1
|
Altenburg IS, Smets NG, Strijkers GJ, Bakker ENTP. Medin, a link between vascular pathology and dementia? J Cereb Blood Flow Metab 2024; 44:1403-1408. [PMID: 39370976 PMCID: PMC11563558 DOI: 10.1177/0271678x241289772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Medin is a protein fragment derived from milk fat globule epidermal growth factor VIII (MFG-E8). Medin aggregates are present in the vessel wall of most subjects over 50 years of age. In this narrative review, we focus on the consequences of medin aggregation in relation to the development of dementia. Recent literature revealed medin as biomarker for dementia in CSF, specifically of a vascular subtype. Preclinical work showed that medin is associated with aging-related cerebral vascular dysfunction, vascular stiffening, hypertension, and. vascular amyloid β deposition. These findings position medin as a potential mechanistic link between aging, vascular pathology and dementia.
Collapse
Affiliation(s)
- Ilse S Altenburg
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nina G Smets
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
- Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
| | - Erik NTP Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
- Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Rout M, Malone-Perez MW, Park G, Lerner M, Kimble Frazer J, Apple B, Vaughn A, Payton M, Stavrakis S, Sidorov E, Fung KA, Sanghera DK. Contribution of circulating Mfge8 to human T2DM and cardiovascular disease. Gene 2024; 927:148712. [PMID: 38901535 PMCID: PMC11348863 DOI: 10.1016/j.gene.2024.148712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
MFGE8 is a major exosome (EV) protein known to mediate inflammation and atherosclerosis in type 2 diabetes mellitus (T2DM) in animal studies. The pathophysiological role of this protein in obesity, T2DM, and cardiovascular disease is less investigated in humans. Earlier we reported a rare Asian Indian population-specific missense variant (rs371227978; Arg148His) in the MFGE8 gene associated with increased circulating Mfge8 and T2DM. We have further investigated the role of Mfge8 with T2DM risk in additional Asian Indians (n = 4897) and Europeans and other multiethnic cohorts from UK Biobank (UKBB) (n = 455,808) and the US (n = 1150). We also evaluated the exposure of Mfge8-enriched human EVs in zebrafish (ZF) for their impact on cardiometabolic organ system. Most individual carriers of Arg148His variant not only had high circulating Mfge8 but also revealed a positive significant correlation with glucose (r = 0.42; p = 4.9 × 10-04), while the non-carriers showed a negative correlation of Mfge8 with glucose (r = -0.38; p = 0.001) in Asian Indians. The same variant was monomorphic in non-South Asian ethnicities. Even without the variant, serum Mfge8 correlated significantly with blood glucose in other non-South Asian ethnicities (r = 0.47; p = 2.2 × 10-13). Since Mfge8 is an EV marker, we tested the exposure of Mfge8-enriched human EVs to ZF larvae as an exploratory study. The ZF larvae showed rapid effects on insulin-sensitive organs, developing fatty liver disease, heart hypertrophy and exhibiting redundant growth with poor muscular architecture with and without the high-fat diet (HFD). In contrast, the control group fishes developed fatty liver disease and heart hypertrophy only after the HFD feeding. Backed with strong support from animal studies on the role of Mfge8 in obesity, insulin resistance, and atherosclerosis, the current research suggests that circulating Mfge8 may become a potential marker for predicting the risk of T2DM and cardiovascular disease in humans.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Megan W Malone-Perez
- Department of Pediatrics, Section of Hematology and Oncology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gilseung Park
- Department of Pediatrics, Section of Hematology and Oncology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Megan Lerner
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- Department of Pediatrics, Section of Hematology and Oncology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Blair Apple
- Department of Neurology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - April Vaughn
- Department of Neurology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marvin Payton
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Evgeny Sidorov
