brussel (VUB)BrusselsBelgium
| | - Damien Lederer
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Bart Loeys
- University and University Hospital of AntwerpAntwerpBelgium
| | | | - Stéphanie Moortgat
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Geert Mortier
- University and University Hospital of AntwerpAntwerpBelgium
| | | | | | | | | | | | - Hilde Van Esch
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Catheline Vilain
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | | | | | - Alain Verloes
- Department of GeneticsAPHPRobert Debré University HospitalParisFrance
| | - Alec Aeby
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | | | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenèveSwitzerland
| |
Collapse
|
24
|
Nunez C, Morris A, Jones CA, Badawi N, Baynam G, Hansen M, Elliott EJ. Microcephaly in Australian children, 2016-2018: national surveillance study. Arch Dis Child 2021; 106:849-854. [PMID: 33229416 DOI: 10.1136/archdischild-2020-320456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To describe infants aged <12 months reported with microcephaly to the Australian Paediatric Surveillance Unit (APSU) following emergence of Zika virus infection internationally. DESIGN, SETTING AND PATIENTS National, active, monthly surveillance for microcephaly using the APSU. Microcephaly was defined as occipitofrontal circumference (OFC) of more than 2 SDs below the mean for age, gender and gestation. MAIN OUTCOME MEASURES Clinical spectrum, aetiology and birth prevalence of microcephaly reported by paediatricians. RESULTS Between June 2016 and July 2018, 106 notifications were received, with clinical details provided for 96 (91%). After excluding ineligible notifications, 70 cases were confirmed, giving an annual birth prevalence of 1.12 (95% CI 0.88 to 1.42) per 10 000 live births. Of the total number of cases, 47 (67%) had primary microcephaly (at birth); and 25 (36%) had severe microcephaly (OFC >3 SDs). Birth defects were reported in 42 (60%). Of 49 infants with developmental assessment details available, 25 (51%) had failed to reach all milestones. Vision impairment was reported in 14 (26%). The cause of microcephaly was unknown in 60%: 13 (19%) had been diagnosed with genetic disorders; 22 (39%) had anomalies on neuroimaging. No congenital or probable Zika infection was identified. Severe microcephaly was more often associated with hearing impairment than microcephaly of >2 SDs but ≤3 SDs below the mean (p<0.007). Indigenous children and children with socioeconomic advantage were over-represented among children with microcephaly. CONCLUSION Novel national data on microcephaly highlight the high proportion of idiopathic cases. This has implications for prevention and management and suggests the need for a standardised diagnostic approach and ongoing surveillance mechanism in Australia.
Collapse
Affiliation(s)
- Carlos Nunez
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia .,The Australian Paediatric Surveillance Unit, Sydney, New South Wales, Australia
| | - Anne Morris
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,The Australian Paediatric Surveillance Unit, Sydney, New South Wales, Australia.,The Sydney Children's Hospitals Network (Westmead), Sydney, NSW, Australia
| | - Cheryl A Jones
- The Sydney Children's Hospitals Network (Westmead), Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,The Sydney Children's Hospitals Network (Westmead), Sydney, NSW, Australia.,Professor of Cerebral Plasy, Macquarie Group Foundation, The CP Research Institute, Sydney, NSW, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital Perth, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Michele Hansen
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Elizabeth J Elliott
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,The Australian Paediatric Surveillance Unit, Sydney, New South Wales, Australia.,The Sydney Children's Hospitals Network (Westmead), Sydney, NSW, Australia
| |
Collapse
|
25
|
Imran Naseer M, Abdulrahman Abdulkareem A, Yousef Muthaffar O, Chaudhary AG. Exome sequencing reveled a compound heterozygous mutations in RTTN gene causing developmental delay and primary microcephaly. Saudi J Biol Sci 2021; 28:2824-2829. [PMID: 34012324 PMCID: PMC8116967 DOI: 10.1016/j.sjbs.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
RTTN (Rotatin) (OMIM 614833) is a large centrosomal protein coding gene. RTTN mutations are responsible for syndromic forms of malformation of brain development, leading to polymicrogyria, microcephaly, primordial dwarfism, seizure along with many other malformations. In this study we have identified a compound heterozygous mutation in RTTN gene having NM_173630 c.5225A > G p.His1742Arg in exon 39 and NM_173630 c.6038G > T p.Cys2013Phe in exon 45 of a consanguineous Saudi family leading to brain malformation, seizure, developmental delay, dysmorphic feature and microcephaly. Whole exome sequencing (WES) techniques was used to identify the causative mutation in the affected members of the family. WES data analysis was done and obtained data were further confirmed by using Sanger sequencing analysis. Moreover, the mutation was ruled out in 100 healthy control from normal population. To the best of our knowledge the novel compound heterozygous mutation observed in this study is the first report from Saudi Arabia. The identified compound heterozygous mutation will further explain the role of RTTN gene in development of microcephaly and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Méjécase C, Way CM, Owen N, Moosajee M. Ocular Phenotype Associated with DYRK1A Variants. Genes (Basel) 2021; 12:234. [PMID: 33562844 PMCID: PMC7915179 DOI: 10.3390/genes12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A or DYRK1A, contributes to central nervous system development in a dose-sensitive manner. Triallelic DYRK1A is implicated in the neuropathology of Down syndrome, whereas haploinsufficiency causes the rare DYRK1A-related intellectual disability syndrome (also known as mental retardation 7). It is characterised by intellectual disability, autism spectrum disorder and microcephaly with a typical facial gestalt. Preclinical studies elucidate a role for DYRK1A in eye development and case studies have reported associated ocular pathology. In this study families of the DYRK1A Syndrome International Association were asked to self-report any co-existing ocular abnormalities. Twenty-six patients responded but only 14 had molecular confirmation of a DYRK1A pathogenic variant. A further nineteen patients from the UK Genomics England 100,000 Genomes Project were identified and combined with 112 patients reported in the literature for further analysis. Ninety out of 145 patients (62.1%) with heterozygous DYRK1A variants revealed ocular features, these ranged from optic nerve hypoplasia (13%, 12/90), refractive error (35.6%, 32/90) and strabismus (21.1%, 19/90). Patients with DYRK1A variants should be referred to ophthalmology as part of their management care pathway to prevent amblyopia in children and reduce visual comorbidity, which may further impact on learning, behaviour, and quality of life.
