1
|
Tayal S, Bhatnagar S. Role of molecular mimicry in the SARS-CoV-2-human interactome for pathogenesis of cardiovascular diseases: An update to ImitateDB. Comput Biol Chem 2023; 106:107919. [PMID: 37463554 DOI: 10.1016/j.compbiolchem.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Mimicry of host proteins is a strategy employed by pathogens to hijack host functions. Domain and motif mimicry was explored in the experimental and predicted SARS-CoV-2-human interactome. The host first interactor proteins were also added to capture the continuum of the interactions. The domains and motifs of the proteins were annotated using NCBI CD Search and ScanProsite, respectively. Host and pathogen proteins with a common host interactor and similar domain/motif constitute a mimicry pair indicating global structural similarity (domain mimicry pair; DMP) or local sequence similarity (motif mimicry pair; MMP). 593 DMPs and 7,02,472 MMPs were determined. AAA, DEXDc and Macro domains were frequent among DMPs whereas glycosylation, myristoylation and RGD motifs were abundant among MMP. The proteins involved in mimicry were visualised as a SARS-CoV-2 mimicry interaction network. The host proteins were enriched in multiple CVD pathways indicating the role of mimicry in COVID-19 associated CVDs. Bridging nodes were identified as potential drug targets. Approved antihypertensive and anti-inflammatory drugs are proposed for repurposing against COVID-19 associated CVDs. The SARS-CoV-2 mimicry data has been updated in ImitateDB (http://imitatedb.sblab-nsit.net/SARSCoV2Mimicry). Determination of key mechanisms, proteins, pathways, drug targets and repurposing candidates is critical for developing therapeutics for SARS CoV-2 associated CVDs.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
2
|
Tammaro C, Guida M, Appetecchia F, Biava M, Consalvi S, Poce G. Direct-Acting Antivirals and Host-Targeting Approaches against Enterovirus B Infections: Recent Advances. Pharmaceuticals (Basel) 2023; 16:203. [PMID: 37259352 PMCID: PMC9966857 DOI: 10.3390/ph16020203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 04/03/2025] Open
Abstract
Enterovirus B (EV-B)-related diseases, which can be life threatening in high-risk populations, have been recognized as a serious health problem, but their clinical treatment is largely supportive, and no selective antivirals are available on the market. As their clinical relevance has become more serious, efforts in the field of anti-EV-B inhibitors have greatly increased and many potential antivirals with very high selectivity indexes and promising in vitro activities have been discovered. The scope of this review encompasses recent advances in the discovery of new compounds with anti-viral activity against EV-B, as well as further progress in repurposing drugs to treat these infections. Current progress and future perspectives in drug discovery against EV-Bs are briefly discussed and existing gaps are spotlighted.
Collapse
Affiliation(s)
| | | | | | | | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Hand-Foot-and-Mouth Disease-Associated Enterovirus and the Development of Multivalent HFMD Vaccines. Int J Mol Sci 2022; 24:ijms24010169. [PMID: 36613612 PMCID: PMC9820767 DOI: 10.3390/ijms24010169] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is an infectious disease of children caused by more than 20 types of enteroviruses, with most cases recovering spontaneously within approximately one week. Severe HFMD in individual children develops rapidly, leading to death, and is associated with other complications such as viral myocarditis and type I diabetes mellitus. The approval and marketing of three inactivated EV-A71 vaccines in China in 2016 have provided a powerful tool to curb the HFMD epidemic but are limited in cross-protecting against other HFMD-associated enteroviruses. This review focuses on the epidemiological analysis of HFMD-associated enteroviruses since the inactivated EV-A71 vaccine has been marketed, collates the progress in the development of multivalent enteroviruses vaccines in different technical routes reported in recent studies, and discusses issues that need to be investigated for safe and effective HFMD multivalent vaccines.
