1
|
Guseva M, Shirokova N, Kapitonova O, Gnetetskaya V, Blagodatskikh K, Tarasova J, Kaimonov V, Korbut A, Musatova E. Application of Whole-Exome Sequencing (WES) for Prenatal Determination of Causes of Fetal Abnormalities. Genes (Basel) 2025; 16:547. [PMID: 40428369 PMCID: PMC12111140 DOI: 10.3390/genes16050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Fetal abnormalities are major issues in prenatal medicine. They affect the predicted pregnancy outcome and entail a risk of future recurrent adverse events in a particular couple. In order to clarify the possible outcomes of a specific pregnancy and subsequent ones, it is of the utmost importance to determine the causes of observed fetal abnormalities. Routine laboratory techniques sometimes fail to identify their cause because they are mainly intended for the detection of chromosomal disorders. Over recent years, single-gene disorders have increasingly been regarded as probable causes of fetal abnormalities, and next-generation sequencing (NGS) technologies have been adopted to detect them. This article provides the findings of applying whole-exome sequencing (WES) for prenatal diagnosis. It is aimed at identifying the causes of various fetus abnormalities with a normal molecular karyotype. The diagnostic value of this technique is shown based on the completeness of clinical patterns, abnormality types, and the ability to simultaneously examine the fetus and the parents. Consequently, WES revealed causative variants in 27.27% of cases, which encourages the consideration of applying this technique as part of a state-of-the-art multiple congenital malformation prenatal diagnosis algorithm.
Collapse
Affiliation(s)
- Margarita Guseva
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
| | - Natalya Shirokova
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
| | - Olga Kapitonova
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
| | | | - Konstantin Blagodatskikh
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
| | - Julia Tarasova
- Clinic “Mother and Child” Savelovskaya, 127015 Moscow, Russia
| | - Vladimir Kaimonov
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
| | - Alina Korbut
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
| | - Elizaveta Musatova
- The Center of Genetics and Reproductive Medicine “Genetico” JSC, 119571 Moscow, Russia; (N.S.); (O.K.); (K.B.); (V.K.); (A.K.); (E.M.)
- Federal State Budgetary Educational Institution, Further Professional Education “Russian Medical Academy of Continuous Professional Education”, the Ministry of Healthcare of the Russian Federation, 125993 Moscow, Russia
| |
Collapse
|
2
|
Li SX, Chen L, Deng C, Tang D, Zhang J, Hu WG, Hu Y, Lai H, Yang X. Uncertain significance and molecular insights of CPLANE1 variants in prenatal diagnosis of Joubert syndrome: a case report. BMC Pregnancy Childbirth 2024; 24:865. [PMID: 39725884 PMCID: PMC11674561 DOI: 10.1186/s12884-024-07052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Prenatal whole exome sequencing (WES) is becoming an increasingly used diagnostic tool for fetuses with structural anomalies. However, the identification of variants of uncertain significance (VUS) in clinically relevant genes can significantly complicate prenatal diagnosis and genetic counseling. CASE PRESENTATION A fetus conceived through in vitro fertilization at the third attempt presented with polydactyly and molar tooth sign at 24 + 6 weeks of gestation. Trio-based WES was performed on both parents and the affected fetus, revealing a pair of compound heterozygous CPLANE1 variants (c.4646 A > T/p.Glu1549Val and c.1233 C > A/p.Tyr411*) potentially associated with Joubert syndrome. According to the ACMG guidelines, one of the biallelic variants was classified as VUS, and the other as pathogenic. However, these variants had no allele frequencies in the general population. The p.Tyr411* variant was classified as deleterious, while the p.Glu1549Val variant was located in highly conserved residues, was predicted to be damaging by in silico tools, and altered hydrogen bonding. Furthermore, CPLANE1 expression was highest in the brain during the embryonic and fetal stages. These findings provide additional support for the association between CPLANE1 variants in this fetus and Joubert syndrome. Thus, the most likely diagnosis was Joubert syndrome, and after careful consideration, the couple decided to terminate the pregnancy. CONCLUSION The expression patterns of CPLANE1 and the molecular effects of the variants may provide further evidence supporting the potential for prenatal diagnosis of Joubert syndrome in the case of biallelic VUS and pathogenic variant. This study suggests that molecular insights may play a role in interpreting VUS in clinically relevant prenatal genes for prenatal diagnosis.
Collapse
Affiliation(s)
- Si-Xiu Li
- Department of Pediatric Neurology, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Leiting Chen
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Chen Deng
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Tang
- Department of Obstetrics, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhang
- Department of Pediatric Neurology, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Guang Hu
- Department of Pediatric Neurology, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Hu
- Department of Prenatal Diagnosis, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Lai
- Department of Radiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiao Yang
- Department of Obstetrics, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Black HA, de Proce SM, Campos JL, Meynert A, Halachev M, Marsh JA, Hirst RA, O'Callaghan C, Shoemark A, Toddie‐Moore D, Scottish Genomes Partnership, Santoyo‐Lopez J, Murray J, Macleod K, Urquhart DS, Unger S, Aitman TJ, Mill P. Whole genome sequencing enhances molecular diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol 2024; 59:3322-3332. [PMID: 39115449 PMCID: PMC11600997 DOI: 10.1002/ppul.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia. Most cases are inherited recessively, due to variants in >50 genes that result in abnormal or absent motile cilia. This leads to chronic upper and lower airway disease, subfertility, and laterality defects. Given overlapping clinical features and genetic heterogeneity, diagnosis can be difficult and often occurs late. Of those tested an estimated 30% of genetically screened PCD patients still lack a molecular diagnosis. A molecular diagnosis allows for appropriate clinical management including prediction of phenotypic features correlated to genotype. Here, we aimed to identify how readily a genetic diagnosis could be made using whole genome sequencing (WGS) to facilitate identification of pathogenic variants in known genes as well as novel PCD candidate genes. METHODS WGS was used to screen for pathogenic variants in eight patients with PCD. RESULTS 7/8 cases had homozygous or biallelic variants in DNAH5, DNAAF4 or DNAH11 classified as pathogenic or likely pathogenic. Three identified variants were deletions, ranging from 3 to 13 kb, for which WGS identified precise breakpoints, permitting confirmation by Sanger sequencing. WGS yielded identification of a de novo variant in a novel PCD gene TUBB4B. CONCLUSION Here, WGS uplifted genetic diagnosis of PCD by identifying structural variants and novel modes of inheritance in new candidate genes. WGS could be an important component of the PCD diagnostic toolkit, increasing molecular diagnostic yield from current (70%) levels, and enhancing our understanding of fundamental biology of motile cilia and variants in the noncoding genome.
Collapse
Affiliation(s)
- Holly A. Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- South East of Scotland Genetics ServiceWestern General HospitalEdinburghUK
| | - Sophie Marion de Proce
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jose L. Campos
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Mihail Halachev
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Robert A. Hirst
- Department of Respiratory Sciences, Centre for PCD Diagnosis and ResearchUniversity of LeicesterLeicesterUK
| | - Chris O'Callaghan
- Department of Respiratory Sciences, Centre for PCD Diagnosis and ResearchUniversity of LeicesterLeicesterUK
| | - Amelia Shoemark
- School of Medicine, Division of Molecular and Clinical MedicineUniversity of DundeeDundeeUK
| | - Daniel Toddie‐Moore
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | | | | - Jennie Murray
- South East of Scotland Genetics ServiceWestern General HospitalEdinburghUK
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kenneth Macleod
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
| | - Don S. Urquhart
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
- Department of Child Life and HealthUniversity of EdinburghEdinburghUK
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
- Department of Child Life and HealthUniversity of EdinburghEdinburghUK
| | - Timothy J. Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Song ZN, Cheng Y, Wang DD, Li MJ, Zhao XR, Li FW, Liu Z, Zhu XR, Jia XD, Wang YF, Liang FF. Whole exome sequencing identifies risk variants associated with intracranial epidermoid cyst deterioration: A case report. World J Clin Oncol 2024; 15:1428-1434. [PMID: 39582614 PMCID: PMC11514425 DOI: 10.5306/wjco.v15.i11.1428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Intracranial epidermoid cyst (IEC) transformation to malignant squamous cell carcinoma (SCC) is extremely rare, and its etiology is yet unknown. Currently, SCC is treated by performing surgery, followed by a combination of radiotherapy and chemotherapy. It is crucial to identify efficient and trustworthy therapeutic targets for SCC to improve its diagnosis, prognosis, and treatment. CASE SUMMARY In this study, we report the case of a 47-year-old female patient with SCC, which progressed from IEC in the left internal capsule region. The patient was sought treatment at our hospital for severe diplopic vision, accompanied with speech disorder and memory loss. Based on the clinical and postoperative pathology, this patient was finally diagnosed with SCC. To identify disease-causing variants, whole exome sequencing (WES) was performed on the proband. WES revealed two pathogenic missense mutations on Gap junction protein beta 2 (GJB2) (c.257C>T) and Toll-like receptor 2 (TLR2) (c.1039A>G), respectively. CONCLUSION This study provided the first clinical evidence for demonstrating the role of GJB2 and TLR2 in IEC development and treatment. We further confirmed WES as a robust and reliable technique for underlying rare and complex disease-related genetic factor identification.