Collapse
Affiliation(s)
- Cécile Méjécase
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Christopher M. Way
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Nicholas Owen
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
27
|
Lee J, Park JE, Lee C, Kim AR, Kim BJ, Park WY, Ki CS, Lee J. Genomic Analysis of Korean Patient With Microcephaly. Front Genet 2021; 11:543528. [PMID: 33584783 PMCID: PMC7876370 DOI: 10.3389/fgene.2020.543528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Microcephaly is a prevalent phenotype in patients with neurodevelopmental problems, often with genetic causes. We comprehensively investigated the clinical phenotypes and genetic background of microcephaly in 40 Korean patients. We analyzed their clinical phenotypes and radiologic images and conducted whole exome sequencing (WES) and analysis of copy number variation (CNV). Infantile hypotonia and developmental delay were present in all patients. Thirty-four patients (85%) showed primary microcephaly. The diagnostic yield from the WES and CNV analyses was 47.5%. With WES, we detected pathogenic or likely pathogenic variants that were previously associated with microcephaly in 12 patients (30%); nine of these were de novo variants with autosomal dominant inheritance. Two unrelated patients had mutations in the KMT2A gene. In 10 other patients, we found mutations in the GNB1, GNAO1, TCF4, ASXL1, SMC1A, VPS13B, ACTG1, EP300, and KMT2D genes. Seven patients (17.5%) were diagnosed with pathogenic CNVs. Korean patients with microcephaly show a genetic spectrum that is different from that of patients with microcephaly of other ethnicities. WES along with CNV analysis represents an effective approach for diagnosis of the underlying causes of microcephaly.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Eun Park
- Department of Laboratory Medicine and Genetics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Chung Lee
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ah Reum Kim
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Maia N, Soares AR, Fortuna AM, Marques I, Gonçalves A, Santos R, Melo Pires M, de Brouwer APM, Jorge P. Usher syndrome and Nebulin-associated myopathy in a single patient due to variants in MYO7A and NEB. Clin Case Rep 2020; 8:2476-2482. [PMID: 33363762 PMCID: PMC7752365 DOI: 10.1002/ccr3.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/02/2022] Open
Abstract
In a patient with Usher syndrome and atypical muscle complaints, we have identified two separate variants in MYO7A andNEB genes by exome sequencing. The homozygous variants in these two recessive genes could explain the full phenotype of our patient.
Collapse
Affiliation(s)
- Nuno Maia
- Unidade de Genética MolecularCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
| | - Ana Rita Soares
- Unidade de Genética MédicaCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
| | - Ana Maria Fortuna
- Unidade Multidisciplinar de Investigação Biomédica (UMIB)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
- Unidade de Genética MédicaCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
| | - Isabel Marques
- Unidade de Genética MolecularCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
| | - Ana Gonçalves
- Unidade de Genética MolecularCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
| | - Rosário Santos
- Unidade de Genética MolecularCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
| | - Manuel Melo Pires
- Serviço de NeuropatologiaCentro Hospitalar e Universitário do Porto (CHUP)PortoPortugal
| | - Arjan P. M. de Brouwer
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
| | - Paula Jorge
- Unidade de Genética MolecularCentro de Genética Médica Jacinto de Magalhães (CGM)Centro Hospitalar Universitário do Porto (CHUP)PortoPortugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
| |
Collapse
|
29
|
Jean F, Stuart A, Tarailo-Graovac M. Dissecting the Genetic and Etiological Causes of Primary Microcephaly. Front Neurol 2020; 11:570830. [PMID: 33178111 PMCID: PMC7593518 DOI: 10.3389/fneur.2020.570830] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH; “small head syndrome”) is a rare, heterogeneous disease arising from the decreased production of neurons during brain development. As of August 2020, the Online Mendelian Inheritance in Man (OMIM) database lists 25 genes (involved in molecular processes such as centriole biogenesis, microtubule dynamics, spindle positioning, DNA repair, transcriptional regulation, Wnt signaling, and cell cycle checkpoints) that are implicated in causing MCPH. Many of these 25 genes were only discovered in the last 10 years following advances in exome and genome sequencing that have improved our ability to identify disease-causing variants. Despite these advances, many patients still lack a genetic diagnosis. This demonstrates a need to understand in greater detail the molecular mechanisms and genetics underlying MCPH. Here, we briefly review the molecular functions of each MCPH gene and how their loss disrupts the neurogenesis program, ultimately demonstrating that microcephaly arises from cell cycle dysregulation. We also explore the current issues in the genetic basis and clinical presentation of MCPH as additional avenues of improving gene/variant prioritization. Ultimately, we illustrate that the detailed exploration of the etiology and inheritance of MCPH improves the predictive power in identifying previously unknown MCPH candidates and diagnosing microcephalic patients.
