1
|
Sommer-Plüss CJ, Leiggener C, Nikci E, Mancuso RV, Rabbani S, Lamers C, Ricklin D. Determining Ligand Binding and Specificity Within the β 2-Integrin Family with a Novel Assay Platform. Biomolecules 2025; 15:238. [PMID: 40001541 PMCID: PMC11853025 DOI: 10.3390/biom15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The family of the β2-integrin receptors is critically involved in host defense and homeostasis, by mediating immune cell adhesion, migration, and phagocytosis. Due to their key roles in immune surveillance and inflammation, their modulation has been recognized as an attractive drug target. However, the development of therapeutics has been limited, partly due to the high promiscuity of endogenous ligands, their functional responses, and gaps in our understanding of their disease-related molecular mechanisms. The delineation of the molecular role of β2 integrins and their ligands has been hampered by a shortage of validated assay systems. To facilitate molecular and functional studies on the β2-integrin family, and to enable screening of modulators, this study provides a uniform and validated assay platform. For this purpose, the major ligand-binding domains (αI) of all four β2 integrins were recombinantly expressed in both low- and high-affinity states. By optimizing the expression parameters and selecting appropriate purification tags, all αI-domain variants could be produced with high yield and purity. Direct binding studies using surface plasmon resonance (SPR) confirmed the expected activity and selectivity profiles of the recombinant αI domains towards their reported ligands, validating our approach. In addition, the SPR studies provided additional insights into ligand binding, especially for the scarcely described family member CD11d. Alongside characterizing endogenous ligands, the platform can be employed to test pharmacologically active compounds, such as the reported β2-integrin antagonist simvastatin. In addition, we established a bead-based adhesion assay using the recombinant αI domains, and a cell-based adhesion assay underlining most findings generated with the isolated αI domains. Interestingly, the binding of ligands to the recombinant αDI is not dependent on divalent cation, in contrast to the full integrin CD11d/CD18, suggesting a binding mode distinct of the metal ion-dependent adhesion site (MIDAS). The setup highlights the applicability of recombinant αI domains for first screenings and direct or competitive interaction studies, while the full integrin is needed to validate those findings.
Collapse
Affiliation(s)
- Carla Johanna Sommer-Plüss
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Céline Leiggener
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elira Nikci
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Riccardo Vincenzo Mancuso
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christina Lamers
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
- Institute for Drug Development, Faculty of Medicine, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Daniel Ricklin
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Tan R, Li D, Hu N, Qiu J, Zeng Z, Cai W, Zhong Y, Zhang X, Pai P, Wang K, Tang D, Dai Y. Integrated proteome and malonylome analyses reveal the potential meaning of TLN1 and ACTB in end-stage renal disease. Proteome Sci 2023; 21:18. [PMID: 37833721 PMCID: PMC10571336 DOI: 10.1186/s12953-023-00211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/16/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited. METHODS In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls. RESULTS On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered. CONCLUSIONS These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.
Collapse
Affiliation(s)
- Ruqi Tan
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China
- Department of Nephrology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong, 518118, China
| | - Nan Hu
- Key Renal Laboratory of Shenzhen, Department of Nephrology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Jing Qiu
- Key Renal Laboratory of Shenzhen, Department of Nephrology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China
| | - Yafang Zhong
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Pearl Pai
- Department of Nephrology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China
| | - Kang Wang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, P.R. China.
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
4
|
Weber B, Sturm R, Henrich D, Marzi I, Leppik L. CD44+ and CD31+ extracellular vesicles (EVs) are significantly reduced in polytraumatized patients with hemorrhagic shock - evaluation of their diagnostic and prognostic potential. Front Immunol 2023; 14:1196241. [PMID: 37662913 PMCID: PMC10471799 DOI: 10.3389/fimmu.2023.1196241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background Hemorrhagic shock (HS) is responsible for approximately 2 million deaths per year worldwide and is caused in 80% by polytrauma. These patients need a precise and quick diagnostic, which should be based on a combination of laboratory markers and radiological data. Extracellular vesicles (EVs) were described as potential new markers and mediators in trauma. The aim of the present study was to analyze, whether the surface epitopes of plasma-EVs reflect HS in polytraumatized patients and whether cell-specific EV subpopulations are useful diagnostic tools. Material and methods Plasma samples from polytraumatized patients (ISS ≥16) with HS (n=10) and without (n=15), were collected at emergency room (ER) and 24h after trauma. Plasma-EVs were isolated via size exclusion chromatography and EV-concentrations were detected by Coomassie Plus (Bradford) Assay. The EVs subpopulations were investigated by a bead-based multiplex flow cytometry measurement of surface epitopes and were compared with healthy controls (n=10). To investigate the diagnostic and prognostic potential of EVs subpopulations, results were correlated with clinical outcome parameters documented in the electronical patients' record. Results We observed a significant reduction of the total amount of plasma EVs in polytrauma patients with HS, as compared to polytrauma patients without HS and healthy controls. We found significant reduction of CD42a+ and CD41b+ (platelet-derived) EVs in all polytrauma patients, as well as a reduction of CD29+ EVs compared to healthy volunteers (*p<0.05). CD44+ and CD31+ EVs were specifically altered in patients with HS (*p<0.05). Both EV populations showed a moderate correlation (r² = 0.42) with the transfusion of erythrocyte concentrate, were associated with non-survival and the need for catecholamines (*p<0.05). Conclusion Our data reveal that polytrauma patients with a hemorrhagic shock are characterized by a reduction of CD44+ and CD31+ plasma-EVs. Both EV populations showed a moderate correlation with the need of erythrocyte transfusion, were associated with non-survival and the need for catecholamines.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma−, Hand− and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