Collapse
|
4
|
The spatial-temporal distribution and etiological characteristics of hand-foot-and-mouth disease before and after EV‑A71 vaccination in Kunming, China, 2017-2020. Sci Rep 2022; 12:17028. [PMID: 36220850 PMCID: PMC9552732 DOI: 10.1038/s41598-022-21312-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
After vaccination with enterovirus 71 (EV-A71), the prevalence of hand-foot-and-mouth disease (HFMD) remained high, and the spatial-temporal distribution of enteroviruses changed. Therefore, it is essential to define the temporal features, spatial distributions, and epidemiological and etiological characteristics of HFMD in Kunming. Between 2017 and 2020, a total of 36,540 children were diagnosed with HFMD in Kunming, including 32,754 children with enterovirus-positive clinical samples. Demographic, geographical, epidemiological and etiological data of the cases were acquired and analyzed. Other enteroviruses replaced EV-A71, and the incidence of EV-A71 decreased dramatically, whereas coxsackievirus A6 (CV-A6) and coxsackievirus A16 (CV-A16) had substantial outbreaks in 2018 and 2019, respectively. The major and minor peaks all extended for 2-4 months compared to before vaccination with the EV-A71 vaccine. From 2019 to 2020, CV-A6, as the predominant serotype, showed only a single peak. Although a high incidence of HFMD was observed in Guandu, Chenggong and Xishan, the annual incidence of different enterovirus serotypes was different in different regions. In 2017, other enteroviruses were most prevalent in Shilin. In 2018, CV-A16 and CV-A6 were most prevalent in Luquan and Shilin, respectively. In 2019, CV-A16 was most prevalent in Jinning. In 2020, CV-A6 and coxsackievirus A10 (CV-A10) were most prevalent in Luquan and Shilin, respectively. Meanwhile, the epidemic cycle of CV-A6 and CV-A16 was only 1 year, and CV-A10 and other enteroviruses were potential risk pathogens. The spatial and temporal distribution of HFMD varies at different scales, and the incidence of HFMD associated with different pathogens has obvious regional differences and seasonal trends. Therefore, research on multivalent combined vaccines is urgently needed, and proper preventive and protective measures could effectively control the incidence of HFMD-like diseases.
Collapse
|
5
|
Moghimi S, Viktorova EG, Gabaglio S, Zimina A, Budnik B, Wynn BG, Sztul E, Belov GA. A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication. PLoS Pathog 2022; 18:e1010906. [PMID: 36306280 PMCID: PMC9645661 DOI: 10.1371/journal.ppat.1010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/09/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.
Collapse
Affiliation(s)
- Seyedehmahsa Moghimi
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ekaterina G. Viktorova
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Samuel Gabaglio
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Anna Zimina
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL), FAS Division of Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bridge G. Wynn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham; Birmingham, Alabama, United States of America
| | - George A. Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
6
|
Huang L, Wang T, Liu X, Fu Y, Zhang S, Chu Q, Nie T, Tu H, Chen J, Fan Y. Spatial-temporal-demographic and virological changes of hand, foot and mouth disease incidence after vaccination in a vulnerable region of China. BMC Public Health 2022; 22:1468. [PMID: 35915424 PMCID: PMC9342842 DOI: 10.1186/s12889-022-13860-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background The enterovirus 71 (EV-A71) vaccine has been used in Hefei for several years, and the epidemiological significance of vaccination in this area is unclear. We aims to explore the spatial–temporal-demographic and virological changes of hand, foot and mouth disease (HFMD) after vaccination in China. Methods The data for HFMD from 2012 to 2020 were downloaded with the help of HFMD reporting system of Hefei Center for Disease Control and Prevention and combined with the EV-A71 vaccination status in Hefei. The study defined the period between 2012 to 2016 as the pre-vaccination period and explored the effect of vaccination on the incidence of HFMD by comparing the changes of HFMD before and after vaccination in terms of spatial, temporal, demographic and virological aspects. Results During the study period, a higher incidence occurred in urban area and the random distribution changed to a slight cluster after vaccination. HFMD incidence had inconsistent seasonality over years, with one or two incidence peaks in varying years. The morbidity decreased from 215.22/105 in 2012–2016 to 179.81/105 in 2017–2020 (p < 0.001). Boys, 0–4 years old children and Scattered children were more susceptible to HFMD compared with the others, the proportions decreased after vaccination except in Scattered children. The main pathogenic enterovirus gradually changed from EV-A71 to Other Enteroviruses, especially coxsackieviruses A6 (CV-A6) after the implementation of EV-A71 vaccination. Conclusions The EV-A71 vaccine was effective in reducing the incidence of HFMD and changing the spatial, temporal, demographic, and virological characteristic. These changes should be considered during the vaccination implementation to further reduce the disease burden of HFMD. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13860-z.