Collapse
Affiliation(s)
- Francesca Jean
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Stuart
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Sjaarda CP, Kaiser B, McNaughton AJM, Hudson ML, Harris-Lowe L, Lou K, Guerin A, Ayub M, Liu X. De novo duplication on Chromosome 19 observed in nuclear family displaying neurodevelopmental disorders. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004721. [PMID: 32321736 PMCID: PMC7304355 DOI: 10.1101/mcs.a004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Pleiotropy and variable expressivity have been cited to explain the seemingly distinct neurodevelopmental disorders due to a common genetic etiology within the same family. Here we present a family with a de novo 1-Mb duplication involving 18 genes on Chromosome 19. Within the family there are multiple cases of neurodevelopmental disorders including autism spectrum disorder, attention deficit/hyperactivity disorder, intellectual disability, and psychiatric disease in individuals carrying this copy-number variant (CNV). Quantitative polymerase chain reaction (PCR) confirmed the CNV was de novo in the mother and inherited by both sons. Whole-exome sequencing did not uncover further genetic risk factors segregating within the family. Transcriptome analysis of peripheral blood demonstrated a ∼1.5-fold increase in RNA transcript abundance in 12 of the 15 detected genes within the CNV region for individuals carrying the CNV compared with their noncarrier relatives. Examination of transcript abundance across the rest of the transcriptome identified 407 differentially expressed genes (P-value < 0.05; adjusted P-value < 0.1) mapping to immune response, response to endoplasmic reticulum stress, and regulation of epithelial cell proliferation pathways. 16S microbiome profiling demonstrated compositional difference in the gut bacteria between the half-brothers. These results raise the possibility that the observed CNV may contribute to the varied phenotypic characteristics in family members through alterations in gene expression and/or dysbiosis of the gut microbiome. More broadly, there is growing evidence that different neurodevelopmental and psychiatric disorders can share the same genetic variant, which lays a framework for later neurodevelopmental and psychiatric manifestations.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Beatrice Kaiser
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Amy J M McNaughton
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Melissa L Hudson
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Liam Harris-Lowe
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,School of Applied Science and Computing, St. Lawrence College, Kingston, Ontario K7L 5A6, Canada
| | - Kyle Lou
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xudong Liu
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
31
|
Vandervore LV, Schot R, Kasteleijn E, Oegema R, Stouffs K, Gheldof A, Grochowska MM, van der Sterre MLT, van Unen LMA, Wilke M, Elfferich P, van der Spek PJ, Heijsman D, Grandone A, Demmers JAA, Dekkers DHW, Slotman JA, Kremers GJ, Schaaf GJ, Masius RG, van Essen AJ, Rump P, van Haeringen A, Peeters E, Altunoglu U, Kalayci T, Poot RA, Dobyns WB, Bahi-Buisson N, Verheijen FW, Jansen AC, Mancini GMS. Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 2019; 142:867-884. [PMID: 30879067 PMCID: PMC6439326 DOI: 10.1093/brain/awz045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
Collapse
Affiliation(s)
- Laura V Vandervore
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Renske Oegema
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Pathology, Clinical Bio-informatics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Katrien Stouffs
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Marianne L T van der Sterre
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Leontine M A van Unen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Anna Grandone
- Department of Molecular Genetics, Proteomics Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Johan A Slotman
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Roy G Masius
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anton J van Essen
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Patrick Rump
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Pediatric Neurology, Juliana Hospital, Els Borst-Eilersplein 275, 2545 AA Den Haag, The Netherlands
| | - Els Peeters
- Department of Medical genetics, Istanbul Medical Faculty, Istanbul University, Topkapı Mahallesi, Turgut Özal Millet Cd, 34093 Fatih/İstanbul, Turkey
| | - Umut Altunoglu
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Tugba Kalayci
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Institut des Maladies Génétiques 24, Boulevard de Montparnasse, Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anna C Jansen
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| |
Collapse
|
32
|
Yu L, Li G, Deng J, Jiang X, Xue J, Zhu Y, Huang W, Tang B, Duan R. The UFM1 cascade times mitosis entry associated with microcephaly. FASEB J 2019; 34:1319-1330. [PMID: 31914610 DOI: 10.1096/fj.201901751r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023]
Abstract
Posttranslational modifications enhance the functional diversity of the proteome by modifying the substrates. The UFM1 cascade is a novel ubiquitin-like modification system. The mutations in UFM1, its E1 (UBA5) and E2 (UFC1), have been identified in patients with microcephaly. However, its pathological mechanisms remain unclear. Herein, we observed the disruption of the UFM1 cascade in Drosophila neuroblasts (NBs) decreased the number of NBs, leading to a smaller brain size. The lack of ufmylation in NBs resulted in an increased mitotic index and an extended G2/M phase, indicating a defect in mitotic progression. In addition, live imaging of the embryos revealed an impaired E3 ligase (Ufl1) function resulted in premature entry into mitosis and failed cellularization. Even worse, the embryonic lethality occurred as early as within the first few mitotic cycles following the depletion of Ufm1. Knockdown of ufmylation in the fixed embryos exhibited severe phenotypes, including detached centrosomes, defective microtubules, and DNA bridge. Furthermore, we observed that the UFM1 cascade could alter the level of phosphorylation on tyrosine-15 of CDK1 (pY15-CDK1), which is a negative regulator of the G2 to M transition. These findings yield unambiguous evidence suggesting that the UFM1 cascade is a microcephaly-causing factor that regulates the progression of the cell cycle at mitosis phase entry.