5
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
6
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
7
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Obeng G, Park EJ, Appiah MG, Kawamoto E, Gaowa A, Shimaoka M. miRNA-200c-3p targets talin-1 to regulate integrin-mediated cell adhesion. Sci Rep 2021; 11:21597. [PMID: 34732818 PMCID: PMC8566560 DOI: 10.1038/s41598-021-01143-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023] Open
Abstract
The ability of integrins on the cell surface to mediate cell adhesion to the extracellular matrix ligands is regulated by intracellular signaling cascades. During this signaling process, the talin (TLN) recruited to integrin cytoplasmic tails plays the critical role of the major adaptor protein to trigger integrin activation. Thus, intracellular levels of TLN are thought to determine integrin-mediated cellular functions. However, the epigenetic regulation of TLN expression and consequent modulation of integrin activation remain to be elucidated. Bioinformatics analysis led us to consider miR-200c-3p as a TLN1-targeting miRNA. To test this, we have generated miR-200c-3p-overexpressing and miR-200c-3p-underexpressing cell lines, including HEK293T, HCT116, and LNCaP cells. Overexpression of miR-200c-3p resulted in a remarkable decrease in the expression of TLN1, which was associated with the suppression of integrin-mediated cell adhesion to fibronectin. In contrast, the reduction in endogenous miR-200c-3p levels led to increased expression of TLN1 and enhanced cell adhesion to fibronectin and focal adhesion plaques formation. Moreover, miR-200c-3p was found to target TLN1 by binding to its 3′-untranslated region (UTR). Taken together, our data indicate that miR-200c-3p contributes to the regulation of integrin activation and cell adhesion via the targeting of TLN1.
Collapse
Affiliation(s)
- Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
9
|
Zhao B, Pan Y, Xu H, Song X. Wnt10a/β-catenin signalling is involved in kindlin-1-mediated astrocyte activation in a chronic construction injury rat model. Eur J Neurosci 2021; 54:7409-7421. [PMID: 34618385 DOI: 10.1111/ejn.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The activation of spinal astrocytes and release of neuroinflammatory mediators are important events in neuropathic pain (NP) pathogenesis. In this study, we investigated the role of Wnt10a/β-catenin signalling in kindlin-1-mediated astrocyte activation using a chronic constriction injury (CCI) NP rat model. Using kindlin-1 overexpression and knockdown plasmids, we assessed hyperalgesia, changes in spinal astrocyte activation and the release of inflammatory mediators in a NP rat model. We also performed coimmunoprecipitation, Western blotting and real-time polymerase chain reaction (PCR) to characterize the underlying mechanisms of kindlin-1 in astrocyte cultures in vitro. Kindlin-1 was significantly upregulated in CCI rats and promoted hyperalgesia. Moreover, we observed increased kindlin-1, Wnt10a and glial fibrillary acidic protein (GFAP; biomarker for astroglial injury) levels and the release of inflammatory mediators in NP rats (p < 0.05). Inhibiting GFAP in vitro led to decreased kindlin-1 levels, prevented astrocyte activation, decreased Wnt10a level and the release of inflammatory mediators (p < 0.05). Coimmunoprecipitation showed that kindlin-1 can interact with Wnt10a. We showed that kindlin-1-mediated astrocyte activation was associated with Wnt10a/β-catenin signalling and the downstream release of inflammatory mediators in a CCI NP rat model. Our findings provide novel insights into the molecular mechanisms of kindlin-1-mediated astrocyte activation after CCI.
Collapse
Affiliation(s)
- Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongying Pan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiping Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Moreno-Layseca P, Jäntti NZ, Godbole R, Sommer C, Jacquemet G, Al-Akhrass H, Conway JRW, Kronqvist P, Kallionpää RE, Oliveira-Ferrer L, Cervero P, Linder S, Aepfelbacher M, Zauber H, Rae J, Parton RG, Disanza A, Scita G, Mayor S, Selbach M, Veltel S, Ivaska J. Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nat Cell Biol 2021; 23:1073-1084. [PMID: 34616024 PMCID: PMC7617174 DOI: 10.1038/s41556-021-00767-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Niklas Z Jäntti
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rashmi Godbole
- National Centre for Biological Science (TIFR), Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Christian Sommer
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Hussein Al-Akhrass
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Pasquale Cervero
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Linder
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Henrik Zauber
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, Australia
| | - Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and University of Milan, Milan, Italy
| | - Satyajit Mayor
- National Centre for Biological Science (TIFR), Bangalore, India
| | - Matthias Selbach
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Veltel
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hochschule Bremen, City University of Applied Sciences, Bremen, Germany.
