1
|
Wang T, Li D, Deng Y. Case report: Clinicopathological characteristics of SASH1 mutation-related dyschromatosis: a rethinking of the classification of dyschromatosis. Front Genet 2025; 16:1414129. [PMID: 40115815 PMCID: PMC11922891 DOI: 10.3389/fgene.2025.1414129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Dyschromatosis, a group of pigmentary dermatoses, accompany both hyper- and hypo-pigmentation, including dyschromatosis symmetrica hereditaria (DSH), dyschromatosis universalis hereditaria (DUH), and familial progressive hyper- and hypo-pigmentation (FPHH). A peculiar phenotype of dyschromatosis presented as multiple lentigines and hypopigmentation with various sizes and shapes was found to be associated with SASH1 mutations and has recently been reported frequently. The current study evaluated the clinical manifestation, pathological pattern, and genetic basis of dyschromatosis in a five-generation family. This research also presents a case study of a sporadic patient with dyschromatosis caused by SASH1 mutations and shows different clinicopathological characteristics form DSH, DUH and FPHH. SASH1 (SAM and SH3 Domain Containing 1) gene, located on chromosome 6q24.3, encodes a tumor suppressor protein involved in cell signaling, migration, and adhesion. Additionally, the SASH1 mutations could also lead to another pigmentary phenotype: multiple lentigines. High consistency in clinicopathological features and genetic basis in these two SASH1-related pigmentary disorders suggests that SASH1 mutations cause multiple lentigines and dyschromatosis which might belong to a disease spectrum. Overall, it is expected the current study results could help enhance a more comprehensive understanding of SASH1-related pigmentary dermatoses.
Collapse
Affiliation(s)
- Tingmei Wang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhua Deng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Caryotakis G, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 S519N Variant Links Skin Hyperpigmentation and Premature Hair Graying to Dysfunction of Melanocyte Lineage. J Invest Dermatol 2025; 145:144-154.e3. [PMID: 38848986 PMCID: PMC11621233 DOI: 10.1016/j.jid.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024]
Abstract
A better understanding of human melanocyte (MC) and MC stem cell biology is essential for treating MC-related diseases. This study employed an inherited pigmentation disorder carrying the SASH1S519N variant in a Hispanic family to investigate SASH1 function in the MC lineage and the underlying mechanism for this disorder. We used a multidisciplinary approach, including clinical examinations, human cell assays, yeast 2-hybrid screening, and biochemical techniques. Results linked early hair graying to the SASH1S519N variant, a previously unrecognized clinical phenotype in hyperpigmentation disorders. In vitro, we identified SASH1 as a regulator in MC stem cell maintenance and discovered that TNKS2 is crucial for SASH1's role. In addition, the S519N variant is located in one of multiple tankyrase-binding motifs and alters the binding kinetics and affinity of the interaction. In summary, this disorder links both gain and loss of pigmentation in the same individual, hinting to accelerated aging in human MC stem cells. The findings offer insights into the roles of SASH1 and TNKS2 in MC stem cell maintenance and the molecular mechanisms of pigmentation disorders. We propose that a comprehensive clinical evaluation of patients with MC-related disorders should include an assessment and history of hair pigmentation loss.
Collapse
Affiliation(s)
- Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Christopher M Clements
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Theresa R Pacheco
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Samantha X Shellman
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nathaniel B Goldstein
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Stanca Birlea
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Griffin Caryotakis
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Yizhou Wang
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Jillian G VanTreeck
- College of Biological Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Murthy AB, Palaniappan V, Karthikeyan K, Anbarasan V. Dyschromatosis universalis hereditaria. Int J Dermatol 2023; 62:1218-1227. [PMID: 37634201 DOI: 10.1111/ijd.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/29/2023]
Abstract
Reticulate pigmentary dyschromatoses primarily include dyschromatosis universalis hereditaria (DUH), dyschromatosis symmetrica hereditaria (DSH) (Reticulate acropigmentation of Dohi), and unilateral dermatomal pigmentary dermatosis, which differ in their patterns of distribution. The disease was initially described by Ichikawa and Hiraga in Germany in 1933. The prevalence of DUH is 0.3 per 100,000 with a female preponderance. The skin lesions usually appear in infancy or early childhood and cease to progress beyond adolescence. The subtypes DUH 1 and DUH 3 are found to have autosomal dominant inheritance, which is the most common inheritance pattern, while DUH 2 has an autosomal recessive pattern. The most common gene involved in DUH is ABCB6, while the other genes include SASH 1, PER 3, and KITLG (DUH type 2). DUH is characterized by multiple irregular hyperpigmented macules interspersed with hypopigmented macules in a mottled pattern over the trunk and extremities. The face is involved in 50% of individuals. Rarely, it can also involve hairs, nails, mucous membranes, palms, and soles. Other varied presentations include localized forms, localization of lesions to sun-exposed areas, large macules, uniform palmar hypopigmentation, diffuse hyperpigmentation with spotty depigmented macules, and unilateral involvement. DUH has been reported to be associated with various cutaneous and systemic diseases. The authors have observed cases of DUH associated with hepatocellular carcinoma, solitary keratoacanthoma, and dermoid cyst. The various diagnostic modalities include dermoscopy, histopathology, electron microscopy, and targeted gene sequencing. Though various treatment modalities like NBUVB and lasers have been tried, no treatment is promising.