Collapse
Affiliation(s)
- Li Yu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jing Deng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xuan Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yingbao Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
33
|
Qiao F, Shao B, Wang C, Wang Y, Zhou R, Liu G, Meng L, Hu P, Xu Z. A De Novo Mutation in DYRK1A Causes Syndromic Intellectual Disability: A Chinese Case Report. Front Genet 2019; 10:1194. [PMID: 31803247 PMCID: PMC6877748 DOI: 10.3389/fgene.2019.01194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant mental retardation-7 (MRD7) is a rare anomaly, characterized by severe intellectual disability, feeding difficulties, behavior abnormalities, and distinctive facial features, including microcephaly, deep-set eyes, large simple ears, and a pointed or bulbous nasal tip. Some studies show that the disorder has a close correlation with variants in DYRK1A. Herein we described a Chinese girl presenting typical clinical features diagnosed at 4 years old. Whole-exome sequencing of the familial genomic DNA identified a novel mutation c.930C > A (p.Tyr310*) in exon 7 of DYRK1A in the proband. The nonsense mutation was predicted to render the truncation of the protein. Our results suggested that the de novo heterozygous mutation in DYRK1A was responsible for the MRD7 in this Chinese family, which both extended the knowledge of mutation spectrum in MRD7 patients and highlighted the clinical application of exome sequencing.
Collapse
Affiliation(s)
- Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chen Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Gang Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
34
|
Isik E, Onay H, Atik T, Canda E, Cogulu O, Coker M, Ozkinay F. Clinical utility of a targeted next generation sequencing panel in severe and pediatric onset Mendelian diseases. Eur J Med Genet 2019; 62:103725. [DOI: 10.1016/j.ejmg.2019.103725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 02/03/2023]
|
35
|
Boonsawat P, Joset P, Steindl K, Oneda B, Gogoll L, Azzarello-Burri S, Sheth F, Datar C, Verma IC, Puri RD, Zollino M, Bachmann-Gagescu R, Niedrist D, Papik M, Figueiro-Silva J, Masood R, Zweier M, Kraemer D, Lincoln S, Rodan L, Passemard S, Drunat S, Verloes A, Horn AHC, Sticht H, Steinfeld R, Plecko B, Latal B, Jenni O, Asadollahi R, Rauch A. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med 2019; 21:2043-2058. [PMID: 30842647 PMCID: PMC6752480 DOI: 10.1038/s41436-019-0464-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.
Collapse
Affiliation(s)
- Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | | | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Satellite, Ahmedabad, India
| | - Chaitanya Datar
- Sahyadri Medical Genetics and Tissue Engineering Facility, Kothrud, Pune and Bharati Hospital and Research Center Dhankawadi, Pune, India
| | - Ishwar C Verma
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Marcella Zollino
- Unità Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Rahim Masood
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Dennis Kraemer
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Sharyn Lincoln
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sandrine Passemard
- Service de Neuropédiatrie, Hôpital Universitaire Robert Debré, APHP, Paris, France
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Séverine Drunat
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara Plecko
- Division of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Ouyang Q, Kavanaugh BC, Joesch-Cohen L, Dubois B, Wu Q, Schmidt M, Baytas O, Pastore SF, Harripaul R, Mishra S, Hussain A, Kim KH, Holler-Managan YF, Ayub M, Mir A, Vincent JB, Liu JS, Morrow EM. GPT2 mutations in autosomal recessive developmental disability: extending the clinical phenotype and population prevalence estimates. Hum Genet 2019; 138:1183-1200. [PMID: 31471722 PMCID: PMC6748651 DOI: 10.1007/s00439-019-02057-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
The glutamate pyruvate transaminase 2 (GPT2) gene produces a nuclear-encoded mitochondrial enzyme that catalyzes the reversible transfer of an amino group from glutamate to pyruvate, generating alanine and alpha-ketoglutarate. Recessive mutations in GPT2 have been recently identified in a new syndrome involving intellectual and developmental disability (IDD), postnatal microcephaly, and spastic paraplegia. We have identified additional families with recessive GPT2 mutations and expanded the phenotype to include small stature. GPT2 loss-of-function mutations were identified in four families, nine patients total, including: a homozygous mutation in one child [c.775T>C (p.C259R)]; compound heterozygous mutations in two siblings [c.812A>C (p.N271T)/c.1432_1433delGT (p.V478Rfs*73)]; a novel homozygous, putative splicing mutation [c.1035C>T (p.G345=)]; and finally, a recurrent mutation, previously identified in a distinct family [c.1210C>T (p.R404*)]. All patients were diagnosed with IDD. A majority of patients had remarkably small stature throughout development, many < 1st percentile for height and weight. Given the potential biological function of GPT2 in cellular growth, this phenotype is strongly suggestive of a newly identified clinical susceptibility. Further, homozygous GPT2 mutations manifested in at least 2 of 176 families with IDD (approximately 1.1%) in a Pakistani cohort, thereby representing a relatively common cause of recessive IDD in this population, with recurrence of the p.R404* mutation in this population. Based on variants in the ExAC database, we estimated that approximately 1 in 248 individuals are carriers of moderately or severely deleterious variants in GPT2.