Collapse
Affiliation(s)
- Zhao-Na Song
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Yan Cheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Dan-Dan Wang
- Harbin Genars Technology Co., Ltd., Harbin 150060, Heilongjiang Province, China
| | - Ming-Jun Li
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Xiang-Rong Zhao
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Fa-Wang Li
- Department of Medical laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253600, Shandong Province, China
| | - Zhen Liu
- Harbin Genars Technology Co., Ltd., Harbin 150060, Heilongjiang Province, China
| | - Xiao-Ru Zhu
- Harbin Genars Technology Co., Ltd., Harbin 150060, Heilongjiang Province, China
| | - Xiao-Dong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Yu-Fang Wang
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Feng-Fan Liang
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| |
Collapse
|
5
|
Schubert C, Milverton J, Goodall S, Merlin T. A systematic review to assess the utility of genomic autopsy using exome or genome sequencing in cases of congenital anomalies and perinatal death. Genet Med 2024; 26:101159. [PMID: 38704678 DOI: 10.1016/j.gim.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
PURPOSE Exome or genome sequencing (ES or GS) can identify genetic causes of otherwise unexplained congenital anomaly and perinatal death (PND) but is not routine practice. The evidence base for "genomic autopsy" after termination of pregnancy for fetal anomaly (TOPFA) and PND has been synthesized to determine the value of this investigation. METHODS We conducted a systematic review and meta-analysis of studies meeting prespecified inclusion criteria and containing ≥10 cases of TOPFA or PND (with or without major congenital abnormality), in which ES or GS was conducted. We determined test performance, including diagnostic yield, accuracy, and reliability. We also reported outcomes associated with clinical utility and harms, where described. RESULTS From 2245 potentially eligible studies, 32 publications were eligible and had data extracted, representing 2120 cases that could be meta-analyzed. No diagnostic accuracy or comparative studies were identified, although some analysis of concordance between different ES/GS methodologies could be performed. Studies reporting parent-related outcomes or long-term follow-up did not do so in a systematic or quantifiable manner. CONCLUSION Evidence suggests that approximately one-fourth to one-third of fetal losses associated with TOPFA or unexplained PND are associated with a genetic cause identifiable on ES or GS-albeit this estimate varies depending on phenotypic and background risk factors. Despite the large body of evidence on ES and GS, little research has attempted to validate the accuracy of testing, nor measure the clinical or societal outcomes in families that follow the diagnostic investigation in this context.
Collapse
Affiliation(s)
- Camille Schubert
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia.
| | - Joanne Milverton
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Tracy Merlin
- Adelaide Health Technology Assessment (AHTA), School of Public Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Wang Y, Yin F, Chai Y, Jin J, Zhang P, Tan Q, Chen Z. Prenatal diagnosis of fetuses with ultrasound anomalies by whole-exome sequencing in Luoyang city, China. Front Genet 2024; 14:1301439. [PMID: 38318287 PMCID: PMC10838985 DOI: 10.3389/fgene.2023.1301439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Background: There is a great obstacle in prenatal diagnosis of fetal anomalies due to their considerable genetic and clinical heterogeneity. Whole-exome sequencing (WES) has been confirmed as a successful option for genetic diagnosis in pediatrics, but its clinical utility for prenatal diagnosis remains to be limited. Methods: A total of 60 fetuses with abnormal ultrasound findings underwent karyotyping or chromosomal microarray analysis (CMA), and those with negative results were further subjected to WES. The identified variants were classified as pathogenic or likely pathogenic (P/LP) and the variant of uncertain significance (VUS). Pregnancy outcomes were obtained through a telephone follow-up. Results: Twelve (20%, 12/60) fetuses were diagnosed to have chromosomal abnormalities using karyotyping or CMA. Of the remaining 48 cases that underwent WES, P/LP variants were identified in 14 cases (29.2%), giving an additional diagnostic yield of 23.3% (14/60). The most frequently affected organ referred for prenatal WES was the head or neck system (40%), followed by the skeletal system (39.1%). In terms of pathogenic genes, FGFR3 was the most common diagnostic gene in this cohort. For the first time, we discovered five P/LP variants involved in SEC24D, FIG4, CTNNA3, EPG5, and PKD2. In addition, we identified three VUSes that had been reported previously. Outcomes of pregnancy were available for 54 cases, of which 24 cases were terminated. Conclusion: The results confirmed that WES is a powerful tool in prenatal diagnosis, especially for fetuses with ultrasonographic anomalies that cannot be diagnosed using conventional prenatal methods. Additionally, newly identified variants will expand the phenotypic spectrum of monogenic disorders and greatly enrich the prenatal diagnostic database.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Genetics and Prenatal Diagnosis, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Fan Yin
- Puluo (Wuhan) Medical Biotechnology Co., LTD., Wuhan, China
| | - Yuqiong Chai
- Department of Genetics and Prenatal Diagnosis, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Jiapei Jin
- Department of Genetics and Prenatal Diagnosis, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Pai Zhang
- Department of Genetics and Prenatal Diagnosis, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Qianqian Tan
- Puluo (Wuhan) Medical Biotechnology Co., LTD., Wuhan, China
| | - Zhigang Chen
- Puluo (Wuhan) Medical Biotechnology Co., LTD., Wuhan, China
| |
Collapse
|
7
|
Di Girolamo R, Rizzo G, Khalil A, Alameddine S, Lisi G, Liberati M, Novelli A, D'Antonio F. Whole exome sequencing in fetuses with isolated increased nuchal translucency: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2023; 36:2193285. [PMID: 37019452 DOI: 10.1080/14767058.2023.2193285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To estimate the incremental yield of detecting pathogenic or likely pathogenic diagnostic genetic variants (DGV) by whole exome sequencing (WES) over standard karyotype and chromosomal microarray (CMA) analyses in fetuses with isolated increased nuchal translucency (NT) and normal fetal anatomy at the time of 11-14 weeks scan. MATERIALS AND METHODS Medline and Embase databases were searched. Inclusion criteria were fetuses with NT >95th percentile, normal karyotype and CMA and no associated structural anomalies at the time of the 11-14 weeks scan. The primary outcome was to estimate the incremental yield of detecting pathogenic or likely pathogenic genetic variants by WES over standard karyotype and CMA analyses in fetuses with isolated increased nuchal translucency. The secondary outcomes were the detection of a genetic variant of unknown significance. Sub-analysis according to different NT cutoffs (between 3.0 and 5.5 mm and > 5.5 mm) and considering fetuses with isolated NT in which fetal anatomy was confirmed to be normal at the anomaly scan were also performed. Random effects model meta-analyses of proportion were used to analyze the data. RESULTS Eight articles (324 fetuses) were included in the systematic review. Of the fetuses with negative standard karyotype and CMA analysis, the 8.07% (95% CI 5.4-11.3) had pathogenic or likely pathogenic genetic variants detected exclusively by WES. When stratifying the analysis according to NT cutoffs, genetic anomalies detected exclusively at WES analysis were found in 44.70% (95% CI 26.8-63.4) of fetuses with NT between 3.0 mm and 5.5 mm and 55.3% (95% CI 36.6-73.2) in those fetuses with NT >5.5 mm and positive WES results. The 7.84% (95% CI 1.6-18.2) had variants of unknown significance identified by WES. When considering fetuses with isolated increased NT and normal fetal anatomy at the anomaly scan, the rate of pathogenic or likely pathogenic genetic variants detected by WES was 3.87% (95% CI 1.6-7.1), while variants of unknown significance were detected in 4.27% (95% CI 2.2-7.0) of cases. CONCLUSIONS Pathogenic and likely pathogenic genetic variants detected by WES are present in a significant proportion of fetuses with increased NT but normal standard karyotype and CMA analysis, also when no anomalies are detected at the anomaly scan. Further large studies sharing objective protocols of imaging assessment are needed to confirm these findings and to elucidate which gene panels should be assessed in fetuses with isolated increased NT to rule out associated genetic anomalies, which may potentially impact post-natal outcomes.