Collapse
Affiliation(s)
- Aravind B Murthy
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, India
| | - Vijayasankar Palaniappan
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, India
| | - Kaliaperumal Karthikeyan
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, India
| | - Varshini Anbarasan
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, India
| |
Collapse
|
4
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 interacts with TNKS2 and promotes human melanocyte stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559624. [PMID: 37808724 PMCID: PMC10557680 DOI: 10.1101/2023.09.26.559624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Both aging spots (hyperpigmentation) and hair graying (lack of pigmentation) are associated with aging, two seemingly opposite pigmentation phenotypes. It is not clear how they are mechanistically connected. This study investigated the underlying mechanism in a family with an inherited pigmentation disorder. Clinical examinations identified accelerated hair graying and skin dyspigmentation (intermixed hyper and hypopigmentation) in the family members carrying the SASH1 S519N variant. Cell assays indicated that SASH1 promoted stem-like characteristics in human melanocytes, and SASH1 S519N was defective in this function. Multiple assays showed that SASH1 binds to tankyrase 2 (TNKS2), which is required for SASH1's promotion of stem-like function. Further, the SASH1 S519N variant is in a bona fide Tankyrase-binding motif, and SASH1 S519N alters the binding kinetics and affinity. Results here indicate SASH1 as a novel protein regulating the appropriate balance between melanocyte stem cells (McSC) and mature melanocytes (MCs), with S519N variant causing defects. We propose that dysfunction of McSC maintenance connects multiple aging-associated pigmentation phenotypes in the general population.
Collapse
|
5
|
Kim JY, Kwon IJ, Lee SE. Two novel mutations in SASH1 identified in a familial and a sporadic generalized lentiginosis phenotype in Koreans. Clin Exp Dermatol 2023; 48:1171-1173. [PMID: 37337450 DOI: 10.1093/ced/llad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Here, we report two novel mutations in SASH1 (p.S510C and p.T525I) identified, respectively, in a family with nonsyndromic generalized lentiginosis, and in a sporadic case with early onset of multiple lentigines on the face and hypomelanosis of Ito in Koreans. Our findings will expand the spectrum of SASH1 mutations in a familial and a sporadic lentiginosis phenotype.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Il Joo Kwon
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Zhou D, Yang P, Chen H. Retyping and molecular pathology diagnosis of dyschromatosis universalis hereditaria. Exp Dermatol 2023; 32:1334-1343. [PMID: 37353900 DOI: 10.1111/exd.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Dyschromatosis universalis hereditaria (DUH) is characterized by diffuse symmetrically distributed hypopigmented macules mixed with hyperpigmentation. DUH is divided into three types by Online Mendelian inheritance in man (OMIM) that is, DUH1 (OMIM 127500), DUH2 (OMIM 612715) and DUH3 (OMIM 615402) according to the different linkage regions. Although each condition possesses corresponding phenotypic characteristics and the prognosis for each is somewhat different, these disorders are highly overlapped and difficult to differentiate in the clinical setting. Our latest study reveals a novel DUH subtype that presents a mild phenotype of pigmentation anomalies and is named PER3rs772027021 SNP related DUH or DUH4 by us, which make the DUH subtype can be further retyped. Heterozygous distribution or mosaic-like distribution of melanin is a newly discovered pathological features that is uniquely demonstrated in the affected layers of DUH1 and DUH4 patients. In this review, DUH is further divided into four subtypes according the causative genes and their mutational sites, and the mutation regions described in the previous reports. To make an accurate diagnosis, we suggest that Sanger sequencing or the target region sequencing (TRS) to the candidate causative genes related melanogenesis may be the most effective and convenient method of clinical diagnosis or/and prenatal diagnosis for DUH and DUH-like patients. More importantly, heterozygous distribution or mosaic-like distribution of melanin can be utilized for differential diagnosis of DUH. We also investigate the underlying molecular mechanism to form mosaic-like melanin in the affected layers of hyper- and/or hypo-pigmented macules from DUH1 and DUH4 patients. This review provides a molecular and pathological delineation of four types of DUH and aims to establish a concise diagnostic strategy to allow clinical dermatologists to make an accurate diagnosis.