Collapse
Affiliation(s)
- Li Huang
- Faculty of Clinical Medicine, Anhui Medical College, Hefei, 230601, Anhui, China
| | - Ting Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuxiang Liu
- Hefei Center for Disease Control and Prevention, Hefei, 230061, Anhui, China
| | - Yuansheng Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sichen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qinshu Chu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Tingyue Nie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Houmian Tu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jian Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Yinguang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Deng JZ, Rustandi RR, Barbacci D, Swartz AR, Gulasarian A, Loughney JW. Reverse-Phase Ultra-Performance Chromatography Method for Oncolytic Coxsackievirus Viral Protein Separation and Empty to Full Capsid Quantification. Hum Gene Ther 2022; 33:765-775. [PMID: 35387488 PMCID: PMC9347376 DOI: 10.1089/hum.2022.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Oncolytic virus immunotherapy is emerging as a novel therapeutic approach for cancer treatment. Immunotherapy clinical drug candidate V937 is currently in phase I/II clinical trials and consists of a proprietary formulation of Coxsackievirus A21 (CVA21), which specifically infects and lyses cells with overexpressed ICAM-1 receptors in a range of tumors. Mature Coxsackievirus virions, consisting of four structural virion proteins, (VPs) VP1, VP2, VP3, and VP4, and the RNA genome, are the only viral particles capable of being infectious. In addition to mature virions, empty procapsids with VPs, VP0, VP1, and VP3, and other virus particles are produced in V937 production cell culture. Viral protein VP0 is cleaved into VP2 and VP4 after RNA genome encapsidation to form mature virions. Clearance of viral particles containing VP0, and quantification of viral protein distribution are important in V937 downstream processing. Existing analytical methods for the characterization of viral proteins and particles may lack sensitivity or are low throughput. We developed a sensitive and robust reverse-phase ultra-performance chromatography method to separate, identify, and quantify all five CVA21 VPs. Quantification of virus capsid concentration and empty/full capsid ratio was achieved with good linearity, accuracy, and precision. ClinicalTrials.gov ID: NCT04521621 and NCT04152863.
Collapse
Affiliation(s)
- James Z. Deng
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Richard R. Rustandi
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Damon Barbacci
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Andrew R. Swartz
- Vaccine Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Amanda Gulasarian
- Vaccine Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - John W. Loughney
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
8
|
Li C, Zhu Y, She K, Jia Y, Liu T, Han C, Fang Q, Cheng C, Han L, Liu Y, Zhang Y, Li X. Modified effects of air pollutants on the relationship between temperature variability and hand, foot, and mouth disease in Zibo City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44573-44581. [PMID: 35133585 DOI: 10.1007/s11356-022-18817-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Hand, foot, and mouth disease (HFMD) poses a great disease burden in China. However, there are few studies on the relationship between temperature variability (TV) and HFMD. Moreover, whether air pollutions have modified effects on this relationship is still unknown. Therefore, this study aims to explore the modified effects of air pollutants on TV-HFMD association in Zibo City, China. Daily data of HFMD cases, meteorological factors, and air pollutants from 2015 to 2019 were collected for Zibo City. TV was estimated by calculating standard deviation of minimum and maximum temperatures over the exposure days. We used generalized additive model to estimate the association between TV and HFMD. The modified effects of air pollutants were assessed by comparing the estimated TV-HFMD associations between different air stratums. We found that TV increased the risk of HFMD. The effect was strongest at TV03 (4 days of exposure), when the incidence of HFMD increased by 3.6% [95% CI: 1.3-5.9%] for every 1℃ increases in TV. Males, children aged 0-4 years, were more sensitive to TV. We found that sulfur dioxide (SO2) enhanced TV's effects on all considered exposure days, while ozone (O3) reduced TV's effects on some exposure days in whole concerned population. However, we did not detect significant effect modification by particulate matter less than 10 microns in aerodynamic diameter (PM10). These findings are of significance in developing policies and public health practices to reduce the risks of HFMD by integrating changes in temperatures and air pollutants.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yuchen Zhu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Kaili She
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yan Jia
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Tingxuan Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chuang Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Qidi Fang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chuanlong Cheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Luyi Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