Collapse
Affiliation(s)
- Raffaella Di Girolamo
- Centre for High-Risk Pregnancy and Fetal Care, Department of Obstetrics and Gynaecology, University of Chieti, Chieti, Italy
| | - Giuseppe Rizzo
- Department of Obstetrics and Gynaecology Fondazione Policlinico Tor Vergata, Università Roma Tor Vergata
| | - Asma Khalil
- Fetal Medicine Unit, Saint George's Hospital, London, United Kingdom
| | - Sara Alameddine
- Centre for High-Risk Pregnancy and Fetal Care, Department of Obstetrics and Gynaecology, University of Chieti, Chieti, Italy
| | - Gabriele Lisi
- Pediatric Surgery Unit, Department of Medicine and Aging Science, University Gabriele D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Centre for High-Risk Pregnancy and Fetal Care, Department of Obstetrics and Gynaecology, University of Chieti, Chieti, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco D'Antonio
- Centre for High-Risk Pregnancy and Fetal Care, Department of Obstetrics and Gynaecology, University of Chieti, Chieti, Italy
| |
Collapse
|
8
|
Application of Prenatal Whole Exome Sequencing for Structural Congenital Anomalies-Experience from a Local Prenatal Diagnostic Laboratory. Healthcare (Basel) 2022; 10:healthcare10122521. [PMID: 36554045 PMCID: PMC9778831 DOI: 10.3390/healthcare10122521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Fetal structural congenital abnormalities (SCAs) complicate 2-3% of all pregnancies. Whole-exome sequencing (WES) has been increasingly adopted prenatally when karyotyping and chromosomal microarray do not yield a diagnosis. This is a retrospective cohort study of 104 fetuses with SCAs identified on antenatal ultrasound in Hong Kong, where whole exome sequencing is performed. Molecular diagnosis was obtained in 25 of the 104 fetuses (24%). The highest diagnostic rate was found in fetuses with multiple SCAs (29.2%), particularly those with involvement of the cardiac and musculoskeletal systems. Variants of uncertain significance were detected in 8 out of the 104 fetuses (7.7%). Our study shows the utility of WES in the prenatal setting, and the extended use of the technology would be recommended in addition to conventional genetic workup.
Collapse
|
9
|
Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:59-67. [PMID: 35229910 PMCID: PMC9328397 DOI: 10.1002/uog.24885] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Prenatally detected central nervous system (CNS) anomalies present a diagnostic challenge. In this study, we compared the diagnostic yield of exome sequencing (ES) and chromosomal microarray analysis (CMA) in fetuses with a major CNS anomaly. METHODS This was a retrospective study of 114 cases referred for genetic evaluation following termination of pregnancy (TOP) due to a major CNS anomaly detected on prenatal ultrasound. All fetuses were first analyzed by CMA. All CMA-negative cases were offered ES. CMA-positive cases were reanalyzed using ES to assess its ability to detect copy-number variants (CNVs). RESULTS CMA identified a pathogenic or likely pathogenic (P/LP) CNV in 11/114 (10%) cases. Eighty-six CMA-negative cases were analyzed using ES, which detected P/LP sequence variants in 38/86 (44%). Among recurrent cases (i.e. cases with a previously affected pregnancy), the incidence of P/LP sequence variants was non-significantly higher compared with non-recurrent ones (12/19 (63%) vs 26/67 (39%); P = 0.06). Among the 38 cases with an ES diagnosis, 20 (53%) were inherited and carried a significant risk of recurrence. Reanalysis of 10 CMA-positive cases by ES demonstrated that the bioinformatics pipeline used for sequence variant analysis also detected all P/LP CNVs, as well as three previously known non-causative CNVs. CONCLUSIONS In our study, ES provided a high diagnostic yield (> 50%) in fetuses with severe CNS structural anomalies, which may have been partly due to the highly selected case series that included post-TOP cases from a specialist referral center. These data suggest that ES may be considered as a first-tier test for the prenatal diagnosis of major fetal CNS anomalies, detecting both P/LP sequence variants and CNVs. This is of particular importance given the time constraints of an ongoing pregnancy and the risk of recurrence in future pregnancies. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Yaron
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - V. Ofen Glassner
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Mory
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - N. Zunz Henig
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Kurolap
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Bar Shira
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Brabbing Goldstein
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Marom
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - L. Ben Sira
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Radiology DepartmentTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - H. Baris Feldman
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - G. Malinger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - K. Krajden Haratz
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Reches
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
10
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
11
|
Mellis R, Oprych K, Scotchman E, Hill M, Chitty LS. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat Diagn 2022; 42:662-685. [PMID: 35170059 PMCID: PMC9325531 DOI: 10.1002/pd.6115] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022]
Abstract
Objectives We conducted a systematic review and meta‐analysis to determine the diagnostic yield of exome sequencing (ES) for prenatal diagnosis of fetal structural anomalies, where karyotype/chromosomal microarray (CMA) is normal. Methods Following electronic searches of four databases, we included studies with ≥10 structurally abnormal fetuses undergoing ES or whole genome sequencing. The incremental diagnostic yield of ES over CMA/karyotype was calculated and pooled in a meta‐analysis. Sub‐group analyses investigated effects of case selection and fetal phenotype on diagnostic yield. Results We identified 72 reports from 66 studies, representing 4350 fetuses. The pooled incremental yield of ES was 31% (95% confidence interval (CI) 26%–36%, p < 0.0001). Diagnostic yield was significantly higher for cases pre‐selected for likelihood of monogenic aetiology compared to unselected cases (42% vs. 15%, p < 0.0001). Diagnostic yield differed significantly between phenotypic sub‐groups, ranging from 53% (95% CI 42%–63%, p < 0.0001) for isolated skeletal abnormalities, to 2% (95% CI 0%–5%, p = 0.04) for isolated increased nuchal translucency. Conclusion Prenatal ES provides a diagnosis in an additional 31% of structurally abnormal fetuses when CMA/karyotype is non‐diagnostic. The expected diagnostic yield depends on the body system(s) affected and can be optimised by pre‐selection of cases following multi‐disciplinary review to determine that a monogenic cause is likely.
What's already known about this topic?
Prenatal exome sequencing (ES) increases genetic diagnoses in fetuses with structural abnormalities and a normal karyotype and chromosomal microarray. Published diagnostic yields from ES are varied and may be influenced by study size, case selection and fetal phenotype.
What does this study add?
This study provides a comprehensive systematic review of the literature to date and investigates the diagnostic yield of ES for a range of isolated system anomalies, to support clinical decision‐making on how to offer prenatal ES.