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Sciences, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
11
|
Abstract
Thrombocytopoiesis is a complex process beginning at the level of hematopoietic stem cells, which ultimately generate megakaryocytes, large marrow cells with a distinctive morphology, and then, through a process of terminal maturation, megakaryocytes shed thousands of platelets into the circulation. This process is controlled by intrinsic and extrinsic factors. Emerging data indicate that an important intrinsic control on the late stages of thrombopoiesis is exerted by integrins, a family of transmembrane receptors composed of one α and one β subunit. One β subunit expressed by megakaryocytes is the β1 integrin, the role of which in the regulation of platelet formation is beginning to be clarified. Here, we review recent data indicating that activation of β1 integrin by outside-in and inside-out signaling regulates the interaction of megakaryocytes with the endosteal niche, which triggers their maturation, while its inactivation by galactosylation determines the migration of these cells to the perivascular niche, where they complete their terminal maturation and release platelets in the bloodstream. Furthermore, β1 integrin mediates the activation of transforming growth factor β (TGF-β), a protein produced by megakaryocytes that may act in an autocrine fashion to halt their maturation and affect the composition of their surrounding extracellular matrix. These findings suggest that β1 integrin could be a therapeutic target for inherited and acquired disorders of platelet production.
Collapse
Affiliation(s)
- Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Paola Verachi
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Rome, Italy
| | - Anna Rita Migliaccio
- University Campus Biomedico, Rome, Italy
- Myeloproliferative Neoplasm-Research Consortium, New York, NY, USA
| |
Collapse
|
12
|
Amruta N, Bix G. ATN-161 Ameliorates Ischemia/Reperfusion-induced Oxidative Stress, Fibro-inflammation, Mitochondrial damage, and Apoptosis-mediated Tight Junction Disruption in bEnd.3 Cells. Inflammation 2021; 44:2377-2394. [PMID: 34420157 PMCID: PMC8380192 DOI: 10.1007/s10753-021-01509-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/25/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated the significance of endothelial cell-expressed α5β1 integrin in ischemic stroke, having shown that α5β1 integrin endothelial cell-selective knockout mice are significantly resistance to ischemic stroke injury via preservation of the tight junction protein claudin-5 and subsequent stabilization of the blood–brain barrier (BBB). In addition, inhibition of α5β1 by the small peptide noncompetitive integrin α5 inhibitor, ATN-161, is beneficial in a mouse model of ischemic stroke through reduction of infarct volume, edema, stabilization of the BBB, and reduced inflammation and immune cell infiltration into the brain. In continuation with our previous findings, we have further evaluated the mechanistic role of ATN-161 in vitro and found that oxygen and glucose deprivation and reperfusion (OGD/R)-induced inflammation, oxidative stress, apoptosis, mitochondrial depolarization, and fibrosis attenuate tight junction integrity via induction of α5, NLRP3, p-FAK, and p-AKT signaling in mouse brain endothelial cells. ATN-161 treatment (10 µM) effectively inhibited OGD/R-induced extracellular matrix (ECM) deposition by reducing integrin α5, MMP-9, and fibronectin expression, as well as reducing oxidative stress by reducing mitochondrial superoxide radicals, intracellular ROS, inflammation by reducing NLRP3 inflammasome, tight junction loss by reducing claudin-5 and ZO-1 expression levels, mitochondrial damage by inhibiting mitochondrial depolarization, and apoptosis via regulation of p-FAK and p-AKT levels. Taken together, our results further support therapeutically targeting α5 integrin with ATN-161, a safe, well-tolerated, and clinically validated peptide, in ischemic stroke.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA. .,Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA. .,Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
The Spike Glycoprotein of SARS-CoV-2 Binds to β1 Integrins Expressed on the Surface of Lung Epithelial Cells. Viruses 2021; 13:v13040645. [PMID: 33918599 PMCID: PMC8069079 DOI: 10.3390/v13040645] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
The spike glycoprotein attached to the envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl–glycyl–aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental evidence that the β1 integrins predominantly expressed on human pulmonary epithelial cell lines and primary mouse alveolar epithelial cells bind to this spike protein. The cellular β1 integrins support adhesive interactions with the spike protein independently of ACE2, suggesting the possibility that the β1 integrins may function as an alternative receptor for SARS-CoV-2, which could be targeted for the prevention of viral infections.
Collapse
|
14
|
Myint PK, Ito A, Appiah MG, Obeng G, Darkwah S, Kawamoto E, Gaowa A, Park EJ, Shimaoka M. Irisin supports integrin-mediated cell adhesion of lymphocytes. Biochem Biophys Rep 2021; 26:100977. [PMID: 33732908 PMCID: PMC7944048 DOI: 10.1016/j.bbrep.2021.100977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Irisin, a myokine released from skeletal muscle, has recently been found to act as a ligand for the integrins αVβ5, αVβ1, and α5β1 expressed on mesenchymal cells, thereby playing an important role in the metabolic remodeling of the bone, skeletal muscle and adipose tissues. Although the immune-modulatory effects of irisin in chronic inflammation have been documented, its interactions with lymphocytic integrins have yet to be elucidated. Here, we show that irisin supports the cell adhesion of human and mouse lymphocytes. Cell adhesion assays using a panel of inhibitory antibodies to integrins have shown that irisin-mediated lymphocyte adhesion involves multiple integrins including not only α4β1 and α5β1, but also leukocyte-specific αLβ2 and α4β7. Importantly, mouse lymphocytic TK-1 cells that lack the expression of β1 integrins have exhibited αLβ2- and α4β7-mediated cell adhesion to irisin. Irisin has also been demonstrated to bind to purified recombinant integrin αLβ2 and α4β7 proteins. Thus, irisin represents a novel ligand for integrin αLβ2 and α4β7, capable of supporting lymphocyte cell adhesion independently of β1 integrins. These results suggest that irisin may play an important role in regulating lymphocyte adhesion and migration in the inflamed vasculature. Irisin, a myokine released from skeletal muscle, binds to integrins αLβ2 and α4β7 in addition to integrins α4β1 and α5β1. Irisin acts as an integrin ligand capable of supporting cell adhesion of human and mouse lymphocytes. The results of this study significantly expand upon the role of irisin as a contributor to metabolic regulation. Irisin deposited on the inflamed vasculature may participate in the metabolic regulation of lymphocyte migration.