- Department of Neurology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - KarMing A Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Li D, Rongchun W, Lu W, Ma Y. Exploring the potential of MFG-E8 in neurodegenerative diseases. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39468823 DOI: 10.1080/10408398.2024.2417800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein regulating intercellular interactions in various biological and pathological processes. This review summarizes the effects and mechanisms of MFG-E8 in neurodegenerative diseases (NDDs), emphasizing its roles in inflammation, apoptosis, and oxidative stress. In this review, will also explore the potential of MFG-E8 as a diagnostic biomarker and its therapeutic applications in neurodegenerative disorders. Recent studies have revealed intriguing characteristics of using MFG-E8 as a potential drug for treating various brain disorders. While the discovery, origin, expression, and physiological functions of MFG-E8 in various organs and tissues are well defined, its role in the brain remains less understood. This is particularly true for NDDs, indicating unmet medical needs. Elucidating its role in the brain could position MFG-E8 as a potential treatment for NDDs.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wang Rongchun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
4
|
Wang M, McGraw KR, Monticone RE, Giordo R, Eid AH, Pintus G. Enhanced vasorin signaling mitigates adverse cardiovascular remodeling. Aging Med (Milton) 2024; 7:414-423. [PMID: 38975316 PMCID: PMC11222745 DOI: 10.1002/agm2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Arterial stiffening is a critical risk factor contributing to the exponential rise in age-associated cardiovascular disease incidence. This process involves age-induced arterial proinflammation, collagen deposition, and calcification, which collectively contribute to arterial stiffening. The primary driver of proinflammatory processes leading to collagen deposition in the arterial wall is the transforming growth factor-beta1 (TGF-β1) signaling. Activation of this signaling is pivotal in driving vascular extracellular remodeling, eventually leading to arterial fibrosis and calcification. Interestingly, the glycosylated protein vasorin (VASN) physically interacts with TGF-β1, and functionally restraining its proinflammatory fibrotic signaling in arterial walls and vascular smooth muscle cells (VSMCs). Notably, as age advances, matrix metalloproteinase type II (MMP-2) is activated, which effectively cleaves VASN protein in both arterial walls and VSMCs. This age-associated/MMP-2-mediated decrease in VASN levels exacerbates TGF-β1 activation, amplifying arterial fibrosis and calcification in the arterial wall. Importantly, TGF-β1 is a downstream molecule of the angiotensin II (Ang II) signaling pathway in the arterial wall and VSMCs, which is modulated by VASN. Indeed, chronic administration of Ang II to young rats significantly activates MMP-2 and diminishes the VASN expression to levels comparable to untreated older control rats. This review highlights and discusses the role played by VASN in mitigating fibrosis and calcification by alleviating TGF-β1 activation and signaling in arterial walls and VSMCs. Understanding these molecular physical and functional interactions may pave the way for establishing VASN-based therapeutic strategies to counteract adverse age-associated cardiovascular remodeling, eventually reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Kimberly Raginski McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Roberta Giordo
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| | | |
Collapse
|
5
|
Zhao W, Zhao B, Meng X, Li B, Wang Y, Yu F, Fu C, Yu X, Li X, Dai C, Wang J, Gao H, Cheng M. The regulation of MFG-E8 on the mitophagy in diabetic sarcopenia via the HSPA1L-Parkin pathway and the effect of D-pinitol. J Cachexia Sarcopenia Muscle 2024; 15:934-948. [PMID: 38553831 PMCID: PMC11154748 DOI: 10.1002/jcsm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diabetic sarcopenia is a disease-related skeletal muscle disorder that causes progressive symptoms. The complete understanding of its pathogenesis is yet to be unravelled, which makes it difficult to develop effective therapeutic strategies. This study investigates how MFG-E8 affects mitophagy and the protective role of D-pinitol (DP) in diabetic sarcopenia. METHODS In vivo, streptozotocin-induced