10
|
Välikangas T, Lietzén N, Jaakkola MK, Krogvold L, Eike MC, Kallionpää H, Tuomela S, Mathews C, Gerling IC, Oikarinen S, Hyöty H, Dahl-Jorgensen K, Elo LL, Lahesmaa R. Pancreas Whole Tissue Transcriptomics Highlights the Role of the Exocrine Pancreas in Patients With Recently Diagnosed Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:861985. [PMID: 35498413 PMCID: PMC9044038 DOI: 10.3389/fendo.2022.861985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Although type 1 diabetes (T1D) is primarily a disease of the pancreatic beta-cells, understanding of the disease-associated alterations in the whole pancreas could be important for the improved treatment or the prevention of the disease. We have characterized the whole-pancreas gene expression of patients with recently diagnosed T1D from the Diabetes Virus Detection (DiViD) study and non-diabetic controls. Furthermore, another parallel dataset of the whole pancreas and an additional dataset from the laser-captured pancreatic islets of the DiViD patients and non-diabetic organ donors were analyzed together with the original dataset to confirm the results and to get further insights into the potential disease-associated differences between the exocrine and the endocrine pancreas. First, higher expression of the core acinar cell genes, encoding for digestive enzymes, was detected in the whole pancreas of the DiViD patients when compared to non-diabetic controls. Second, In the pancreatic islets, upregulation of immune and inflammation related genes was observed in the DiViD patients when compared to non-diabetic controls, in line with earlier publications, while an opposite trend was observed for several immune and inflammation related genes at the whole pancreas tissue level. Third, strong downregulation of the regenerating gene family (REG) genes, linked to pancreatic islet growth and regeneration, was observed in the exocrine acinar cell dominated whole-pancreas data of the DiViD patients when compared with the non-diabetic controls. Fourth, analysis of unique features in the transcriptomes of each DiViD patient compared with the other DiViD patients, revealed elevated expression of central antiviral immune response genes in the whole-pancreas samples, but not in the pancreatic islets, of one DiViD patient. This difference in the extent of antiviral gene expression suggests different statuses of infection in the pancreas at the time of sampling between the DiViD patients, who were all enterovirus VP1+ in the islets by immunohistochemistry based on earlier studies. The observed features, indicating differences in the function, status and interplay between the exocrine and the endocrine pancreas of recent onset T1D patients, highlight the importance of studying both compartments for better understanding of the molecular mechanisms of T1D.
Collapse
Affiliation(s)
- Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Maria K. Jaakkola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Lars Krogvold
- Pediatric Department, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Morten C. Eike
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Soile Tuomela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clayton Mathews
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Ivan C. Gerling
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Knut Dahl-Jorgensen
- Pediatric Department, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- *Correspondence: Riitta Lahesmaa, ; Laura L. Elo,
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- *Correspondence: Riitta Lahesmaa, ; Laura L. Elo,
| |
Collapse
|
11
|
Jiang H, Zhang Z, Rao Q, Wang X, Wang M, Du T, Tang J, Long S, Zhang J, Luo J, Pan Y, Chen J, Ma J, Liu X, Fan M, Zhang T, Sun Q. The epidemiological characteristics of enterovirus infection before and after the use of enterovirus 71 inactivated vaccine in Kunming, China. Emerg Microbes Infect 2021; 10:619-628. [PMID: 33682641 PMCID: PMC8018479 DOI: 10.1080/22221751.2021.1899772] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterovirus A71 (EV-A71) inactivated vaccines have been widely inoculated among children in Kunming City after it was approved. However, there was a large-scale outbreak of Enteroviruses (EVs) infection in Kunming, 2018. The epidemiological characteristics of HFMD and EVs were analysed during 2008–2018, which are before and three years after EV-A71 vaccine starting to use. The changes in infection spectrum were also investigated, especially for severe HFMD in 2018. The incidence of EV-A71 decreased dramatically after the EV-A71 vaccine starting use. The proportion of non-CV-A16/EV-A71 EVs positive patients raised to 77.17–85.82%, while, EV-A71 and CV-A16 only accounted for 3.41–7.24% and 6.94–19.42% in 2017 and 2018, respectively. CV-A6 was the most important causative agent in all clinical symptoms (severe HFMD, HFMD, Herpangina and fever), accounting from 42.13% to 62.33%. EV-A71 only account for 0.36–2.05%. In severe HFMD, CV-A6 (62.33%), CV-A10 (11.64%), and CV-A16 (10.96%) were the major causative agent in 2018. EV-A71 inactivated vaccine has a good protective effect against EV-A71 and induced EVs infection spectrum changefully. EV-A71 vaccine has no or insignificant cross-protection effect on CV-A6, CV-A10, and CV-A16. Herein, developing 4-valent combined vaccines is urgently needed.