Collapse
Affiliation(s)
- Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan.,Department of Cardiothoracic and Vascular Surgery, Mie University Graduate School of Medicine, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| |
Collapse
|
15
|
Soe ZY, Park EJ, Shimaoka M. Integrin Regulation in Immunological and Cancerous Cells and Exosomes. Int J Mol Sci 2021; 22:2193. [PMID: 33672100 PMCID: PMC7926977 DOI: 10.3390/ijms22042193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Integrins represent the biologically and medically significant family of cell adhesion molecules that govern a wide range of normal physiology. The activities of integrins in cells are dynamically controlled via activation-dependent conformational changes regulated by the balance of intracellular activators, such as talin and kindlin, and inactivators, such as Shank-associated RH domain interactor (SHARPIN) and integrin cytoplasmic domain-associated protein 1 (ICAP-1). The activities of integrins are alternatively controlled by homotypic lateral association with themselves to induce integrin clustering and/or by heterotypic lateral engagement with tetraspanin and syndecan in the same cells to modulate integrin adhesiveness. It has recently emerged that integrins are expressed not only in cells but also in exosomes, important entities of extracellular vesicles secreted from cells. Exosomal integrins have received considerable attention in recent years, and they are clearly involved in determining the tissue distribution of exosomes, forming premetastatic niches, supporting internalization of exosomes by target cells and mediating exosome-mediated transfer of the membrane proteins and associated kinases to target cells. A growing body of evidence shows that tumor and immune cell exosomes have the ability to alter endothelial characteristics (proliferation, migration) and gene expression, some of these effects being facilitated by vesicle-bound integrins. As endothelial metabolism is now thought to play a key role in tumor angiogenesis, we also discuss how tumor cells and their exosomes pleiotropically modulate endothelial functions in the tumor microenvironment.
Collapse
Affiliation(s)
- Zay Yar Soe
- Department of Physiology, University of Medicine, Magway, 7th Mile, Natmauk Road, Magway City 04012, Magway Region, Myanmar
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan;
| |
Collapse
|
16
|
Monu, Kharb R, Sharma A, Chaddar MK, Yadav R, Agnihotri P, Kar A, Biswas S. Plasma Proteome Profiling of Coronary Artery Disease Patients: Downregulation of Transthyretin-An Important Event. Mediators Inflamm 2020; 2020:3429541. [PMID: 33299376 PMCID: PMC7707994 DOI: 10.1155/2020/3429541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a prevalent chronic inflammatory cardiac disorder. An early diagnosis is likely to help in the prevention and proper management of this disease. As the study of proteomics provides the potential markers for detection of a disease, in the present investigation, attempt has been made to identify disease-associated differential proteins involved in CAD pathogenesis. For this study, a total of 200 selected CAD patients were considered, who were recruited for percutaneous coronary intervention (PCI) treatment. The proteomic analysis was performed using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS/MS. Samples were also subjected to Western blot analysis, enzyme-linked immunosorbent assay (ELISA), peripheral blood mononuclear cells isolation immunofluorescence (IF) analysis, analytical screening by fluorescence-activated cell sorting (FACS), and in silico analysis. The representative data were shown as mean ± SD of at least three experiments. A total of 19 proteins were identified. Among them, the most abundant five proteins (serotransferrin, talin-1, alpha-2HS glycoprotein, transthyretin (TTR), fibrinogen-α chain) were found to have altered level in CAD. Serotransferrin, talin-1, alpha-2HS glycoprotein, and transthyretin (TTR) were found to have lower level, whereas fibrinogen-α chain was found to have higher level in CAD plasma compared to healthy, confirmed by Western blot analysis. TTR, an important acute phase transport protein, was validated low level in 200 CAD patients who confirmed to undergo PCI treatment. Further, in silico and in vitro studies of TTR indicated a downexpression of CAD in plasma as compared to the plasma of healthy individuals. Lower level of plasma TTR was determined to be an important risk marker in the atherosclerotic-approved CAD patients. We suggest that the TTR lower level predicts disease severity and hence may serve as an important marker tool for CAD screening. However, further large-scale studies are required to determine the clinical significance of TTR.