diabetic SAM-R1 (STZ-R1) and SAM-P8 (STZ-P8) mice (16-week-old) were used, and STZ-P8 mice were administrated of DP (150 mg/kg per day) for 6 weeks. Gastrocnemius muscles were harvested for histological analysis including transmission electron microscopy. Proteins were evaluated via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) assay. In vitro, advanced glycation end products (AGEs) induced diabetic and D-galactose (DG) induced senescent C2C12 models were established and received DP, MFG-E8 plasmid (Mover)/siRNA (MsiRNA), or 3-MA/Torin-1 intervention. Proteins were evaluated by IF and WB assay. Immunoprecipitation (IP) and co-immunoprecipitation (CO-IP) were used for hunting the interacted proteins of MFG-E8. RESULTS In vivo, sarcopenia, mitophagy deficiency, and up-regulated MFG-E8 were confirmed in the STZ-P8 group. DP exerted protective effects on sarcopenia and mitophagy (DP + STZ-P8 vs. STZ-P8; all P < 0.01), such as increased lean mass (8.47 ± 0.81 g vs. 7.08 ± 1.64 g), grip strength (208.62 ± 39.45 g vs. 160.87 ± 26.95 g), rotarod tests (109.7 ± 11.81 s vs. 59.3 ± 20.97 s), muscle cross-sectional area (CSA) (1912.17 ± 535.61 μm2 vs. 1557.19 ± 588.38 μm2), autophagosomes (0.07 ± 0.02 per μm2 vs. 0.02 ± 0.01 per μm2), and cytolysosome (0.07 ± 0.03 per μm2 vs. 0.03 ± 0.01 per μm2). DP down-regulated MFG-E8 in both serum (DP + STZ-P8: 253.19 ± 34.75 pg/mL vs. STZ-P8: 404.69 ± 78.97 pg/mL; P < 0.001) and gastrocnemius muscle (WB assay. DP + STZ-P8: 0.39 ± 0.04 vs. STZ-P8: 0.55 ± 0.08; P < 0.01). DP also up-regulated PINK1, Parkin and LC3B-II/I ratio, and down-regulated P62 in gastrocnemius muscles (all P < 0.01). In vitro, mitophagy deficiency and MFG-E8 up-regulation were confirmed in diabetic and senescent models (all P < 0.05). DP and MsiRNA down-regulated MFG-E8 and P62, and up-regulated PINK1, Parkin and LC3B-II/I ratio to promote mitophagy as Torin-1 does (all P < 0.05). HSPA1L was confirmed as an interacted protein of MFG-E8 in IP and CO-IP assay. Mover down-regulated the expression of Parkin via the HSPA1L-Parkin pathway, leading to mitophagy inhibition. MsiRNA up-regulated the expression of PINK1 via SGK1, FOXO1, and STAT3 phosphorylation pathways, leading to mitophagy stimulation. CONCLUSIONS MFG-E8 is a crucial target protein of DP and plays a distinct role in mitophagy regulation. DP down-regulates the expression of MFG-E8, reduces mitophagy deficiency, and alleviates the symptoms of diabetic sarcopenia, which could be considered a novel therapeutic strategy for diabetic sarcopenia.
Collapse
Affiliation(s)
- Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Bin Zhao
- Postdoctoral Research StationShandong University of Traditional Chinese MedicineJinanChina
| | - Xinyue Meng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Health Management Center (East Area)Qilu Hospital of Shandong UniversityJinanChina
| | - Yajuan Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xiaoli Li
- Department of PharmacyQilu Hospital of Shandong UniversityJinanChina
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| |
Collapse
|
6
|
Pepin ME, Gupta RM. The Role of Endothelial Cells in Atherosclerosis: Insights from Genetic Association Studies. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:499-509. [PMID: 37827214 PMCID: PMC10988759 DOI: 10.1016/j.ajpath.2023.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Endothelial cells (ECs) mediate several biological functions that are relevant to atherosclerosis and coronary artery disease (CAD), regulating an array of vital processes including vascular tone, wound healing, reactive oxygen species, shear stress response, and inflammation. Although which of these functions is linked causally with CAD development and/or progression is not yet known, genome-wide association studies have implicated more than 400 loci associated with CAD risk, among which several have shown EC-relevant functions. Given the arduous process of mechanistically interrogating single loci to CAD, high-throughput variant characterization methods, including pooled Clustered Regularly Interspaced Short Palindromic Repeats screens, offer exciting potential to rapidly accelerate the discovery of bona fide EC-relevant genetic loci. These discoveries in turn will broaden the therapeutic avenues for CAD beyond lipid lowering and behavioral risk modification to include EC-centric modalities of risk prevention and treatment.