Collapse
Affiliation(s)
- Qing Ouyang
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - Brian C Kavanaugh
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - Lena Joesch-Cohen
- Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - Bethany Dubois
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Qing Wu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - Michael Schmidt
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - Ozan Baytas
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - Stephen F Pastore
- Molecular Neuropsychiatry and Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sasmita Mishra
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Abrar Hussain
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Katherine H Kim
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yolanda F Holler-Managan
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Muhammad Ayub
- Department of Psychiatry, Queens University Kingston, Kingston, ON, Canada
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Judy S Liu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA.,Department of Neurology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric M Morrow
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA. .,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI, USA. .,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA. .,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA. .,Laboratories for Molecular Medicine, Brown University, 70 Ship Street, Box G-E4, Providence, RI, 02912, USA.
| |
Collapse
|
37
|
Rahman MM, Uddin KF, Al Jezawi NK, Karuvantevida N, Akter H, Dity NJ, Rahaman MA, Begum M, Rahaman MA, Baqui MA, Salwa Z, Islam S, Woodbury-Smith M, Basiruzzaman M, Uddin M. Gonadal mosaicism of large terminal de novo duplication and deletion in siblings with variable intellectual disability phenotypes. Mol Genet Genomic Med 2019; 7:e00954. [PMID: 31475484 PMCID: PMC6785528 DOI: 10.1002/mgg3.954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background Intellectual disability (ID) is a complex condition that can impact multiple domains of development. The genetic contribution to ID’s etiology is significant, with more than 100 implicated genes and loci currently identified. The majority of such variants are rare and de novo genetic mutations. Methods We have applied whole‐genome microarray to identify large, rare, clinically relevant copy number variants (CNVs). We have applied well‐established algorithms for variants call. Quantitative polymerase chain reaction (qPCR) was applied to validate the variants using three technical replicates for each family member. To assess whether the copy number variation was due to balanced translocation or mosaicism, we further conducted droplet digital PCR (ddPCR) on the whole family. We have, as well, applied “critical‐exon” mapping, human developmental brain transcriptome, and a database of known associated neurodevelopmental disorder variants to identify candidate genes. Results Here we present two siblings who are both impacted by a large terminal duplication and a deletion. Whole‐genome microarray revealed an 18.82 megabase (MB) duplication at terminal locus (7q34‐q36.3) of chromosome 7 and a 3.90 MB deletion impacting the terminal locus (15q26.3) of chromosome 15. qPCR and ddPCR experiments confirmed the de novo origin of the variants and the co‐occurrence of these two de novo events among the siblings, but their absence in both parents, implicates an unbalanced translocation that could have mal‐segregated among the siblings or a possible germline mosaicism. These terminal events impact IGF1R, CNTNAP2, and DPP6, shown to be strongly associated with neurodevelopmental disorders. Detailed clinical examination of the siblings revealed the presence of both shared and distinct phenotypic features. Conclusions This study identified two large rare terminal de novo events impacting two siblings. Further phenotypic investigation highlights that even in the presence of identical large high penetrant variants, spectrum of clinical features can be different between the siblings.
Collapse
Affiliation(s)
| | - Km Furkan Uddin
- NeuroGen Technologies Ltd., Dhaka, Bangladesh.,Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Nesreen K Al Jezawi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | | | | | | | | | | | - Md Abdul Baqui
- NeuroGen Technologies Ltd., Dhaka, Bangladesh.,Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | | | | | - Marc Woodbury-Smith
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohammed Basiruzzaman
- NeuroGen Technologies Ltd., Dhaka, Bangladesh.,Department of Neurology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
38
|
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019; 127:210-222. [PMID: 30831192 PMCID: PMC6753933 DOI: 10.1016/j.nbd.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Juan Arranz
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Balducci
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gentzane Sánchez-Elexpuru
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Sònia Najas
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Alberto Parras
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Isabel Pijuan
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gaetano Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, 08020 Barcelona, Spain
| | - Maria J Barallobre
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina P Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Susana de la Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Maria L Arbonés
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
39
|
Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, Firth HV, Frazier T, Hansen RL, Prock L, Brunner H, Hoang N, Scherer SW, Sahin M, Miller DT. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med 2019; 21:2413-2421. [PMID: 31182824 PMCID: PMC6831729 DOI: 10.1038/s41436-019-0554-6] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose For neurodevelopmental disorders (NDDs), etiological evaluation can
be a diagnostic odyssey involving numerous genetic tests, underscoring the need
to develop a streamlined algorithm maximizing molecular diagnostic yield for
this clinical indication. Our objective was to compare the yield of exome
sequencing (ES) with that of chromosomal microarray (CMA), the current
first-tier test for NDDs. Methods We performed a PubMed scoping review and meta-analysis investigating
the diagnostic yield of ES for NDDs as the basis of a consensus development
conference. We defined NDD as global developmental delay, intellectual
disability, and/or autism spectrum disorder. The consensus development
conference included input from genetics professionals, pediatric neurologists,