Collapse
Affiliation(s)
- Monu
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rupsi Kharb
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), University of Delhi, Pushpvihar, New Delhi 110017, India
| | - Ankita Sharma
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Monu Kumar Chaddar
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rakesh Yadav
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prachi Agnihotri
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, 452017, Indore, India
| | - Sagarika Biswas
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| |
Collapse
|
17
|
Edwards DN, Salmeron K, Lukins DE, Trout AL, Fraser JF, Bix GJ. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow Metab 2020; 40:1695-1708. [PMID: 31575337 PMCID: PMC7370357 DOI: 10.1177/0271678x19880161] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stroke remains a leading cause of death and disability with limited therapeutic options. Endothelial cell β1 integrin receptors play a direct role in blood-brain barrier (BBB) dysfunction through regulation of tight junction proteins and infiltrating leukocytes, potentially mediated by β1 integrins. Following tandem transient common carotid artery/middle cerebral artery occlusion on wild-type mice, we administered the integrin a5b1 inhibitor, ATN-161, intraperitoneal (IP) injection at 1 mg/kg acutely after reperfusion, on post-stroke day (PSD)1 and PSD2. Systemic changes (heart rate, pulse distension, and body temperature) were determined. Additionally, infarct volume and edema were determined by 2,3-triphenyltetrazolium chloride and magnetic resonance imaging, while neurological changes were evaluated using an 11-point Neuroscore. Brain immunohistochemistry was performed for claudin-5, α5β1, IgG, and CD45 + cells, and quantitative polymerase chain reaction (qPCR) was performed for matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1β, collagen IV, and CXCL12. ATN-161 significantly reduced integrin α5β1 expression in the surrounding peri-infarct region with no systemic changes. Infarct volume, edema, and functional deficit were significantly reduced in ATN-161-treated mice. Furthermore, ATN-161 treatment reduced IgG extravasation into the parenchyma through conserved claudin-5, collagen IV, CXCL12 while reducing MMP-9 transcription. Additionally, IL-1β and CD45 + cells were reduced in the ipsilateral cortex following ATN-161 administration. Collectively, ATN-161 may be a promising novel stroke therapy by reducing post-stroke inflammation and BBB permeability.
Collapse
Affiliation(s)
| | - Kathleen Salmeron
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Physiology, University of Kentucky, Lexington, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Radiology, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neuroscience, University of Kentucky, Lexington, USA.,Department of Neurology, University of Kentucky, Lexington, USA.,Department of Neurosurgery, University of Kentucky, Lexington, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
18
|
Park EJ, Appiah MG, Myint PK, Gaowa A, Kawamoto E, Shimaoka M. Exosomes in Sepsis and Inflammatory Tissue Injury. Curr Pharm Des 2020; 25:4486-4495. [PMID: 31738129 DOI: 10.2174/1381612825666191116125525] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Sepsis is the leading cause of death in medical intensive care units, and thus represents a serious healthcare problem worldwide. Sepsis is often caused by the aberrant host responses to infection, which induce dysregulated inflammation that leads to life-threatening multiple organ failures. Mediators such as proinflammatory cytokines that drive the sepsis pathogenesis have been extensively studied. Exosomes, biological lipid bilayer nanoparticles secreted via the endosomal pathway of cells, have recently emerged as important cargos that carry multiple mediators critical for the pathogenesis of sepsis-associated organ dysfunctions. Here we will review current knowledge on the exosomes in sepsis and relevant inflammatory tissue injuries.
Collapse
Affiliation(s)
- Eun J Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Phyoe K Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| |
Collapse
|
19
|
Abstract
Sepsis remains medically challenging, with high morbidity and mortality. A novel intervention is urgently needed in the absence of specific, targeted therapy. Neutrophils act as double-edged swords in sepsis; they can help to eradicate microbes, but they also contribute to tissue injury. β2 integrins are critical adhesion molecules that regulate a number of neutrophil functions. β2 integrins consist of four members, namely, αLβ2, αMβ2, αXβ2, and αDβ2. Here, we review the role of each β2 integrin in neutrophils and sepsis and consider future direction for therapeutic intervention.
Collapse
|
20
|
Shahi M, Mohammadnejad D, Karimipour M, Rasta SH, Rahbarghazi R, Abedelahi A. Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Curr Mol Med 2020; 20:675-691. [PMID: 32213158 DOI: 10.2174/1566524020666200326095837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022]
Abstract
Stroke is known as one of the very important public health problems that are related to societal burden and tremendous economic losses. It has been shown that there are few therapeutic approaches for the treatment of this disease. In this regard, the present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neuro recovery. Among these therapies, regenerative medicine-based therapies have appeared as new ways of stroke therapy. Hyaluronic acid (HA) is a new candidate, which could be applied as a regenerative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan composed of disaccharide repeating elements (N-acetyl-Dglucosamine and D-glucuronic acid). Multiple lines of evidence demonstrated that HA has critical roles in normal tissues. It can be a key player in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of the extracellular matrix. HA has very important physicochemical properties i.e., availability of reactive functional groups and its solubility, which make it a biocompatible material for application in regenerative medicine. Given that HAbased bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic, they are used as soft tissue fillers and injectable dermal fillers. Several studies indicated that HA could be employed as a new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacological effects via affecting stroke-related processes. Herein, we summarized the role of the extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies for the treatment of stroke.