Collapse
Affiliation(s)
- Rhiannon Mellis
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Elizabeth Scotchman
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Melissa Hill
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Lyn S Chitty
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
12
|
Pauta M, Martinez-Portilla RJ, Borrell A. Diagnostic yield of next-generation sequencing in fetuses with isolated increased nuchal translucency: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:26-32. [PMID: 34309942 DOI: 10.1002/uog.23746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine the diagnostic yield of exome or genome sequencing (ES/GS) over chromosomal microarray analysis (CMA) in fetuses with increased nuchal translucency (NT) and no concomitant anomalies. METHODS This systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. PubMed, Scopus and Web of Science were searched for studies describing ES/GS in fetuses with isolated increased NT. Inclusion criteria were: (1) study written in English; (2) more than two fetuses with increased NT > 99th percentile and no concomitant anomalies; and (3) a negative CMA result considered as the reference standard. Only positive variants identified on ES/GS that were classified as likely pathogenic or pathogenic and determined to be causative of the fetal phenotype were considered. Risk was assessed as the pooled effect size by single-proportion analysis using random-effects modeling (weighted by inverse of variance). RESULTS Eleven studies reporting on the diagnostic yield of ES/GS in fetuses with isolated increased NT > 99th percentile were identified and included 309 cases. All studies were high quality according to Standards for Reporting of Diagnostic Accuracy. Overall, a pathogenic or likely pathogenic variant was identified on ES/GS in 15 fetuses, resulting in a pooled incremental yield of 4% (95% CI, 2-6%). Six (40%) of these fetuses had NT of 5 mm or more. The observed inheritance pattern was autosomal dominant in 12 cases, including four fetuses with Noonan syndrome, autosomal recessive in two cases and X-linked in one case. CONCLUSIONS There is a 4% incremental diagnostic yield of ES/GS over CMA in fetuses with increased NT > 99th percentile without a concomitant anomaly. It is unclear whether a NT cut-off higher than 3.5 mm may be more useful in case selection for ES/GS. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Pauta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - R J Martinez-Portilla
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A Borrell
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Centre for Maternal-Fetal and Neonatal Medicine (BCNatal), Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Plantinga M, Zwienenberg L, van Dijk E, Breet H, Diphoorn J, El Mecky J, Bouman K, Verheij J, Birnie E, Ranchor AV, Corsten-Janssen N, van Langen IM. Parental experiences of rapid exome sequencing in cases with major ultrasound anomalies during pregnancy. Prenat Diagn 2021; 42:762-774. [PMID: 34643287 PMCID: PMC9298392 DOI: 10.1002/pd.6056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adding rapid exome sequencing (rES) to conventional genetic tests improves the diagnostic yield of pregnancies showing ultrasound abnormalities but also carries a higher chance of unsolicited findings. We evaluated how rES, including pre- and post-test counseling, was experienced by parents investigating its impact on decision-making and experienced levels of anxiety. METHODS A mixed-methods approach was adopted. Participating couples (n = 46) were asked to fill in two surveys (pre-test and post-test counseling) and 11 couples were approached for an additional interview. RESULTS All couples accepted the rES test-offer with the most important reason for testing emphasizing their hope of finding an underlying diagnosis that would aid decision-making. The actual impact on decision-making was low, however, since most parents decided to terminate the pregnancy based on the major and multiple fetal ultrasound anomalies and did not wait for their rES results. Anxiety was elevated for most participants and decreased over time. CONCLUSION Major congenital anomalies detected on ultrasound seem to have more impact on prenatal parental decision-making and anxiety then the offer and results of rES. However, the impact of rES on reproductive decision-making and experienced anxiety requires further investigation, especially in pregnancies where less (severe) fetal anomalies are detected on ultrasound.
Collapse
Affiliation(s)
- Mirjam Plantinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lauren Zwienenberg
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva van Dijk
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanna Breet
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janouk Diphoorn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Julia El Mecky
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Katelijne Bouman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joke Verheij
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erwin Birnie
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adelita V Ranchor
- Department of Health Psychology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicole Corsten-Janssen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene M van Langen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Qiao F, Wang Y, Zhang C, Zhou R, Wu Y, Wang C, Meng L, Mao P, Cheng Q, Luo C, Hu P, Xu Z. Comprehensive evaluation of genetic variants using chromosomal microarray analysis and exome sequencing in fetuses with congenital heart defect. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:377-387. [PMID: 33142350 DOI: 10.1002/uog.23532] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To evaluate comprehensively, using chromosomal microarray analysis (CMA) and exome sequencing (ES), the prevalence of chromosomal abnormalities and sequence variants in unselected fetuses with congenital heart defect (CHD) and to evaluate the potential diagnostic yields of CMA and ES for different CHD subgroups. METHODS This was a study of 360 unselected singleton fetuses with CHD detected by echocardiography, referred to our department for genetic testing between February 2018 and December 2019. We performed CMA, as a routine test for aneuploidy and copy number variations (CNV), and then, in cases without aneuploidy or pathogenic CNV on CMA, we performed ES. RESULTS Overall, positive genetic diagnoses were made in 84 (23.3%) fetuses: chromosomal abnormalities were detected by CMA in 60 (16.7%) and sequence variants were detected by ES in a further 24 (6.7%) cases. The detection rate of pathogenic and likely pathogenic genetic variants in fetuses with non-isolated CHD (32/83, 38.6%) was significantly higher than that in fetuses with isolated CHD (52/277, 18.8%) (P < 0.001), this difference being due mainly to the difference in frequency of aneuploidy between the two groups. The prevalence of a genetic defect was highest in fetuses with an atrioventricular septal defect (36.8%), ventricular septal defect with or without atrial septal defect (28.4%), conotruncal defect (22.2%) or right ventricular outflow tract obstruction (20.0%). We also identified two novel missense mutations (c.2447G>C, p.Arg816Pro; c.1171C>T, p.Arg391Cys) and a new phenotype caused by variants in PLD1. CONCLUSIONS Chromosomal abnormalities were identified in 16.7% and sequence variants in a further 6.7% of fetuses with CHD. ES should be offered to all pregnant women with a CHD fetus without chromosomal abnormality or pathogenic CNV identified by CMA, regardless of whether the CHD is isolated. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- F Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Y Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - C Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - R Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Y Wu
- Department of Ultrasound, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - C Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - L Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - P Mao
- Personnel Division, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Q Cheng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - C Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - P Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Z Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The current review seeks to provide a comprehensive update on the revolutionary technology of whole exome sequencing (WES) which has been used to interrogate abnormal foetal phenotypes since the last few years, and is changing the paradigms of prenatal diagnosis, facilitating accurate genetic diagnosis and optimal management of pregnancies affected with foetal abnormalities, as well enabling delineation of novel Mendelian disorders. RECENT FINDINGS WES has contributed to identification of more than 1000 Mendelian genes and made rapid strides into clinical diagnostics in recent years. Diagnostic yield of WES in postnatal cohorts has ranged from 25 to 50%, and this test is now a first tier investigation for various clinical presentations. Various abnormal perinatal phenotypes have also been investigated using WES since 2014, with diagnostic yields ranging from 8.5 to 80%. Studies in foetal phenotypes have been challenging and guidelines in this cohort are still evolving. SUMMARY WES has proven to be a disrupting technology, enabling genetic diagnosis for pregnancies complicated by previously unexplained foetal abnormalities, and revealing a significant contribution of single gene disorders in these, thereby changing clinical diagnostic paradigms. The application of this technology in perinatal cohorts is also providing interesting insights into single gene defects presenting as previously unknown genetic syndromes, hence contributing to expansion of Mendelian genetics to encompass various foetal phenotypes.