and developmental behavioral pediatricians. Results After applying strict inclusion/exclusion criteria, we identified 30
articles with data on molecular diagnostic yield in individuals with isolated
NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES
was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated
conditions. ES yield for NDDs is markedly greater than previous studies of CMA
(15–20%). Conclusion Our review demonstrates that ES consistently outperforms CMA for
evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at
the beginning of the evaluation of unexplained NDDs.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie A Love-Nichols
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kira A Dies
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA.,SFARI, Simons Foundation, New York, NY, USA
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Robin L Hansen
- MIND Institute, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Lisa Prock
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Developmental Medicine Center, Boston Children's Hospital, Boston, MA, USA
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,The Netherlands; Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ny Hoang
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
40
|
Beheshtian M, Fattahi Z, Fadaee M, Vazehan R, Jamali P, Parsimehr E, Kamgar M, Zonooz MF, Mahdavi SS, Kalhor Z, Arzhangi S, Abedini SS, Kermani FS, Mojahedi F, Kalscheuer VM, Ropers HH, Kariminejad A, Najmabadi H, Kahrizi K. Identification of disease-causing variants in the EXOSC gene family underlying autosomal recessive intellectual disability in Iranian families. Clin Genet 2019; 95:718-725. [PMID: 30950035 DOI: 10.1111/cge.13549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental delay and intellectual disability (ID) can arise from numerous genetic defects. To date, variants in the EXOSC gene family have been associated with such disorders. Using next-generation sequencing (NGS), known and novel variants in this gene family causing autosomal recessive ID (ARID) have been identified in five Iranian families. By collecting clinical information on these families and comparing their phenotypes with previously reported patients, we further describe the clinical variability of ARID resulting from alterations in the EXOSC gene family, and emphasize the role of RNA processing dysregulation in ARID.
Collapse
Affiliation(s)
- Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran.,Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Mahboubeh Kamgar
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farahnaz Sabbagh Kermani
- Clinical Research Unit, Afzalipour Hospital, Kerman, University of Medical Sciences, Kerman, Iran
| | | | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ariana Kariminejad
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
41
|
Li JK, Li Y, Zhang X, Chen CL, Rao YQ, Fei P, Zhang Q, Zhao P, Li J. Spectrum of Variants in 389 Chinese Probands With Familial Exudative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2019; 59:5368-5381. [PMID: 30452590 DOI: 10.1167/iovs.17-23541] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify potentially pathogenic variants (PPVs) in Chinese familial exudative vitreoretinopathy (FEVR) patients in FZD4, LRP5, NDP, TSPAN12, ZNF408, and KIF11 genes. Methods Blood samples were collected from probands and their parent(s). Genomic DNA was analyzed by next-generation sequencing, and the sequence of selected variants were validated by Sanger sequencing. The potential pathogenicity of a variant was evaluated by in silico analysis and by cosegregation of the variant with disease. Each proband was subjected to comprehensive retinal examinations, and the severity of FEVR was individually graded for each eye. Whenever possible, fundus fluorescein angiography was obtained and analyzed for parent(s) of each proband. Variation in mutation expressivity was analyzed. Results Three hundred eighty-nine consecutive FEVR patients from 389 families participated in this study. About 74% of the probands were children younger than 7 years old. One hundred one PPVs, 49 variants with unknown significance (VUS), were identified, including 73 novel PPVs and 38 novel VUS. One hundred ten probands carried PPV (28.3%), and 51 probands carried VUS (13.1%). PPVs in FZD4, LRP5, TSPAN12, NDP, ZNF408, and KIF11 were found in 8.48%, 9.00%, 5.91%, 4.63%, 0.77%, and 0.77% of the cohort, respectively. Probands carrying PPVs in NDP and KIF11 had more severe FEVR in general than those carrying PPVs in other genes. Overall, variants in LRP5 and FZD4 showed more significant variation in phenotype than variants in TSPAN12 and NDP genes. Conclusions Our study expanded the spectrum of PPVs associated with FEVR.
Collapse
Affiliation(s)
- Jia-Kai Li
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yian Li
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Li Chen
- Department of Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yu-Qing Rao
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Fei
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Bick D, Jones M, Taylor SL, Taft RJ, Belmont J. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. J Med Genet 2019; 56:783-791. [PMID: 31023718 PMCID: PMC6929710 DOI: 10.1136/jmedgenet-2019-106111] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
Up to 350 million people worldwide suffer from a rare disease, and while the individual diseases are rare, in aggregate they represent a substantial challenge to global health systems. The majority of rare disorders are genetic in origin, with children under the age of five disproportionately affected. As these conditions are difficult to identify clinically, genetic and genomic testing have become the backbone of diagnostic testing in this population. In the last 10 years, next-generation sequencing technologies have enabled testing of multiple disease genes simultaneously, ranging from targeted gene panels to exome sequencing (ES) and genome sequencing (GS). GS is quickly becoming a practical first-tier test, as cost decreases and performance improves. A growing number of studies demonstrate that GS can detect an unparalleled range of pathogenic abnormalities in a single laboratory workflow. GS has the potential to deliver unbiased, rapid and accurate molecular diagnoses to patients across diverse clinical indications and complex presentations. In this paper, we discuss clinical indications for testing and historical testing paradigms. Evidence supporting GS as a diagnostic tool is supported by superior genomic coverage, types of pathogenic variants detected, simpler laboratory workflow enabling shorter turnaround times, diagnostic and reanalysis yield, and impact on healthcare.