Collapse
Affiliation(s)
- Maryam Shahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Bioengineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Cammalleri M, Dal Monte M, Locri F, Pecci V, De Rosa M, Pavone V, Bagnoli P. The urokinase-type plasminogen activator system as drug target in retinitis pigmentosa: New pre-clinical evidence in the rd10 mouse model. J Cell Mol Med 2019; 23:5176-5192. [PMID: 31251468 PMCID: PMC6653070 DOI: 10.1111/jcmm.14391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) is characterized by progressive loss of vision due to photoreceptor degeneration leading to secondary inflammation. The urokinase-type plasminogen activator (uPA) system contributes to retinal inflammation, but its role in RP is unknown. In the rd10 mouse model of RP, we addressed this question with the use of the peptide UPARANT designed to interact with the uPA system. UPARANT was systemically administered from post-natal day (PD) 10 to PD30 when its efficacy in RP rescue was investigated using electroretinographic recordings, Western blot and immunocytochemistry. Temporal profile of protein expression in the uPA system was also investigated. UPARANT reduced both Müller cell gliosis and up-regulated levels of inflammatory markers and exerted major anti-apoptotic effects without influencing the autophagy cascade. Rescue from retinal cell degeneration was accompanied by improved retinal function. No scotopic phototransduction was rescued in the UPARANT-treated animals as determined by the kinetic analysis of rod-mediated a-waves and confirmed by rod photoreceptor markers. In contrast, the cone photopic b-wave was recovered and its rescue was confirmed in the whole mounts using cone arrestin antibody. Investigation of the uPA system regulation over RP progression revealed extremely low levels of uPA and its receptor uPAR both of which were recovered by HIF-1α stabilization indicating that HIF-1 regulates the expression of the uPA/uPAR gene in the retina. Ameliorative effects of UPARANT were likely to occur through an inhibitory action on up-regulated activity of the αvβ3 integrin/Rac1 pathway that was suggested as a novel target for the development of therapeutic approaches against RP.
Collapse
Affiliation(s)
| | | | - Filippo Locri
- Department of Biology, University of Pisa, Pisa, Italy
| | - Valeria Pecci
- Department of Biology, University of Pisa, Pisa, Italy
| | - Mario De Rosa
- Department of Experimental Medicine, Second University of Napoli, Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Bamias G, Dulai PS, Boland BS, Sandborn WJ, Patel DR, Rivera-Nieves J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm Bowel Dis 2019; 25:270-282. [PMID: 30165490 PMCID: PMC6327230 DOI: 10.1093/ibd/izy269] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/27/2022]
Abstract
After 20 years of successful targeting of pro-inflammatory cytokines for the treatment of IBD, an alternative therapeutic strategy has emerged, based on several decades of advances in understanding the pathogenesis of IBD. The targeting of molecules involved in leukocyte traffic has recently become a safe and effective alternative. With 2 currently approved drugs (ie, natalizumab, vedolizumab) and several others in phase 3 trials (eg, etrolizumab, ozanimod, anti-MAdCAM-1), the blockade of trafficking molecules has firmly emerged as a new therapeutic era for IBD. We discuss the targets that have been explored in clinical trials: chemokines and its receptors (eg, IP10, CCR9), integrins (eg, natalizumab, AJM300, vedolizumab, and etrolizumab), and its endothelial ligands (MAdCAM-1, ICAM-1). We also discuss a distinct strategy that interferes with lymphocyte recirculation by blocking lymphocyte egress from lymph nodes (small molecule sphingosine-phosphate receptor [S1PR] agonists: fingolimod, ozanimod, etrasimod, amiselimod). Strategies on the horizon include additional small molecules, allosteric inhibitors that specifically bind to the active integrin form and nanovectors that allow for the use of RNA interference in the quest to modulate pro-inflammatory leukocyte trafficking in IBD.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Hospital San Borja Arriarán, Santiago, Chile
- Universidad Católica de Chile, Santiago, Chile
| | - Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joshua D Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Parambir S Dulai
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brigid S Boland
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Derek R Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
23
|
Rajkovic O, Potjewyd G, Pinteaux E. Regenerative Medicine Therapies for Targeting Neuroinflammation After Stroke. Front Neurol 2018; 9:734. [PMID: 30233484 PMCID: PMC6129611 DOI: 10.3389/fneur.2018.00734] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a major pathological event following ischemic stroke that contributes to secondary brain tissue damage leading to poor functional recovery. Following the initial ischemic insult, post-stroke inflammatory damage is driven by initiation of a central and peripheral innate immune response and disruption of the blood-brain barrier (BBB), both of which are triggered by the release of pro-inflammatory cytokines and infiltration of circulating immune cells. Stroke therapies are limited to early cerebral blood flow reperfusion, and whilst current strategies aim at targeting neurodegeneration and/or neuroinflammation, innovative research in the field of regenerative medicine aims at developing effective treatments that target both the acute and chronic phase of inflammation. Anti-inflammatory regenerative strategies include the use of nanoparticles and hydrogels, proposed as therapeutic agents and as a delivery vehicle for encapsulated therapeutic biological factors, anti-inflammatory drugs, stem cells, and gene therapies. Biomaterial strategies-through nanoparticles and hydrogels-enable the administration of treatments that can more effectively cross the BBB when injected systemically, can be injected directly into the brain, and can be 3D-bioprinted to create bespoke implants within the site of ischemic injury. In this review, these emerging regenerative and anti-inflammatory approaches will be discussed in relation to ischemic stroke, with a perspective on the future of stroke therapies.