Collapse
|
16
|
Guadagnolo D, Mastromoro G, Di Palma F, Pizzuti A, Marchionni E. Prenatal Exome Sequencing: Background, Current Practice and Future Perspectives-A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11020224. [PMID: 33540854 PMCID: PMC7913004 DOI: 10.3390/diagnostics11020224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
The introduction of Next Generation Sequencing (NGS) technologies has exerted a significant impact on prenatal diagnosis. Prenatal Exome Sequencing (pES) is performed with increasing frequency in fetuses with structural anomalies and negative chromosomal analysis. The actual diagnostic value varies extensively, and the role of incidental/secondary or inconclusive findings and negative results has not been fully ascertained. We performed a systematic literature review to evaluate the diagnostic yield, as well as inconclusive and negative-result rates of pES. Papers were divided in two groups. The former includes fetuses presenting structural anomalies, regardless the involved organ; the latter focuses on specific class anomalies. Available findings on non-informative or negative results were gathered as well. In the first group, the weighted average diagnostic yield resulted 19%, and inconclusive finding rate 12%. In the second group, the percentages were extremely variable due to differences in sample sizes and inclusion criteria, which constitute major determinants of pES efficiency. Diagnostic pES availability and its application have a pivotal role in prenatal diagnosis, though more homogeneity in access criteria and a consensus on clinical management of controversial information management is envisageable to reach widespread use in the near future.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
| | - Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
| | - Francesca Di Palma
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
- Clinical Genomics Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
- Correspondence:
| |
Collapse
|
17
|
Mone F, Eberhardt RY, Morris RK, Hurles ME, McMullan DJ, Maher ER, Lord J, Chitty LS, Giordano JL, Wapner RJ, Kilby MD. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:43-51. [PMID: 32388881 DOI: 10.1002/uog.22072] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To determine the incremental yield of antenatal exome sequencing (ES) over chromosomal microarray analysis (CMA) or conventional karyotyping in prenatally diagnosed congenital heart disease (CHD). METHODS A prospective cohort study of 197 trios undergoing ES following CMA or karyotyping owing to CHD identified prenatally and a systematic review of the literature were performed. MEDLINE, EMBASE, CINAHL and ClinicalTrials.gov (January 2000 to October 2019) databases were searched electronically for studies reporting on the diagnostic yield of ES in prenatally diagnosed CHD. Selected studies included those with more than three cases, with initiation of testing based upon prenatal phenotype only and that included cases in which CMA or karyotyping was negative. The incremental diagnostic yield of ES was assessed in: (1) all cases of CHD; (2) isolated CHD; (3) CHD associated with extracardiac anomaly (ECA); and (4) CHD according to phenotypic subgroup. RESULTS In our cohort, ES had an additional diagnostic yield in all CHD, isolated CHD and CHD associated with ECA of 12.7% (25/197), 11.5% (14/122) and 14.7% (11/75), respectively (P = 0.81). The corresponding pooled incremental yields from 18 studies (encompassing 636 CHD cases) included in the systematic review were 21% (95% CI, 15-27%), 11% (95% CI, 7-15%) and 37% (95% CI, 18-56%), respectively. The results did not differ significantly when subanalysis was limited to studies including more than 20 cases, except for CHD associated with ECA, in which the incremental yield was greater (49% (95% CI, 17-80%)). In cases of CHD associated with ECA in the primary analysis, the most common extracardiac anomalies associated with a pathogenic variant were those affecting the genitourinary system (23/52 (44.2%)). The greatest incremental yield was in cardiac shunt lesions (41% (95% CI, 19-63%)), followed by right-sided lesions (26% (95% CI, 9-43%)). In the majority (68/96 (70.8%)) of instances, pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease genes. The most common (19/96 (19.8%)) monogenic syndrome identified was Kabuki syndrome. CONCLUSIONS There is an apparent incremental yield of prenatal ES in CHD. While the greatest yield is in CHD associated with ECA, consideration could also be given to performing ES in the presence of an isolated cardiac abnormality. A policy of routine application of ES would require the adoption of robust bioinformatic, clinical and ethical pathways. Copyright © 2020 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- F Mone
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - R K Morris
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - D J McMullan
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - E R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - J Lord
- Wellcome Sanger Institute, Hinxton, UK
| | - L S Chitty
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health, London, UK
| | - J L Giordano
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos Medical Center, New York, NY, USA
| | - R J Wapner
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos Medical Center, New York, NY, USA
| | - M D Kilby
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
18
|
Pratt M, Garritty C, Thuku M, Esmaeilisaraji L, Hamel C, Hartley T, Millar K, Skidmore B, Dougan S, Armour CM. Application of exome sequencing for prenatal diagnosis: a rapid scoping review. Genet Med 2020; 22:1925-1934. [PMID: 32747765 DOI: 10.1038/s41436-020-0918-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
Genetic diagnosis provides important information for prenatal decision-making and management. Promising results from exome sequencing (ES) for genetic diagnosis in fetuses with structural anomalies are emerging. The objective of this scoping review was to identify what is known about the use of ES for genetic testing in prenatal cases with known or suspected genetic disease. A rapid scoping review was conducted over a six-week timeframe of English-language peer-reviewed studies. Search strategies for major databases (e.g., Medline) and gray literature were developed, and peer reviewed by information specialists. Identified studies were categorized and charted using tables and diagrams. Twenty-four publications were included from seven countries published between 2014 and 2019. Most commonly reported outcomes were diagnostic yields, which varied widely from 5% to 57%, and prenatal phenotype. Few studies reported clinical outcomes related to impact, decision-making, and clinical utility. Qualitative studies (n = 6) provided useful insights into patient and health-care provider experiences with ES. Findings suggest prenatal ES is beneficial, but more research is needed to better understand the clinical utility, circumstances for ideal use, feasibility, and costs of offering rapid ES as a routine option for prenatal genetic testing.
Collapse
Affiliation(s)
- Misty Pratt
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| | - Chantelle Garritty
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Micere Thuku
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Leila Esmaeilisaraji
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Candyce Hamel
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Kathryn Millar
- Better Outcomes Registry Network (BORN) Ontario, Ottawa, ON, Canada
| | | | - Shelley Dougan
- Better Outcomes Registry Network (BORN) Ontario, Ottawa, ON, Canada
| | - Christine M Armour
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Better Outcomes Registry Network (BORN) Ontario, Ottawa, ON, Canada
- Regional Genetics Unit, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
19
|
Ryu CS, Bae J, Kim IJ, Kim J, Oh SH, Kim OJ, Kim NK. MPG and NPRL3 Polymorphisms are Associated with Ischemic Stroke Susceptibility and Post-Stroke Mortality. Diagnostics (Basel) 2020; 10:diagnostics10110947. [PMID: 33202874 PMCID: PMC7696846 DOI: 10.3390/diagnostics10110947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is a complicated disease which is affected by environmental factors and genetic factors. In this field, various studies using whole-exome sequencing (WES) have focused on novel and linkage variants in diverse diseases. Thus, we have investigated the various novel variants, which focused on their linkages to each other, in ischemic stroke. Specifically, we analyzed the N-methylpurine DNA glycosylase (MPG) gene, which plays an initiating role in DNA repair, and the nitrogen permease regulator-like 3 (NPRL3) gene, which is involved in regulating the mammalian target of rapamycin pathway. We took blood samples of 519 ischemic stroke patients and 417 controls. Genetic polymorphisms were detected by polymerase chain reaction (PCR), real-time PCR, and restriction fragment length polymorphism (RFLP) analysis. We found that two NPRL3 polymorphisms (rs2541618 C>T and rs75187722 G>A), as well as the MPG rs2562162 C>T polymorphism, were significantly associated with ischemic stroke. In Cox proportional hazard regression models, the MPG rs2562162 was associated with the survival of small-vessel disease patients in ischemic stroke. Our study showed that NPRL3 and MPG polymorphisms are associated with ischemic stroke prevalence and ischemic stroke survival. Taken together, these findings suggest that NPRL3 and MPG genotypes may be useful clinical biomarkers for ischemic stroke development and prognosis.
Collapse
Affiliation(s)
- Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea;
| | - Jinkun Bae
- Department of Emergency Medicine, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea;
| | - In Jai Kim
- Department of Internal Medicine, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea;
| | - Jinkwon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea; (J.K.); (S.H.O.)
| | - Seung Hun Oh
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea; (J.K.); (S.H.O.)
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Korea; (J.K.); (S.H.O.)
- Correspondence: (O.J.K.); (N.K.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea;
- Correspondence: (O.J.K.); (N.K.K.)
| |
Collapse
|
20
|
Seto MTY, Bertoli-Avella AM, Cheung KW, Chan KYK, Yeung KS, Fung JLF, Beetz C, Bauer P, Luk HM, Lo IFM, Lee CP, Chung BHY, Kan ASY. Prenatal and postnatal diagnosis of Schuurs-Hoeijmakers syndrome: Case series and review of the literature. Am J Med Genet A 2020; 185:384-389. [PMID: 33166031 DOI: 10.1002/ajmg.a.61964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Schuurs-Hoeijmakers syndrome (SHS) is a rare syndrome involving a de novo variant in the PACS1 gene on chromosome 11q13. There are 36 individuals published in the literature so far, mostly diagnosed postnatally (34/36) after recognizing the typical facial features co-occurring with developmental delay, intellectual disability, and multiple malformations. Herein, we present one prenatal and 15 postnatal cases with the recurrent heterozygous pathogenic variant NM_018026.3:c.607C>T p.(Arg203Trp) in the PACS1 gene detected by exome sequencing. These 16 cases were identified by mining Centogene and the Hong Kong clinical genetic service databases. Collectively, the 49 postnatally diagnosed individuals present with typical facial features and developmental delay, while the three prenatally diagnosed individuals present with multiple congenital anomalies. In the current study, the use of exome sequencing as an unbiased diagnostic tool aided the diagnosis of SHS (pre- and postnatally). The identification of additional cases with SHS add to the current understanding of the clinical phenotype associated with pathogenic PACS1 variants. Databases combining clinical and genetic information are helpful for the study of rare diseases.