Collapse
Affiliation(s)
- Mark E Pepin
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Rajat M Gupta
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
7
|
He JH, Li XJ, Wang SP, Guo X, Chu HX, Xu HC, Wang YS. Eugenol Inhibits Ox-LDL-Induced Proliferation and Migration of Human Vascular Smooth Muscle Cells by Inhibiting the Ang II/MFG-E8/MCP-1 Signaling Cascade. J Inflamm Res 2024; 17:641-653. [PMID: 38328560 PMCID: PMC10847669 DOI: 10.2147/jir.s446960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Objective In this study, we investigated the effect and mechanism of action of eugenol on oxidized low-density lipoprotein (ox-LDL)-induced abnormal proliferation and migration of human vascular smooth muscle cells (HVSMCs). Methods HVSMCs were treated with 100 ug/mL ox-LDL for 24 hours to establish a cell model. After 1-hour pretreatment, eugenol at concentrations of 5, 25, and 50 uM was added. Cell viability was assessed using an MTT assay, PCNA expression was detected using Western blot, cell cycle distribution was analyzed using flow cytometry, and cell migration ability was evaluated using wound healing and Transwell migration assays. To investigate the mechanisms, Ang II receptors were inhibited by 1000 nM valsartan, MFG-E8 was knocked down by shRNA, MCP-1 was inhibited by siRNA, and MFG-E8 was overexpressed using plasmids. Results The findings from this study elucidated the stimulatory impact of ox-LDL on the proliferation and functionality of HVSMCs. Different concentrations of eugenol effectively mitigated the enhanced activity of HVSMCs induced by ox-LDL, with 50 uM eugenol exhibiting the most pronounced inhibitory effect. Flow cytometry and Western blot results showed ox-LDL reduced G1 phase cells and increased PCNA expression, while 50 uM eugenol inhibited ox-LDL-induced HVSMC proliferation. In wound healing and Transwell migration experiments, the ox-LDL group showed larger cell scratch filling and migration than the control group, both of which were inhibited by 50 uM eugenol. Inhibiting the Ang II/MFG-E8/MCP-1 signaling cascade mimicked eugenol's effects, while MFG-E8 overexpression reversed eugenol's inhibitory effect. Conclusion Eugenol can inhibit the proliferation and migration of ox-LDL-induced HVSMCs by inhibiting Ang II/MFG-E8/MCP-1 signaling cascade, making it a potential therapeutic drug for atherosclerosis.
Collapse
Affiliation(s)
- Jia-Huan He
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Xiang-Jun Li
- Department of Experimental Pharmacology and Toxicology, College of Pharmacy, Jilin University, Changchun, 130000, People’s Republic of China
| | - Shi-Peng Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Xia Guo
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Hao-Xuan Chu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Han-Chi Xu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Yu-Shi Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| |
Collapse
|
8
|
Santinha D, Vilaça A, Estronca L, Schüler SC, Bartoli C, De Sandre-Giovannoli A, Figueiredo A, Quaas M, Pompe T, Ori A, Ferreira L. Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging. Mol Cell Proteomics 2024; 23:100706. [PMID: 38141925 PMCID: PMC10828820 DOI: 10.1016/j.mcpro.2023.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Impaired extracellular matrix (ECM) remodeling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, aging, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological aging are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodeling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) aging. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analyzed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an aging phenotype. These results extend our knowledge of the LV proteome remodeling induced by chronological and pathological aging in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodeling and the aging process of ECs, which may provide an additional layer to prevent cardiac aging.
Collapse
Affiliation(s)
- Deolinda Santinha
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Andreia Vilaça
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal; CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Luís Estronca
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France; Molecular genetics laboratory, La Timone children's hospital, Marseille, France
| | - Arnaldo Figueiredo
- Serviço de Urologia e Transplantação Renal, Centro Hospitalar Universitário Coimbra EPE, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maximillian Quaas
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal.
| |
Collapse
|
9
|
Chaung W, Ma G, Jacob A, Brenner M, Wang P. Human cell-expressed tag-free rhMFG-E8 as an effective radiation mitigator. Sci Rep 2023; 13:22186. [PMID: 38092894 PMCID: PMC10719321 DOI: 10.1038/s41598-023-49499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and the possibility of antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 will have suitable structural and functional properties to be developed as a safe and effective novel biologic to treat inflammatory diseases including radiation injury. We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing an experimental rodent model of radiation injury, i.e., partial body irradiation (PBI). HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE with the standard human MFG-E8 loaded as control and, mass spectrometry followed by analysis using MASCOT for peptide mass fingerprint. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with a terminal elimination half-life in circulation of at least 1.45 h. In the 15 Gy PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 calculated using probit analysis was 1.058. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI suggesting it as a potential therapeutic candidate for a medical countermeasure for radiation injury. Our new human cell-expressed tag-free rhMFG-E8 has proper structural and functional properties to be further developed as a safe and effective therapy to treat victims of severe acute radiation injury.