Collapse
Affiliation(s)
- Hongchao Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Zhen Zhang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Qing Rao
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Meifen Wang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Tingyi Du
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Jiaolian Tang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Shuying Long
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Jing Ma
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Xiaomei Liu
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Mao Fan
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Tiesong Zhang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| |
Collapse
|
12
|
Wu Y, Yuan X, Li J, Kadowaki T. DWV Infection in vitro Using Honey Bee Pupal Tissue. Front Microbiol 2021; 12:631889. [PMID: 33643262 PMCID: PMC7902917 DOI: 10.3389/fmicb.2021.631889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
The deformed wing virus (DWV) has been best characterized among honey bee viruses; however, very little is known regarding the mechanisms of viral infection and replication due to the lack of immortalized honey bee cell lines. To solve this problem, we established an in vitro system using honey bee pupal tissue to reconstruct DWV binding and entry into the host cell, followed by translation of the RNA genome and polyprotein processing using RNA-dependent RNA polymerase (RdRP) as a marker. Using this system, the P-domain of the virion subunit VP1 was found to be essential for DWV infection, but not for binding and entry into the cell. DWV efficiently infected the head tissue derived from early but not late pupa, suggesting that undifferentiated cells are targeted for viral infection. Furthermore, we found that inhibitors of mammalian picornavirus 3C-protease, rupintrivir and quercetin suppressed RdRP synthesis, indicating that this in vitro system is also useful for screening a compound to control viral infection. Our in vitro system may help to understand the mechanism of DWV infection in host cells.
Collapse
Affiliation(s)
| | | | | | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Higher Education Town, Suzhou, China
| |
Collapse
|
13
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|
14
|
Kuo SC, Tsou HH, Wu HY, Hsu YT, Lee FJ, Shih SM, Hsiung CA, Chen WJ. Nonpolio Enterovirus Activity during the COVID-19 Pandemic, Taiwan, 2020. Emerg Infect Dis 2020; 27. [PMID: 33261719 PMCID: PMC7774568 DOI: 10.3201/eid2701.203394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Taiwan, lower nonpolio enterovirus activity during the coronavirus disease pandemic in 2020 compared with 2014-2019 might be attributable to adherence to nonpharmaceutical interventions. The preventable fraction among unexposed persons indicated that 90% of nonpolio enterovirus activity might have been prevented during 2014-2019 by adopting the same measures enforced in 2020.