Collapse
Affiliation(s)
- Mimi Tin-Yan Seto
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Ka Wang Cheung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kelvin Yuen-Kwong Chan
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Sai Ying Pun, Hong Kong
| | - Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jasmine Lee-Fong Fung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Ho Ming Luk
- Department of Health, Clinical Genetic Service, Kowloon Bay, Hong Kong
| | - Ivan Fai-Man Lo
- Department of Health, Clinical Genetic Service, Kowloon Bay, Hong Kong
| | - Chin Peng Lee
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Brian Hon-Yin Chung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Anita Sik-Yau Kan
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Sai Ying Pun, Hong Kong
| |
Collapse
|
21
|
Lefebvre M, Bruel AL, Tisserant E, Bourgon N, Duffourd Y, Collardeau-Frachon S, Attie-Bitach T, Kuentz P, Assoum M, Schaefer E, El Chehadeh S, Antal MC, Kremer V, Girard-Lemaitre F, Mandel JL, Lehalle D, Nambot S, Jean-Marçais N, Houcinat N, Moutton S, Marle N, Lambert L, Jonveaux P, Foliguet B, Mazutti JP, Gaillard D, Alanio E, Poirisier C, Lebre AS, Aubert-Lenoir M, Arbez-Gindre F, Odent S, Quélin C, Loget P, Fradin M, Willems M, Bigi N, Perez MJ, Blesson S, Francannet C, Beaufrere AM, Patrier-Sallebert S, Guerrot AM, Goldenberg A, Brehin AC, Lespinasse J, Touraine R, Capri Y, Saint-Frison MH, Laurent N, Philippe C, Tran Mau-Them F, Thevenon J, Faivre L, Thauvin-Robinet C, Vitobello A. Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype correlations. J Med Genet 2020; 58:400-413. [PMID: 32732226 DOI: 10.1136/jmedgenet-2020-106867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 11/03/2022]
Abstract
PURPOSE Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.
Collapse
Affiliation(s)
- Mathilde Lefebvre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Laboratoire d'Anatomo-Pathologie, Plateforme de Biologie Hospitalo-Universitaire, CHU de Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Emilie Tisserant
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Nicolas Bourgon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Yannis Duffourd
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | | | - Tania Attie-Bitach
- Laboratoire d'Embryologie et de Génétique des Malformations Congénitales, Hopital Necker, APHP, Paris Cedex 15, France
| | - Paul Kuentz
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Mirna Assoum
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France
| | - Elise Schaefer
- Service de Génétique Médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Salima El Chehadeh
- Service de Génétique Médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Maria Cristina Antal
- Service de Fœtopathologie, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Valérie Kremer
- Laboratoire de Cytogénétique constitutionnelle et prénatale, CHU de Strasbourg, Strasbourg, France
| | - Françoise Girard-Lemaitre
- Département Médecine translationnelle et neurogénétique, Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg, France
| | - Jean-Louis Mandel
- Département Médecine translationnelle et neurogénétique, Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg, France
| | - Daphne Lehalle
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Nolwenn Jean-Marçais
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Nada Houcinat
- Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sébastien Moutton
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique chromosomique et moléculaire, CHU de Dijon Bourgogne, Dijon, France
| | - Laetita Lambert
- UF de Génétique médicale, Maternité régionale, CHU de Nancy, Nancy, France
| | | | - Bernard Foliguet
- Laboratoire de Biologie de la Reproduction et du Développement Maternité de Nancy, CHU de Nancy, Nancy, France
| | - Jean-Pierre Mazutti
- Laboratoire de Biologie de la Reproduction et du Développement Maternité de Nancy, CHU de Nancy, Nancy, France
| | | | | | | | - Anne-Sophie Lebre
- Service de Génétique et Biologie de la Reproduction, CHU de Reims, Reims, France
| | | | | | - Sylvie Odent
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, CNRS UMR6290 Génétique et Pathologies du Développement, Université de Rennes, Rennes, France
| | - Chloé Quélin
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, CNRS UMR6290 Génétique et Pathologies du Développement, Université de Rennes, Rennes, France.,Service de Fœtopathologie, CHU de Rennes, Rennes, France
| | - Philippe Loget
- Service de Fœtopathologie, CHU de Rennes, Rennes, France
| | - Melanie Fradin
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, CNRS UMR6290 Génétique et Pathologies du Développement, Université de Rennes, Rennes, France
| | - Marjolaine Willems
- Equipe Maladies Génétiques de l'Enfant et de l'Adulte, CHU de Montpellier, Montpellier, France
| | - Nicole Bigi
- Service de Fœtopathologie, CHU de Montpellier, Montpellier, France
| | - Marie-José Perez
- Service de Fœtopathologie, CHU de Montpellier, Montpellier, France
| | | | - Christine Francannet
- Service de Génétique médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | | | | | | | | - Renaud Touraine
- Service de Genetique Clinique, C.H.U. De Saint Etienne-Hopital Nord, Saint Etienne Cedex 2, France
| | - Yline Capri
- Service de génétique clinique, Hôpital Robert Debré - APHP, Paris, France
| | | | - Nicole Laurent
- Laboratoire d'Anatomo-Pathologie, Plateforme de Biologie Hospitalo-Universitaire, CHU de Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Julien Thevenon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Département de Génétique et Procréation, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France .,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital D'Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France .,Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
22
|
Corsten-Janssen N, Bouman K, Diphoorn JCD, Scheper AJ, Kinds R, El Mecky J, Breet H, Verheij JBGM, Suijkerbuijk R, Duin LK, Manten GTR, van Langen IM, Sijmons RH, Sikkema-Raddatz B, Westers H, van Diemen CC. A prospective study on rapid exome sequencing as a diagnostic test for multiple congenital anomalies on fetal ultrasound. Prenat Diagn 2020; 40:1300-1309. [PMID: 32627857 PMCID: PMC7540374 DOI: 10.1002/pd.5781] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Objective Conventional genetic tests (quantitative fluorescent‐PCR [QF‐PCR] and single nucleotide polymorphism‐array) only diagnose ~40% of fetuses showing ultrasound abnormalities. Rapid exome sequencing (rES) may improve this diagnostic yield, but includes challenges such as uncertainties in fetal phenotyping, variant interpretation, incidental unsolicited findings, and rapid turnaround times. In this study, we implemented rES in prenatal care to increase diagnostic yield. Methods We prospectively studied 55 fetuses. Inclusion criteria were: (a) two or more independent major fetal anomalies, (b) hydrops fetalis or bilateral renal cysts alone, or (c) one major fetal anomaly and a first‐degree relative with the same anomaly. In addition to conventional genetic tests, we performed trio rES analysis using a custom virtual gene panel of ~3850 Online Mendelian Inheritance in Man (OMIM) genes. Results We established a genetic rES‐based diagnosis in 8 out of 23 fetuses (35%) without QF‐PCR or array abnormalities. Diagnoses included MIRAGE (SAMD9), Zellweger (PEX1), Walker‐Warburg (POMGNT1), Noonan (PTNP11), Kabuki (KMT2D), and CHARGE (CHD7) syndrome and two cases of Osteogenesis Imperfecta type 2 (COL1A1). In six cases, rES diagnosis aided perinatal management. The median turnaround time was 14 (range 8‐20) days. Conclusion Implementing rES as a routine test in the prenatal setting is challenging but technically feasible, with a promising diagnostic yield and significant clinical relevance.