Collapse
Affiliation(s)
- Wayne Chaung
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Gaifeng Ma
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Max Brenner
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA.
| |
Collapse
|
10
|
Milk Fat Globule Epidermal Growth Factor VIII Fragment Medin in Age-Associated Arterial Adverse Remodeling and Arterial Disease. Cells 2023; 12:cells12020253. [PMID: 36672188 PMCID: PMC9857039 DOI: 10.3390/cells12020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Medin, a small 50-amino acid peptide, is an internal cleaved product from the second discoidin domain of milk fat globule epidermal growth factor VIII (MFG-E8) protein. Medin has been reported as the most common amylogenic protein in the upper part of the arterial system, including aortic, temporal, and cerebral arterial walls in the elderly. Medin has a high affinity to elastic fibers and is closely associated with arterial degenerative inflammation, elastic fiber fragmentation, calcification, and amyloidosis. In vitro, treating with the medin peptide promotes the inflammatory phenotypic shift of both endothelial cells and vascular smooth muscle cells. In vitro, ex vivo, and in vivo studies demonstrate that medin enhances the abundance of reactive oxygen species and reactive nitrogen species produced by both endothelial cells and vascular smooth muscle cells and promotes vascular endothelial dysfunction and arterial stiffening. Immunostaining and immunoblotting analyses of human samples indicate that the levels of medin are increased in the pathogenesis of aortic aneurysm/dissection, temporal arteritis, and cerebrovascular dementia. Thus, medin peptide could be targeted as a biomarker diagnostic tool or as a potential molecular approach to curbing the arterial degenerative inflammatory remodeling that accompanies aging and disease.
Collapse
|
11
|
Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, Weeks EM, Wang M, Hindy G, Zhou W, Grace C, Roselli C, Marston NA, Kamanu FK, Surakka I, Venegas LM, Sherliker P, Koyama S, Ishigaki K, Åsvold BO, Brown MR, Brumpton B, de Vries PS, Giannakopoulou O, Giardoglou P, Gudbjartsson DF, Güldener U, Haider SMI, Helgadottir A, Ibrahim M, Kastrati A, Kessler T, Kyriakou T, Konopka T, Li L, Ma L, Meitinger T, Mucha S, Munz M, Murgia F, Nielsen JB, Nöthen MM, Pang S, Reinberger T, Schnitzler G, Smedley D, Thorleifsson G, von Scheidt M, Ulirsch JC, Arnar DO, Burtt NP, Costanzo MC, Flannick J, Ito K, Jang DK, Kamatani Y, Khera AV, Komuro I, Kullo IJ, Lotta LA, Nelson CP, Roberts R, Thorgeirsson G, Thorsteinsdottir U, Webb TR, Baras A, Björkegren JLM, Boerwinkle E, Dedoussis G, Holm H, Hveem K, Melander O, Morrison AC, Orho-Melander M, Rallidis LS, Ruusalepp A, Sabatine MS, Stefansson K, Zalloua P, Ellinor PT, Farrall M, Danesh J, Ruff CT, Finucane HK, Hopewell JC, Clarke R, Gupta RM, Erdmann J, Samani NJ, Schunkert H, Watkins H, Willer CJ, Deloukas P, Kathiresan S, Butterworth AS. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet 2022; 54:1803-1815. [PMID: 36474045 PMCID: PMC9729111 DOI: 10.1038/s41588-022-01233-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
Collapse
Grants
- MR/L003120/1 Medical Research Council
- BRC-1215-20014 Department of Health
- R01 HL125863 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- RG/14/5/30893 British Heart Foundation
- SP/13/2/30111 British Heart Foundation
- SP/16/4/32697 British Heart Foundation
- HHSN268201700001I NHLBI NIH HHS
- FS/14/55/30806 British Heart Foundation
- R01 HL087641 NHLBI NIH HHS
- MC_PC_17228 Medical Research Council
- MR/S502443/1 Medical Research Council
- R01 HL109946 NHLBI NIH HHS
- UM1 DK105554 NIDDK NIH HHS
- KL2 TR002542 NCATS NIH HHS
- 203141/Z/16/Z Wellcome Trust
- Department of Health
- FS/14/66/3129 British Heart Foundation
- R01 HL086694 NHLBI NIH HHS
- R35 HL135824 NHLBI NIH HHS
- RG/18/13/33946 British Heart Foundation
- T32 HG000040 NHGRI NIH HHS
- R01 HL146860 NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- SP/19/2/34462 British Heart Foundation
- HHSN268201700004I NHLBI NIH HHS
- RE/13/1/30181 British Heart Foundation
- K08 HL153950 NHLBI NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- Wellcome Trust
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- K08 HL153937 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- RG/13/13/30194 British Heart Foundation
- T32 HL007604 NHLBI NIH HHS
- SP/09/002 British Heart Foundation
- G0800270 Medical Research Council
- K08 HG010155 NHGRI NIH HHS
- MC_QA137853 Medical Research Council
- K.G.A. has received support from the American Heart Association Institute for Precision Cardiovascular Medicine (17IFUNP3384001), a KL2/Catalyst Medical Research Investigator Training (CMeRIT) award from the Harvard Catalyst (KL2 TR002542), and the NIH (1K08HL153937).