Collapse
|
15
|
Song C, Li Y, Zhou Y, Liang L, Turtle L, Wang F, Wu P, Qiu Q, Yang J, Wang K, Cui P, Cheng Y, Zhang T, Guo C, Zeng M, Long L, Peiris M, Zhou C, Cowling BJ, Yu H. Enterovirus genomic load and disease severity among children hospitalised with hand, foot and mouth disease. EBioMedicine 2020; 62:103078. [PMID: 33161231 PMCID: PMC7653080 DOI: 10.1016/j.ebiom.2020.103078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Examining associations between viral genomic loads of enteroviruses and clinical severity is important for promoting and improving development of antiviral drugs related to hand, foot and mouth disease (HFMD). METHODS Throat swabs were collected from HFMD cases at acute phase of illness using a standardized technique in a prospective study. The viral genomic load was categorized into low, medium, and high groups using parameters of real-time reverse transcription-polymerase chain reaction. The clinical severities were assessed with four indicators, respectively. FINDINGS We analysed 1109 HFMD cases, including 538 children with CV-A6, 231 with CV-A16, 156 with EV-A71, 78 with CV-A10, 59 with CV-A4, and 47 with CV-A2. EV-A71 genomic load categories were associated with risks of diagnoses of CNS complications (p = 0.016), requiring systemic corticosteroids or IVIG (p = 0.011), intensive care unit admission (p = 0.002) and length of hospital stay over 5 days (p = 0.048). In the multivariate analyses, point estimates of adjusted odds ratio (OR) tended to increase with viral genomic loads for all four severe outcomes and ORs of highest viral genomic load were all significantly larger than one for EV-A71. INTERPRETATION HFMD clinical severities positively associate with viral genomic loads of EV-A71 in throat swabs. Specific antiviral drugs should be developed to reduce enterovirus load and to alleviate the clinical severities for HFMD cases. FUNDING National Science Fund for Distinguished Young Scholars.
Collapse
Affiliation(s)
- Chunlan Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Yu Li
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yonghong Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lu Liang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom; Tropical & Infectious Disease Unit, Royal Liverpool University Hospital (member of Liverpool Health Partners), Liverpool, United Kingdom
| | - Fang Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi Qiu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jianli Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Kai Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Peng Cui
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yibing Cheng
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Tianchen Zhang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chun Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyao Zeng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China; NHC key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Lu Long
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chongchen Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China.
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
16
|
Protecting the most vulnerable from hand, foot, and mouth disease. THE LANCET. INFECTIOUS DISEASES 2020; 21:308-309. [PMID: 33031751 DOI: 10.1016/s1473-3099(20)30452-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/31/2023]
|
17
|
Li X, Wang M, Cheng A, Wen X, Ou X, Mao S, Gao Q, Sun D, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Enterovirus Replication Organelles and Inhibitors of Their Formation. Front Microbiol 2020; 11:1817. [PMID: 32973693 PMCID: PMC7468505 DOI: 10.3389/fmicb.2020.01817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroviral replication reorganizes the cellular membrane. Upon infection, viral proteins and hijacked host factors generate unique structures called replication organelles (ROs) to replicate their viral genomes. ROs promote efficient viral genome replication, coordinate the steps of the viral replication cycle, and protect viral RNA from host immune responses. More recent researches have focused on the ultrastructure structures, formation mechanism, and functions in the virus life cycle of ROs. Dynamic model of enterovirus ROs structure is proposed, and the secretory pathway, the autophagy pathway, and lipid metabolism are found to be associated in the formation of ROs. With deeper understanding of ROs, some compounds have been found to show inhibitory effects on viral replication by targeting key proteins in the process of ROs formation. Here, we review the recent findings concerning the role, morphology, biogenesis, formation mechanism, and inhibitors of enterovirus ROs.
Collapse
Affiliation(s)
- Xinhong Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Yan J, Wang M, Wang M, Dun Y, Zhu L, Yi Z, Zhang S. Involvement of VCP/UFD1/Nucleolin in the viral entry of Enterovirus A species. Virus Res 2020; 283:197974. [PMID: 32289342 PMCID: PMC7151541 DOI: 10.1016/j.virusres.2020.197974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/19/2023]
Abstract
Valosin-containing protein (VCP) plays roles in various cellular activities. Recently, Enterovirus A71 (EVA71) infection was found to hijack the VCP protein. However, the mechanism by which VCP participates in the EVA71 life cycle remains unclear. Using chemical inhibitor, RNA interference and dominant negative mutant, we confirmed that the VCP and its ATPase activity were critical for EVA71 infection. To identify the factors downstream of VCP in enterovirus infection, 31 known VCP-cofactors were screened in the siRNA knockdown experiments. The results showed that UFD1 (ubiquitin recognition factor in ER associated degradation 1), but not NPL4 (NPL4 homolog, ubiquitin recognition factor), played critical roles in infections by EVA71. UFD1 knockdown suppressed the activity of EVA71 pseudovirus (causing single round infection) while it did not affect the viral replication in replicon RNA transfection assays. In addition, knockdown of VCP and UFD1 reduced viral infections by multiple human Enterovirus A serotypes. Mechanistically, we found that knockdown of UFD1 significantly decreased the binding and the subsequent entry of EVA71 to host cells through modulating the levels of nucleolin protein, a coreceptor of EVA71. Together, these data reveal novel roles of VCP and its cofactor UFD1 in the virus entry by EVA71.