Collapse
Affiliation(s)
- David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Marilyn Jones
- Rady Children's Hospital San Diego, San Diego, California, USA
| | | | | | | |
Collapse
|
43
|
Abstract
IgA nephropathy (IgAN) represents a genetically complex multifactorial trait. Its prevalence and clinical features vary geographically, and the disease has a range of clinical presentations that suggest multiple subtypes. Although familial aggregation of IgAN has been reported and prior linkage studies have highlighted significant locus heterogeneity, specific genetic variants underlying familial IgAN have not yet been defined. Population-based genome-wide association studies (GWAS) have discovered nearly 20 IgAN risk loci, providing novel insights into disease epidemiology and molecular mechanisms, shifting old paradigms of the disease pathogenesis. Follow-up fine-mapping studies have identified specific causal variants, and genotype-phenotype correlation studies have begun to delineate clinical consequences of GWAS risk alleles. The association between IgAN and galactose-deficient IgA1 (Gd-IgA1), a validated serum biomarker of IgAN, presented another avenue for genetic discovery because elevated serum levels of Gd-IgA1 are highly heritable. Recent GWAS for serum Gd-IgA1 levels provided novel insights into genetic regulation of this trait, but the genetic link between Gd-IgA1 and IgAN has not yet been established. In this review, we discuss these developments in the broader context of modern genetic approaches to complex traits, and provide our perspective on the critical challenges that need to be addressed to advance the field.
Collapse
Affiliation(s)
- Y Dana Neugut
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.
| |
Collapse
|
44
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
45
|
Benítez-Burraco A. Differences in the Neanderthal BRCA2 gene might be related to their distinctive cognitive profile. Hereditas 2018; 155:38. [PMID: 30564067 PMCID: PMC6291940 DOI: 10.1186/s41065-018-0076-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 11/23/2022] Open
Abstract
The unique divergence of the BRCA2 gene in Neanderthals compared to modern humans has been hypothesized to account for a differential susceptibility to cancer. However, the role of the gene in brain development and its connection with autism suggest that these differences might be (also) related to the more encapsulated nature of the Neanderthal cognition and their (inferred) autistic-like features.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain
| |
Collapse
|
46
|
Bianchi FT, Berto GE, Di Cunto F. Impact of DNA repair and stability defects on cortical development. Cell Mol Life Sci 2018; 75:3963-3976. [PMID: 30116853 PMCID: PMC11105354 DOI: 10.1007/s00018-018-2900-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Maintenance of genome stability is a crucial cellular function for normal mammalian development and physiology. However, despite the general relevance of this process, genome stability alteration due to genetic or non-genetic conditions has a particularly profound impact on the developing cerebral cortex. In this review, we will analyze the main pathways involved in maintenance of genome stability, the consequences of their alterations with regard to central nervous system development, as well as the possible molecular and cellular basis of this specificity.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Al-Nabhani M, Al-Rashdi S, Al-Murshedi F, Al-Kindi A, Al-Thihli K, Al-Saegh A, Al-Futaisi A, Al-Mamari W, Zadjali F, Al-Maawali A. Reanalysis of exome sequencing data of intellectual disability samples: Yields and benefits. Clin Genet 2018; 94:495-501. [PMID: 30125339 DOI: 10.1111/cge.13438] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023]
Abstract
Recently, with the advancement in next generation sequencing (NGS) along with the improvement of bioinformatics tools, whole exome sequencing (WES) has become the most efficient diagnostic test for patients with intellectual disability (ID). This study aims to estimate the yield of a reanalysis of ID negative exome cases after data reannotation. Total of 50 data files of exome sequencing, representing 50 samples were collected. The inclusion criteria include ID phenotype, and previous analysis indicated a negative result (no abnormality detected). These files were pre-processed and reannotated using ANNOVAR tool. Prioritized variants in the 50 cases studied were classified into three groups, (1) disease-causative variants (2) possible disease-causing variants and (3) variants in novel genes. Reanalysis resulted in the identification of pathogenic/likely pathogenic variants in six cases (12%). Thirteen cases (26%) were classified as having possible disease-causing variants. Candidate genes requiring future functional studies were detected in seven cases (14%). Improvement in bioinformatics tools, update in the genetic databases and literature, and patients' clinical phenotype update were the main reasons for identification of these variants in this study.
Collapse
Affiliation(s)
- Maryam Al-Nabhani
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Samiya Al-Rashdi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Adila Al-Kindi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Abeer Al-Saegh
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al-Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Watfa Al-Mamari
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman.,Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fahad Zadjali
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
48
|
Functional characterization of biallelic RTTN variants identified in an infant with microcephaly, simplified gyral pattern, pontocerebellar hypoplasia, and seizures. Pediatr Res 2018; 84:435-441. [PMID: 29967526 PMCID: PMC6258334 DOI: 10.1038/s41390-018-0083-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Biallelic deleterious variants in RTTN, which encodes rotatin, are associated with primary microcephaly, polymicrogyria, seizures, intellectual disability, and primordial dwarfism in human infants. METHODS AND RESULTS We performed exome sequencing of an infant with primary microcephaly, pontocerebellar hypoplasia, and intractable seizures and his healthy, unrelated parents. We cultured the infant's fibroblasts to determine primary ciliary phenotype. RESULTS We identified biallelic variants in RTTN in the affected infant: a novel missense variant and a rare, intronic variant that results in aberrant transcript splicing. Cultured fibroblasts from the infant demonstrated reduced length and number of primary cilia. CONCLUSION Biallelic variants in RTTN cause primary microcephaly in infants. Functional characterization of primary cilia length and number can be used to determine pathogenicity of RTTN variants.