Collapse
Affiliation(s)
- Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katelijne Bouman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janouk C D Diphoorn
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjen J Scheper
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Kinds
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Julia El Mecky
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Clinical Ethics and Law, University of Southampton, Southampton, UK
| | - Hanna Breet
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joke B G M Verheij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron Suijkerbuijk
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leonie K Duin
- Department of Obstetrics, Gynecology and Prenatal Diagnosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Irene M van Langen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rolf H Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Muys J, Jacquemyn Y, Blaumeiser B, Bourlard L, Brison N, Bulk S, Chiarappa P, De Leener A, De Rademaeker M, Désir J, Destrée A, Devriendt K, Dheedene A, Duquenne A, Fieuw A, Fransen E, Gatot J, Jamar M, Janssens S, Kerstjens J, Keymolen K, Lederer D, Menten B, Pichon B, Rombout S, Sznajer Y, Van Den Bogaert A, Van Den Bogaert K, Vermeesch J, Janssens K. Prenatally detected copy number variants in a national cohort: A postnatal follow‐up study. Prenat Diagn 2020; 40:1272-1283. [DOI: 10.1002/pd.5751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Joke Muys
- Department of Gynaecology University Hospital Antwerp Edegem Belgium
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| | - Yves Jacquemyn
- Department of Gynaecology University Hospital Antwerp Edegem Belgium
- ASTARC and Global Health Institute Universiteit Antwerpen Antwerpen Belgium
| | - Bettina Blaumeiser
- Department of Gynaecology University Hospital Antwerp Edegem Belgium
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| | - Laura Bourlard
- Center for Medical Genetics Université Libre de Bruxelles Bruxelles Belgium
| | - Nathalie Brison
- Center for Medical Genetics Katholieke Universiteit Leuven Leuven Belgium
| | - Saskia Bulk
- Center for Medical Genetics Centre Hospitalier Universitaire de Liège Liege Belgium
| | - Patrizia Chiarappa
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Anne De Leener
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - Julie Désir
- Center for Medical Genetics Université Libre de Bruxelles Bruxelles Belgium
| | - Anne Destrée
- Center for Medical Genetics Institut de Pathologie et de Génétique Gosselies Gosselies Belgium
| | - Koenraad Devriendt
- Center for Medical Genetics Katholieke Universiteit Leuven Leuven Belgium
| | | | - Armelle Duquenne
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Annelies Fieuw
- Center for Medical Genetics Vrije Universiteit Brussel Brussel Belgium
| | - Erik Fransen
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| | - Jean‐Stéphane Gatot
- Center for Medical Genetics Centre Hospitalier Universitaire de Liège Liege Belgium
| | - Mauricette Jamar
- Center for Medical Genetics Centre Hospitalier Universitaire de Liège Liege Belgium
| | | | - Jorien Kerstjens
- Faculty for Medical Sciences Rijksuniversteit Groningen Groningen The Netherlands
| | | | - Damien Lederer
- Center for Medical Genetics Institut de Pathologie et de Génétique Gosselies Gosselies Belgium
| | - Björn Menten
- Center for Medical Genetics Universiteit Gent Gent Belgium
| | - Bruno Pichon
- Center for Medical Genetics Université Libre de Bruxelles Bruxelles Belgium
| | - Sonia Rombout
- Center for Medical Genetics Institut de Pathologie et de Génétique Gosselies Gosselies Belgium
| | - Yves Sznajer
- Center for Medical Genetics Université Catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | | | - Joris Vermeesch
- Center for Medical Genetics Katholieke Universiteit Leuven Leuven Belgium
| | - Katrien Janssens
- Center for Medical Genetics, Universiteit Antwerpen Antwerpen Belgium
| |
Collapse
|
24
|
Chen M, Chen J, Wang C, Chen F, Xie Y, Li Y, Li N, Wang J, Zhang VW, Chen D. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. Eur J Obstet Gynecol Reprod Biol 2020; 251:119-124. [PMID: 32502767 DOI: 10.1016/j.ejogrb.2020.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate the clinical application of medical exome sequencing (MES) for prenatal diagnosis of genetic diseases related to fetal structural anomalies detected by prenatal ultrasound examination. STUDY DESIGN A total of 105 fetuses with structural anomalies were negative results in both Quantitative fluorescent polymerase chain reaction (QF-PCR) and chromosomal microarray analysis (CMA). Then trio-based MES was further used for identifying the potential monogenic diseases in these fetuses. Coding regions and known pathogenic non-coding regions of over 4000 disease-related genes were interrogated, and variants were classified following the guidelines of American College of Medical Genetics (ACMG). RESULTS The 105 fetuses with structural anomalies were categorized into 12 phenotypic groups. A definitive diagnosis was achieved in 19% (20/105) of the cases, with the identification of 21 pathogenic or likely pathogenic variants in 14 genes. The proportion of patients with diagnostic genetic variants varied between the phenotypic groups, with the highest diagnostic yield in the cardiovascular abnormalities (44%), followed by the skeletal and limb abnormalities (38%) and brain structural abnormalities (25%). In addition, 12 fetuses were detected variants of unknown significance (VOUS), while the relevance of phenotypes and variants would further evaluated. CONCLUSION MES can identify the underlying genetic cause in fetal structural anomalies. It can further assist the management of pregnancy and genetic counseling. It was demonstrated the importance of translating prenatal MES into clinical practice.
Collapse
Affiliation(s)
- Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes.
| | - Jingsi Chen
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes
| | - Chunli Wang
- AmCare Genomics Laboratory, Guangzhou, 510300, Guangdong, China
| | - Fei Chen
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes
| | - Yinong Xie
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes
| | - Yufan Li
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes
| | - Nan Li
- Department of Fetal Medicine and Prenatal Diagnosis, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes
| | - Jing Wang
- AmCare Genomics Laboratory, Guangzhou, 510300, Guangdong, China
| | - Victor Wei Zhang
- AmCare Genomics Laboratory, Guangzhou, 510300, Guangdong, China; Baylor College of Medicine, Department of Human and Molecular Genetics, Houston, USA
| | - Dunjin Chen
- Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China; Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes
| |
Collapse
|
25
|
Tang J, Zhou C, Shi H, Mo Y, Tan W, Sun T, Zhu J, Li Q, Li H, Li Y, Wang S, Hong Y, Li N, Zeng Q, Tan J, Ma W, Luo L. Prenatal diagnosis of skeletal dysplasias using whole exome sequencing in China. Clin Chim Acta 2020; 507:187-193. [PMID: 32360156 DOI: 10.1016/j.cca.2020.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skeletal dysplasias account for nearly 10% of fetal structural malformations detected by ultrasonography. This clinically heterogeneous group of genetic anomaly includes at least 461 genetic skeletal disorders with extreme clinical, phenotypic, and genetic heterogeneities, thus, significantly complicates accurate diagnosis. Researches have used whole exome sequencing (WES) for prenatal molecular diagnoses of skeletal dysplasias, however, data are still limited. METHODS DNA extracted from umbilical cord blood or amniocytes from fetuses suspected of skeletal dysplasias based on ultrasound evaluations were analyzed by WES. Blood samples were taken from the parents of the positive fetuses for co-segregation analysis using Sanger sequencing. RESULT Definitive molecular diagnosis was made in 6/8 (75%) cases, comprised of 5 de novo disease-causing changes in 3 genes (FGFR3, COL2A1, and COL1A2) and one proband with a biallelic deficiency for Lamin B Receptor(LBR),and including 3 novel variants. All fetuses had no detectable copy number variation (CNV) from sequencing results. CONCLUSIONS Our study suggests that WES is an efficient approach for prenatal diagnosis of fetuses suspected of skeletal abnormalities and contributes to parental genetics counseling and pregnancy management.
Collapse
Affiliation(s)
- Jia Tang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China; Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510080, China.
| | - Chenglong Zhou
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China; Halo Genetics, Guangzhou, Guangdong 510000, China
| | - Haihong Shi
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China; Halo Genetics, Guangzhou, Guangdong 510000, China
| | - Yuying Mo
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Weilan Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Tielan Sun
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Jinling Zhu
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Qing Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Hui Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Yuping Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Songbai Wang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Yan Hong
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Ning Li
- Halo Genetics, Guangzhou, Guangdong 510000, China
| | - Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Jieliang Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Wei Ma
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
26
|
Bever YV, Brüggenwirth HT, Wolffenbuttel KP, Dessens AB, Groenenberg IAL, Knapen MFCM, De Baere E, Cools M, van Ravenswaaij-Arts CMA, Sikkema-Raddatz B, Claahsen-van der Grinten H, Kempers M, Rinne T, Hersmus R, Looijenga L, Hannema SE. Under-reported aspects of diagnosis and treatment addressed in the Dutch-Flemish guideline for comprehensive diagnostics in disorders/differences of sex development. J Med Genet 2020; 57:581-589. [PMID: 32303604 PMCID: PMC7476274 DOI: 10.1136/jmedgenet-2019-106354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/02/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
We present key points from the updated Dutch-Flemish guideline on comprehensive diagnostics in disorders/differences of sex development (DSD) that have not been widely addressed in the current (inter)national literature. These points are of interest to physicians working in DSD (expert) centres and to professionals who come across persons with a DSD but have no (or limited) experience in this area. The Dutch-Flemish guideline is based on internationally accepted principles. Recent initiatives striving for uniform high-quality care across Europe, and beyond, such as the completed COST action 1303 and the European Reference Network for rare endocrine conditions (EndoERN), have generated several excellent papers covering nearly all aspects of DSD. The Dutch-Flemish guideline follows these international consensus papers and covers a number of other topics relevant to daily practice. For instance, although next-generation sequencing (NGS)-based molecular diagnostics are becoming the gold standard for genetic evaluation, it can be difficult to prove variant causality or relate the genotype to the clinical presentation. Network formation and centralisation are essential to promote functional studies that assess the effects of genetic variants and to the correct histological assessment of gonadal material from DSD patients, as well as allowing for maximisation of expertise and possible cost reductions. The Dutch-Flemish guidelines uniquely address three aspects of DSD. First, we propose an algorithm for counselling and diagnostic evaluation when a DSD is suspected prenatally, a clinical situation that is becoming more common. Referral to ultrasound sonographers and obstetricians who are part of a DSD team is increasingly important here. Second, we pay special attention to healthcare professionals not working within a DSD centre as they are often the first to diagnose or suspect a DSD, but are not regularly exposed to DSDs and may have limited experience. Their thoughtful communication to patients, carers and colleagues, and the accessibility of protocols for first-line management and efficient referral are essential. Careful communication in the prenatal to neonatal period and the adolescent to adult transition are equally important and relatively under-reported in the literature. Third, we discuss the timing of (NGS-based) molecular diagnostics in the initial workup of new patients and in people with a diagnosis made solely on clinical grounds or those who had earlier genetic testing that is not compatible with current state-of-the-art diagnostics.