Collapse
Affiliation(s)
- Ding'an Zhou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Pingping Yang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Hongyu Chen
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
7
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
8
|
Yang Y, Jiang N, Mai JQ, Yang S, Xiao Y, Liu S. Uncovering a new SASH1 mutation associated with dyschromatosis universalis hereditaria using whole-exome-sequencing: A case report. Medicine (Baltimore) 2023; 102:e34448. [PMID: 37543808 PMCID: PMC10402963 DOI: 10.1097/md.0000000000034448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/07/2023] Open
Abstract
RATIONALE Dyschromatosis universalis hereditaria (DUH) is an uncommon form of pigmented genodermatosis that is typically inherited autosomally and dominantly. In the previous study, the pathogenic genes of DUH have been identified in ATP-binding cassette subfamily B, member 6 and SASH1. However, the mutational screening of the causative gene remains incomplete and still lacks sufficient proof in the etiology. PATIENT CONCERNS A 2-generation Chinese family clinically diagnosed with DUH were enrolled. They showed pigmented spots from their childhood and came to the hospital for medical advice and genetic analysis. We found a novel mutation c.1757T > C (p.I586T) of SASH1 in 3 affected family members by whole-exome sequencing. DIAGNOSES Genetic outcomes and clinical examinations confirmed the diagnosis of DUH in 3 family members with lentiginous syndrome. INTERVENTIONS AND OUTCOMES Using whole-exome sequencing and sanger sequencing technologies, we identified a novel mutation c.1757T > C (p.I586T) of SASH1 that co-segregated in 3 afflicted family members but not in the normal individuals. Significantly, c.1757T > C (p.I586T) is a novel mutation which had not been previously reported. The same codon position in SASH1 (c.1758C > G, p.I586M) has been reported in a Japanese man, and he showed identical phenotype compared to our study participants. LESSONS Our study broadens the spectrum of DUH mutations and provides more genetic characteristics of DUH in understanding its etiology. Furthermore, we demonstrated the diagnostic accuracy of whole-exome sequencing for inherited skin diseases and provided new information for etiological study.
Collapse
Affiliation(s)
- Yue Yang
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Qun Mai
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shuo Yang
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Lin MH, Chou PC, Lee IC, Yang SF, Yu HS, Yu S. Inherited Reticulate Pigmentary Disorders. Genes (Basel) 2023; 14:1300. [PMID: 37372478 DOI: 10.3390/genes14061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Reticulate pigmentary disorders (RPDs) are a group of inherited and acquired skin conditions characterized by hyperpigmented and/or hypopigmented macules. Inherited RPDs include dyschromatosis symmetrica hereditaria (DSH), dyschromatosis universalis hereditaria (DUH), reticulate acropigmentation of Kitamura (RAK), Dowling-Degos disease (DDD), dyskeratosis congenita (DKC), Naegeli-Franceschetti-Jadassohn syndrome (NFJS), dermatopathia pigmentosa reticularis (DPR), and X-linked reticulate pigmentary disorder. Although reticulate pattern of pigmentation is a common characteristic of this spectrum of disorders, the distribution of pigmentation varies among these disorders, and there may be clinical manifestations beyond pigmentation. DSH, DUH, and RAK are mostly reported in East Asian ethnicities. DDD is more common in Caucasians, although it is also reported in Asian countries. Other RPDs show no racial predilection. This article reviews the clinical, histological, and genetic variations of inherited RPDs.