Collapse
|
49
|
Santos-Cortez RLP, Khan V, Khan FS, Mughal ZUN, Chakchouk I, Lee K, Rasheed M, Hamza R, Acharya A, Ullah E, Saqib MAN, Abbe I, Ali G, Hassan MJ, Khan S, Azeem Z, Ullah I, Bamshad MJ, Nickerson DA, Schrauwen I, Ahmad W, Ansar M, Leal SM. Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability. Hum Genet 2018; 137:735-752. [PMID: 30167849 PMCID: PMC6201268 DOI: 10.1007/s00439-018-1928-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/10/2018] [Indexed: 01/30/2023]
Abstract
Identification of Mendelian genes for neurodevelopmental disorders using exome sequencing to study autosomal recessive (AR) consanguineous pedigrees has been highly successful. To identify causal variants for syndromic and non-syndromic intellectual disability (ID), exome sequencing was performed using DNA samples from 22 consanguineous Pakistani families with ARID, of which 21 have additional phenotypes including microcephaly. To aid in variant identification, homozygosity mapping and linkage analysis were performed. DNA samples from affected family member(s) from every pedigree underwent exome sequencing. Identified rare damaging exome variants were tested for co-segregation with ID using Sanger sequencing. For seven ARID families, variants were identified in genes not previously associated with ID, including: EI24, FXR1 and TET3 for which knockout mouse models have brain defects; and CACNG7 and TRAPPC10 where cell studies suggest roles in important neural pathways. For two families, the novel ARID genes CARNMT1 and GARNL3 lie within previously reported ID microdeletion regions. We also observed homozygous variants in two ID candidate genes, GRAMD1B and TBRG1, for which each has been previously reported in a single family. An additional 14 families have homozygous variants in established ID genes, of which 11 variants are novel. All ARID genes have increased expression in specific structures of the developing and adult human brain and 91% of the genes are differentially expressed in utero or during early childhood. The identification of novel ARID candidate genes and variants adds to the knowledge base that is required to further understand human brain function and development.
Collapse
Affiliation(s)
- Regie Lyn P Santos-Cortez
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
- Department of Otolaryngology, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Valeed Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Falak Sher Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zaib-Un-Nisa Mughal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Imen Chakchouk
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rifat Hamza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Anushree Acharya
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Ehsan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Arif Nadeem Saqib
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Pakistan Health Research Council, Shahrah-e-Jamhuriat, G-5/2, Islamabad, Pakistan
| | - Izoduwa Abbe
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Jawad Hassan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Zahid Azeem
- Department of Biochemistry, Azad Jammu and Kashmir Medical College, Muzaffarabad, Pakistan
| | - Irfan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave. NE, Seattle, WA, 98195, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Isabelle Schrauwen
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Cavallin M, Bery A, Maillard C, Salomon LJ, Bole C, Reilly ML, Nitschké P, Boddaert N, Bahi-Buisson N. Recurrent RTTN mutation leading to severe microcephaly, polymicrogyria and growth restriction. Eur J Med Genet 2018; 61:755-758. [PMID: 30121372 DOI: 10.1016/j.ejmg.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Autosomal recessive missense Rotatin (RTTN) mutations are responsible for syndromic forms of malformation of cortical development, ranging from isolated polymicrogyria to microcephaly associated with primordial dwarfism and other major malformations. We identified, by trio based whole exome sequencing, a homozygous missense mutation in the RTTN gene (c.2953A > G; p.(Arg985Gly)) in one Moroccan patient from a consanguineous family. The patient showed early onset primary microcephaly, detected in the fetal period, postnatal growth restriction, encephalopathy with hyperkinetic movement disorders and self-injurious behavior with sleep disturbance. Brain MRI showed an extensive dysgyria associated with nodular heterotopia, large interhemispheric arachnoid cyst and corpus callosum hypoplasia.
Collapse
Affiliation(s)
- Mara Cavallin
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France
| | - Amandine Bery
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Imagine Institute, Paris, France
| | - Camille Maillard
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Laurent J Salomon
- Department of Obstetrics and Fetal Medicine APHP- Necker Enfants Malades University Hospital, Paris, France
| | - Christine Bole
- Genomic Core Facility, INSERM UMR1163, Imagine Institute, Paris, France
| | - Madeline Louise Reilly
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Laboratory of Inherited Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France; Paris Diderot University, 75013, Paris, France
| | - Patrick Nitschké
- Bioinformatic Core Facility, INSERM UMR1163, Imagine Institute, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology, APHP-Necker Enfants Malades University Hospital, Paris, France; Image- Institut Imagine, INSERM UMR1163, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | - Nadia Bahi-Buisson
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France; Centre de Référence, Déficiences Intellectuelles de Causes Rares, APHP- Necker Enfants Malades University Hospital, Paris, France.
| |
Collapse
|