Collapse
Affiliation(s)
- Olivera Rajkovic
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Geoffrey Potjewyd
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Gonzalez-Salinas R, Hernández-Zimbrón LF, Gulias-Cañizo R, Sánchez-Vela MA, Ochoa-De La Paz L, Zamora R, Quiroz-Mercado H. Current Anti-Integrin Therapy for Ocular Disease. Semin Ophthalmol 2017; 33:634-642. [DOI: 10.1080/08820538.2017.1388411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Rosario Gulias-Cañizo
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Cell Biology Department, Advanced Research Center, I.P.N. (CINVESTAV), Mexico City, Mexico
| | | | - Lenin Ochoa-De La Paz
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Biochemistry Department, Universidad Nacional Autónoma de Mexico, School of Medicine, Mexico City, Mexico
| | - Ruben Zamora
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
| | - Hugo Quiroz-Mercado
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Department of Ophthalmology, University of Colorado, Denver, CO, USA
| |
Collapse
|
25
|
The Role of Gap Junction-Mediated Endothelial Cell-Cell Interaction in the Crosstalk between Inflammation and Blood Coagulation. Int J Mol Sci 2017; 18:ijms18112254. [PMID: 29077057 PMCID: PMC5713224 DOI: 10.3390/ijms18112254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 12/29/2022] Open
Abstract
Endothelial cells (ECs) play a pivotal role in the crosstalk between blood coagulation and inflammation. Endothelial cellular dysfunction underlies the development of vascular inflammatory diseases. Recent studies have revealed that aberrant gap junctions (GJs) and connexin (Cx) hemichannels participate in the progression of cardiovascular diseases such as cardiac infarction, hypertension and atherosclerosis. ECs can communicate with adjacent ECs, vascular smooth muscle cells, leukocytes and platelets via GJs and Cx channels. ECs dynamically regulate the expression of numerous Cxs, as well as GJ functionality, in the context of inflammation. Alterations to either result in various side effects across a wide range of vascular functions. Here, we review the roles of endothelial GJs and Cx channels in vascular inflammation, blood coagulation and leukocyte adhesion. In addition, we discuss the relevant molecular mechanisms that endothelial GJs and Cx channels regulate, both the endothelial functions and mechanical properties of ECs. A better understanding of these processes promises the possibility of pharmacological treatments for vascular pathogenesis.
Collapse
|
26
|
Zhao B, He E, Pan Y, Xu H, Song X. Kindlin-1 is a key protein in hyperbaric oxygen therapy for the treatment of neuropathic pain. Mol Pain 2017; 13:1744806917730254. [PMID: 28845732 PMCID: PMC5593206 DOI: 10.1177/1744806917730254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Hyperbaric oxygen therapy is increasingly used in adjuvant therapies to treat neuropathic pain. However, the specific targets of hyperbaric oxygen treatment in neuropathic pain remain unclear. Recently, we found that hyperbaric oxygen therapy produces an antinociceptive response via the kindlin-1/wnt-10a signaling pathway in a chronic pain injury model in rats. Methods The rats received an intraperitoneal injection of AAV-FERMT1 or an adeno-associated virus control vector 20 days before the chronic constriction injury operation. During five consecutive days of hyperbaric oxygen treatment, mechanical withdrawal threshold and thermal withdrawal latency tests were performed. Then, kindlin-1 expression was examined by real-time polymerase chain reaction and Western blot analysis. Meanwhile, the activation of glial cells and the production of TNF-α, IL-1β, and fractalkine were also determined. Results Our findings demonstrated that hyperbaric oxygen therapy inhibited the chronic constriction injury–induced increase in kindlin-1 expression. Furthermore, overexpression of kindlin-1 reversed the antinociceptive effects of hyperbaric oxygen therapy. The observed hyperbaric oxygen–induced reductions in glial cell activation and neuroinflammation, as indicated by the production of TNF-α, IL-1β, and fractalkine, were also prominently diminished in the group with kindlin-1 overexpression. Conclusions Our findings demonstrate that kindlin-1 is a key protein in the action of hyperbaric oxygen therapy in the treatment of neuropathic pain. Indeed, interference with kindlin-1 may be a drug target for reducing the neuroinflammatory responses of the glial population in neuropathic pain.
Collapse
Affiliation(s)
- Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Erning He
- Department of Anesthesiology, Nanning Second People's Hospital, Guangxi Medical University, Nanning 530031, China
| | - Yongying Pan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Haiping Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | | |
Collapse
|
27
|
Ljunggren SA, Helmfrid I, Norinder U, Fredriksson M, Wingren G, Karlsson H, Lindahl M. Alterations in high-density lipoprotein proteome and function associated with persistent organic pollutants. ENVIRONMENT INTERNATIONAL 2017; 98:204-211. [PMID: 27865523 DOI: 10.1016/j.envint.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/16/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
There is a growing body of evidence that persistent organic pollutants (POPs) may increase the risk for cardiovascular disease (CVD), but the mechanisms remain unclear. High-density lipoprotein (HDL) acts protective against CVD by different processes, and we have earlier found that HDL from subjects with CVD contains higher levels of POPs than healthy controls. In the present study, we have expanded analyses on the same individuals living in a contaminated community and investigated the relationship between the HDL POP levels and protein composition/function. HDL from 17 subjects was isolated by ultracentrifugation. HDL protein composition, using nanoliquid chromatography tandem mass spectrometry, and antioxidant activity were analyzed. The associations of 16 POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides, with HDL proteins/functions were investigated by partial least square and multiple linear regression analysis. Proteomic analyses identified 118 HDL proteins, of which ten were significantly (p<0.05) and positively associated with the combined level of POPs or with highly chlorinated PCB congeners. Among these, cholesteryl ester transfer protein and phospholipid transfer protein, as well as the inflammatory marker serum amyloid A, were found. The serum paraoxonase/arylesterase 1 activity was inversely associated with POPs. Pathway analysis demonstrated that up-regulated proteins were associated with biological processes involving lipoprotein metabolism, while down-regulated proteins were associated with processes such as negative regulation of proteinases, acute phase response, platelet degranulation, and complement activation. These results indicate an association between POP levels, especially highly chlorinated PCBs, and HDL protein alterations that may result in a less functional particle. Further studies are needed to determine causality and the importance of other environmental factors. Nevertheless, this study provides a first insight into a possible link between exposure to POPs and risk of CVD.