Collapse
Affiliation(s)
- Yolande van Bever
- Department of Clinical Genetics and DSD Expert Center Erasmus Medical Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hennie T Brüggenwirth
- Department of Clinical Genetics and DSD Expert Center Erasmus Medical Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Katja P Wolffenbuttel
- Department of Pediatric Urology and DSD Expert Center Erasmus Medical Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arianne B Dessens
- Department of Child and Adolescent Psychiatry and DSD Expert Center Erasmus Medical Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Irene A L Groenenberg
- Department of Obstetrics and Prenatal Medicine and DSD Expert Center Erasmus Medical Center, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- Department of Obstetrics and Prenatal Medicine and DSD Expert Center Erasmus Medical Center, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Elfride De Baere
- Center for Medical Genetics, University Hospital Ghent Center Medical Genetics, Ghent, Belgium
| | - Martine Cools
- Department of Internal Medicine and Paediatrics and Department of Pediatric Endocrinology, University Hospital Ghent, Ghent, Belgium
| | | | - Birgit Sikkema-Raddatz
- Department of Genetics and DSD team, University Medical Center Groningen, Groningen, The Netherlands
| | - Hedi Claahsen-van der Grinten
- Department of Pediatric Endocrinology and DSD Expert Center Radboud UMC, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Marlies Kempers
- Department of Clinical genetics and DSD Expert Center Radboud UMC, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Clinical genetics and DSD Expert Center Radboud UMC, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Remko Hersmus
- Department of Pathology, DSD Expert Center ErasmusMC, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Leendert Looijenga
- Department of Pathology, DSD Expert Center ErasmusMC, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sabine E Hannema
- Department of Pediatric Endocrinology and DSD Expert Center ErasmusMC, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
27
|
Aggarwal S, Vineeth VS, Das Bhowmik A, Tandon A, Kulkarni A, Narayanan DL, Bhattacherjee A, Dalal A. Exome sequencing for perinatal phenotypes: The significance of deep phenotyping. Prenat Diagn 2019; 40:260-273. [PMID: 31742715 DOI: 10.1002/pd.5616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To ascertain the performance of exome sequencing (ES) technology for determining the etiological basis of abnormal perinatal phenotypes and to study the impact of comprehensive phenotyping on variant prioritization. METHODS A carefully selected cohort of 32/204 fetuses with abnormal perinatal phenotypes following postmortem/postnatal deep phenotyping underwent ES to identify a causative variant for the fetal phenotype. A retrospective comparative analysis of the prenatal versus postmortem/postnatal phenotype-based variant prioritization was performed with aid of Phenolyzer software. A review of selected literature reports was done to examine the completeness of phenotypic information for cases in those reports and how it impacted the performance of fetal ES. RESULTS In 18/32 (56%) fetuses, a pathogenic/likely pathogenic variant was identified. This included novel genotype-phenotype associations, expanded prenatal phenotypes of known Mendelian disorders and dual Mendelian diagnoses. The retrospective analysis revealed that the putative diagnostic variant could not be identified on basis of prenatal findings alone in 15/22 (68%) cases, indicating the importance of comprehensive postmortem/postnatal phenotype information. Literature review was supportive of these findings but could not be conclusive due to marked heterogeneity of involved studies. CONCLUSION Comprehensive phenotyping is essential for improving diagnostic performance and facilitating identification of novel genotype-phenotype associations in perinatal cohorts undergoing ES.
Collapse
Affiliation(s)
- Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Aneek Das Bhowmik
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashwani Tandon
- Department of Pathology, All India Institute of Medical Sciences, Bhopal, India
| | | | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Amrita Bhattacherjee
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashwin Dalal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
28
|
Choy KW, Wang H, Shi M, Chen J, Yang Z, Zhang R, Yan H, Wang Y, Chen S, Chau MHK, Cao Y, Chan OYM, Kwok YK, Zhu Y, Chen M, Leung TY, Dong Z. Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis. Front Genet 2019; 10:761. [PMID: 31475041 PMCID: PMC6706460 DOI: 10.3389/fgene.2019.00761] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Increased nuchal translucency (NT) is an important biomarker associated with increased risk of fetal structural anomalies. It is known to be contributed by a wide range of genetic etiologies from single-nucleotide variants to those affecting millions of base pairs. Currently, prenatal diagnosis is routinely performed by karyotyping and chromosomal microarray analysis (CMA); however, both of them have limited resolution. The diversity of the genetic etiologies warrants an integrated assay such as genome sequencing (GS) for comprehensive detection of genomic variants. Herein, we aim to evaluate the feasibility of applying GS in prenatal diagnosis for the fetuses with increased NT. Methods: We retrospectively applied GS (> 30-fold) for fetuses with increased NT (≥3.5 mm) who underwent routine prenatal diagnosis. Detection of single-nucleotide variants, copy number variants, and structural rearrangements was performed simultaneously, and the results were integrated for interpretation in accordance with the guidelines of the American College of Medical Genetics and Genomics. Pathogenic or likely pathogenic (P/LP) variants were selected for validation and parental confirmation, when available. Results: Overall, 50 fetuses were enrolled, including 34 cases with isolated increased NT and 16 cases with other fetal structural malformations. Routine CMA and karyotyping reported eight P/LP CNVs, yielding a diagnostic rate of 16.0% (8/50). In comparison, GS provided a twofold increase in diagnostic yield (32.0%, 16/50), including one mosaic turner syndrome, eight cases with microdeletions/microduplications, and seven cases with P/LP point mutations. Moreover, GS identified two cryptic insertions and two inversions. Follow-up study further demonstrated the potential pathogenicity of an apparently balanced insertion that disrupted an OMIM autosomal dominant disease-causing gene at the insertion site. Conclusions: Our study demonstrates that applying GS in fetuses with increased NT can comprehensively detect and delineate the various genomic variants that are causative to the diseases. Importantly, prenatal diagnosis by GS doubled the diagnostic yield compared with routine protocols. Given a comparable turnaround time and less DNA required, our study provides strong evidence to facilitate GS in prenatal diagnosis, particularly in fetuses with increased NT.
Collapse
Affiliation(s)
- Kwong Wai Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Huilin Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Mengmeng Shi
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Yang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Zhang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Huanchen Yan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Shaoyun Chen
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Olivia Y M Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne K Kwok
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanfang Zhu
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tak Yeung Leung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Zirui Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
de Koning MA, Haak MC, Adama van Scheltema PN, Peeters-Scholte CMPCD, Koopmann TT, Nibbeling EAR, Aten E, den Hollander NS, Ruivenkamp CAL, Hoffer MJV, Santen GWE. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. Genet Med 2019; 21:2303-2310. [PMID: 30918357 DOI: 10.1038/s41436-019-0499-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Exome sequencing (ES) is an efficient tool to diagnose genetic disorders postnatally. Recent studies show that it may have a considerable diagnostic yield in fetuses with structural anomalies on ultrasound. We report on the clinical impact of the implementation of prenatal ES (pES) for ongoing pregnancies in routine care. METHODS We retrospectively analyzed the impact of pES on pregnancy outcome and pre- or perinatal management in the first 22 patients counseled for pES because of one or more structural anomalies on fetal ultrasound. RESULTS In two cases, a diagnosis was made by chromosomal microarray analysis after ES counseling. The remaining 20 cases were divided in three groups: (1) pES to aid parental decision making (n = 12), (2) pES in the context of late pregnancy termination requests (n = 5), and (3) pES to guide pre- or perinatal management (n = 3). pES had a clinical impact in 75% (9/12), 40% (2/5), and 100% (3/3) respectively, showing an overall clinical impact of pES of 70% (14/20). CONCLUSION We show that clinical implementation of pES is feasible and affects parental decision making or pre- and perinatal management supporting further implementation of ES in the prenatal setting.
Collapse
Affiliation(s)
- Maayke A de Koning
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique C Haak
- Department of Obstetrics and Fetal Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | - Tamara T Koopmann
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|