Collapse
Affiliation(s)
- Min-Huei Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Chen Chou
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Chen Lee
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Syuan-Fei Yang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sebastian Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Chen H, Yang P, Yang D, Wang D, Lu M, Li Y, Zhong Z, Zhang J, Zeng Z, Liu Z, Zeng X, Jia X, Xing Q, Zhou D. The PER3 rs772027021 SNP induces pigmentation phenotypes of dyschromatosis universalis hereditaria. J Mol Med (Berl) 2023; 101:279-294. [PMID: 36790533 DOI: 10.1007/s00109-023-02288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Dyschromatosis universalis hereditaria (DUH) is a pigmentary genodermatosis characterized by a mixture of hyperpigmented and hypopigmented macules distributed randomly over the body. Although Sterile Alpha motif- and SH3 domain-containing protein 1 (SASH1) and ATP-binding cassette subfamily B, member 6 (ABCB6) have been identified as causative genes for this disorder, some cases involve unknown pathogenic genes. In this study, whole-exome sequencing, data analysis, and Sanger sequencing were utilized for a four-generation extended Chinese family with DUH. A single-nucleotide polymorphism (SNP) (c. 517C > T (p.P173S), rs772027021) variant in exon 5 of Period Circadian Regulator 3 (PER3) (NM_001289861) was detected in each affected individual of the DUH family; the c. 517C > T SNP of PER3 (PER3rs772027021 SNP) and a novel mutation in exon 14 of SASH1 (c. 1574C > G (p.T525R)) were both found in the proband. The affected individuals carrying PER3rs772027021 SNP in this family demonstrated mild-pigmented phenotypes compared to those of the proband carrying PER3rs772027021 SNP and SASH1 T525R mutation. Increased melanin synthesis was induced by PER3rs772027021 SNP in the melanocytes of affected epithelial tissues. Mutated SASH1 or PER3rs772027021 SNP alone or cooperation of mutation of SASH1 and PER3rs772027021 SNP synergistically led to increased melanin synthesis and enhanced proliferation of melanoma cells in vitro. We also phenotypically characterized a commercially available zebrafish mutant line harboring the PER3rs772027021 SNP to induce melanocyte proliferation in vivo. Our results are the first to reveal that this PER3 SNP may be pathogenic for a novel DUH subtype with mild hyperpigmented and/or hypopigmented phenotypes and that mutation of SASH1 and PER3 cooperatively promotes hyperpigmentation phenotypes. KEY MESSAGES: PER3 rs772027021 SNP is identified to be associated with hyperpigmentation and/or hypopigmentation phenotype and the novel pathogenic variant of PER3 rs772027021 SNP probably contributed the pathogenesis of DUH. SASH1T525R mutation is confirmed to associate with DUH. A novel autosomal dominant inheritance DUH subtype with mild pigmentated phenotypes is caused by the PER3rs772027021 SNP.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Guiyang, Guizhou, 550004, People's Republic of China
| | - Pingping Yang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Guiyang, Guizhou, 550004, People's Republic of China
| | - Dan Yang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Guiyang, Guizhou, 550004, People's Republic of China
| | - Dongsheng Wang
- Department of Laboratory Medicine, Sichuan Cancer Hospital and Institute, Chengdu, 610041, People's Republic of China
| | - Mao Lu
- Department of Dermatovenereology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yadong Li
- Clinical College, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Zhiqiang Zhong
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Jing Zhang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Guiyang, Guizhou, 550004, People's Republic of China
| | - Zhen Zeng
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Guiyang, Guizhou, 550004, People's Republic of China
| | - Zhi Liu
- Department of Dermatovenereology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Qinghe Xing
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ding'an Zhou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Guiyang, Guizhou, 550004, People's Republic of China.
| |
Collapse
|
11
|
Clements CM, Vögeli B, Shellman YG, Henen MA. SAM1 domain of SASH1 harbors distinctive structural heterogeneity. J Struct Biol 2022; 214:107914. [PMID: 36341956 PMCID: PMC9733425 DOI: 10.1016/j.jsb.2022.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The sterile alpha motif (SAM) domains are among the most versatile protein domains in biology, and the variety of the oligomerization states contribute to their diverse roles in many diseases. A better understanding of the structure and dynamics of various SAM domains will provide a scientific basis for drug development targeting them. Here, we used SEC-MALS, HPLC, NMR, and other biophysical techniques to characterize the structural features and dynamics of the SAM1 domain in SASH1. SASH1 is a scaffold protein belonging to the same family as SASH3. Unlike the dimerization seen in SASH3's SAM domain, our SEC-MALS and SE-HPLC showed that SAM1 exists primarily as a less compact monomer with a minor oligomer. NMR assignment, relaxation, and exchange experiments revealed the presence of both a disordered monomer and a more structured oligomer with multiple timescale exchange regimes in solution. Mutagenesis and SE-HPLC showed that D663A/T664K substitutions in SAM1 increased its oligomerization. In sum, this study is the first to characterize a disordered structure for a SAM domain, provides additional evidence and framework for the diversity of SAM domains, and identifies a region in SAM1 as a potential starting point to further characterize the structural mechanism of oligomerization of the domain.
Collapse
Affiliation(s)
- Christopher M Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Yiqun G Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|