Collapse
Affiliation(s)
- Jingjing Yan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Dun
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liuyao Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhigang Yi
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Functional analyses of mammalian virus 5'UTR-derived, small RNAs that regulate virus translation. Methods 2020; 183:13-20. [PMID: 32081746 DOI: 10.1016/j.ymeth.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
Enterovirus A71 (EV-A711) RNA contains an internal ribosomal entry site (IRES) to direct cap-independent translation. IRES-dependent translation requires the host's translation initiation factors and IRES-associated trans-acting factors (ITAFs). We previously showed that hnRNP A1, the mRNA stability factor HuR, and the RISC subunit Argonaute 2 (Ago2) are ITAFs that associate with stem loop II (SL-II) of the IRES and promote IRES-dependent translation. By contrast, the mRNA decay factor AUF1 is a negative-acting ITAF that also binds SL-II. Moreover, the small RNA-processing enzyme Dicer produces at least four virus-derived, small RNAs (vsRNAs 1-4) from the EV-A71 5'UTR in infected cells. One of these, vsRNA1, derived from SL-II, inhibits IRES activity via an unknown mechanism. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with SL-II. This presents a possible mechanism by which vsRNA1 could control association of ITAFs with the IRES and modulate viral translation. Here, we describe methods for functional analyses of vsRNA1-mediated regulation of IRES activity. These methods should be applicable to other virus-derived, small RNAs as well.
Collapse
|
21
|
Lee KM, Wu CC, Wu SE, Lin YH, Wang LT, Chang CR, Huang PN, Shih SR, Kuo RL. The RNA-dependent RNA polymerase of enterovirus A71 associates with ribosomal proteins and positively regulates protein translation. RNA Biol 2020; 17:608-622. [PMID: 32009553 DOI: 10.1080/15476286.2020.1722448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Enteroviruses, which may cause neurological complications, have become a public health threat worldwide in recent years. Interactions between cellular proteins and enteroviral proteins could interfere with cellular biological processes to facilitate viral replication in infected cells. Enteroviral RNA-dependent RNA polymerase (RdRP), known as 3D protein, mainly functions as a replicase for viral RNA synthesis in infected cells. However, the 3D protein encoded by enterovirus A71 (EV-A71) could also interact with several cellular proteins to regulate cellular events and responses during infection. To globally investigate the functions of the EV-A71 3D protein in regulating biological processes in host cells, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that may associate with the 3D protein. We found that the 3D protein interacts with factors involved in translation-related biological processes, including ribosomal proteins. In addition, polysome profiling analysis showed that the 3D protein cosediments with small and large subunits of ribosomes. We further discovered that the EV-A71 3D protein could enhance EV-A71 internal ribosome entry site (IRES)-dependent translation as well as cap-dependent translation. Collectively, this research demonstrated that the RNA polymerase encoded by EV-A71 could join a functional ribosomal complex and positively regulate viral and host translation.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shang-En Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Han Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ting Wang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ru Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Virology Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
22
|
Singh N, Rai S, Bhatnagar R, Bhatnagar S. Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases. In Silico Biol 2020; 14:115-133. [PMID: 35001887 PMCID: PMC8842779 DOI: 10.3233/isb-210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific (cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor, EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system level understanding of cardiac damage in microbe induced CVDs.
Collapse
Affiliation(s)
- Nirupma Singh
- Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sneha Rai
- Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | | | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India.,Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|