Collapse
Affiliation(s)
- Stefan A Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ingela Helmfrid
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden.
| | - Mats Fredriksson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Gun Wingren
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Mats Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
28
|
Kim MY, Cho JY. Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:515-23. [PMID: 27610038 PMCID: PMC5014998 DOI: 10.4196/kjpp.2016.20.5.515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Adhesion events of monocytes represent an important step in inflammatory responses induced by chemokines. The β1-integrin CD29 is a major adhesion molecule regulating leukocyte migration and extravasation. Although several adhesion molecules have been known as regulators of CD29, the molecular interactions between CD29 and its regulatory adhesion molecules (such as CD98 and CD147) have not been fully elucidated. Therefore, in this study, we examined whether these molecules are functionally, biochemically, and cell-biologically associated using monocytic U937 cells treated with aggregation-stimulating and blocking antibodies, as well as enzyme inhibitors. The surface levels of CD29, CD98, and CD147 (but not CD43, CD44, and CD82) were increased. The activation of CD29, CD98, and CD147 by ligation of them with aggregation-activating antibodies triggered the induction of cell-cell adhesion, and sensitivity to various enzyme inhibitors and aggregation-blocking antibodies was similar for CD29-, CD98-, and CD147-induced U937 cell aggregation. Molecular association between these molecules and the actin cytoskeleton was confirmed by confocal microscopy and immunoprecipitation. These results strongly suggest that CD29 might be modulated by its biochemical and cellular regulators, including CD98 and CD147, via the actin cytoskeleton.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Depatment of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
29
|
Kanasaki K. The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetol Int 2016; 7:212-220. [PMID: 30603266 DOI: 10.1007/s13340-016-0281-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction and tubulointerstitial fibrosis are characteristics of diabetic kidneys. Recent evidence has suggested that the diabetic kidney is associated with dipeptidyl peptidase (DPP)-4 overexpression in endothelial cells. Several insults can induce endothelial cells to alter their phenotype into a mesenchymal-like phenotype via endothelial-mesenchymal transition (EndMT), which plays pivotal roles in tissue fibrosis. We have recently revealed the fibrogenic role of DPP-4 through the induction of EndMT in diabetic kidneys. This review mainly focuses on the biological and pathological significance of DPP-4 overexpression in endothelial cells through the mechanisms of endothelial homeostasis defects, EndMT, and kidney fibrosis.
Collapse
Affiliation(s)
- Keizo Kanasaki
- 1Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan.,2Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
30
|
The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour. Sci Rep 2016; 6:28529. [PMID: 27339664 PMCID: PMC4919783 DOI: 10.1038/srep28529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Integrins, a family of heterodimeric adhesion receptors are implicated in cell migration, development and cancer progression. They can adopt conformations that reflect their activation states and thereby impact adhesion strength and migration. Integrins in an intermediate activation state may be optimal for migration and we have shown previously that fully activated integrin α9β1 corresponds with less migratory behaviour in melanoma cells. Here, we aimed to identify components associated with the activation status of α9β1. Using cancer cell lines with naturally occuring high levels of this integrin, activation by α9β1-specific ligands led to upregulation of fibronectin matrix assembly and tyrosine phosphorylation of cortactin on tyrosine 470 (Y470). Specifically, cortactin phosphorylated on Y470, but not Y421, redistributed together with α9β1 to focal adhesions where active β1 integrin also localises, upon integrin activation. This was commensurate with reduced migration. The localisation and phosphorylation of cortactin Y470 was regulated by Yes kinase and PTEN phosphatase. Cortactin levels influenced fibronectin matrix assembly and active β1 integrin on the cell surface, being inversely correlated with migratory behaviour. This study underlines the complex interplay between cortactin and α9β1 integrin that regulates cell-extracellular matrix interactions.
Collapse
|
31
|
Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. FIBROGENESIS & TISSUE REPAIR 2016; 9:1. [PMID: 26877767 PMCID: PMC4752740 DOI: 10.1186/s13069-016-0038-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4 inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the renoprotective effects and possible mechanism of the DPP-4 inhibitors.
Collapse
Affiliation(s)
- Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; The Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, 646000 People's Republic of China
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
32
|
Wang S, Meng Y, Li C, Qian M, Huang R. Receptor-Mediated Drug Delivery Systems Targeting to Glioma. NANOMATERIALS 2015; 6:nano6010003. [PMID: 28344260 PMCID: PMC5302535 DOI: 10.3390/nano6010003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/08/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Ying Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Chengyi Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China.
| |
Collapse
|