- B.N.W is supported by the National Science Foundation Graduate Research Program (DGE 1256260).
- I.S. is supported by a Precision Health Scholars Award from the University of Michigan Medical School.
- I.K., S.Ko., and K.It. are funded by the Japan Agency for Medical Research and Development, AMED, under Grant Numbers JP16ek0109070h0003, JP18kk0205008h0003, JP18kk0205001s0703, JP20km0405209, and JP20ek0109487. The BioBank Japan is supported by AMED under Grant Number JP20km0605001.
- J.L.M.B. acknowledges research support from NIH R01HL125863, American Heart Association (A14SFRN20840000), the Swedish Research Council (2018-02529) and Heart Lung Foundation (20170265) and the Foundation Leducq (PlaqueOmics: Novel Roles of Smooth Muscle and Other Matrix Producing Cells in Atherosclerotic Plaque Stability and Rupture, 18CVD02.
- P.S.dV was supported by American Heart Association grant number 18CDA34110116 and National Heart, Lung, and Blood Institute grant R01HL146860. The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research.
- O.G. has received funding from the British Heart Foundation (BHF) (FS/14/66/3129).
- T.K. is supported by the Corona-Foundation (Junior Research Group Translational Cardiovascular Genomics) and the German Research Foundation (DFG) as part of the Sonderforschungsbereich SFB 1123 (B02).
- D.S.A. has received support from a training grant from the NIH (T32HL007604).
- N.P.B., M.C.C., J.F., and D.-K.J. have been funded by the National Institute of Diabetes and Digestive and Kidney Diseases (2UM1DK105554).
- A.V.K. has been funded by 1K08HG010155 from the National Human Genome Research Institute.
- C.P.N. and T.R.W received funding from the British Heart Foundation (SP/16/4/32697).
- The Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. The K.G. Jebsen Center for Genetic Epidemiology is financed by Stiftelsen Kristian Gerhard Jebsen; Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology; and Central Norway Regional Health Authority. Whole genome sequencing for the HUNT study was funded by HL109946.
- O.M. was funded by the Swedish Heart- and Lung Foundation, the Swedish Research Council, the European Research Council ERC-AdG-2019-885003 and Lund University Infrastructure grant ”Malmö population-based cohorts” (STYR 2019/2046).
- This work was supported by the European Commission (HEALTH-F2–2013-601456) and the TriPartite Immunometabolism Consortium [TrIC]- NovoNordisk Foundation (NNF15CC0018486), VIAgenomics (SP/19/2/344612), the British Heart Foundation, a Wellcome Trust core award (M.F., H.W., 203141/Z/16/Z) and support from the NIHR Oxford Biomedical Research Centre. M.F. and H.W. are members of the Oxford BHF Centre of Research Excellence (RE/13/1/30181). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
- J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator.
- J.C.H. acknowledges personal funding from the British Heart Foundation (FS/14/55/30806) and is a member of the Oxford BHF Centre of Research Excellence (RE/13/1/30181).
- R.C. has received funding from the British Heart Foundation and British Heart Foundation Centre of Research Excellence.
- This research was supported by BHF (SP/13/2/30111) and conducted using the UK Biobank Resource (application number 9922).
- The GerMIFs gratefully acknowledge the support of the Bavarian State Ministry of Health and Care, furthermore founded this work within its framework of DigiMed Bayern (grant No: DMB-1805-0001), the German Federal Ministry of Education and Research (BMBF) within the framework of ERA-NET on Cardiovascular Disease (Druggable-MI-genes: 01KL1802), within the scheme of target validation (BlockCAD: 16GW0198K), within the framework of the e:Med research and funding concept (AbCD-Net: 01ZX1706C), the British Heart Foundation (BHF)/German Centre of Cardiovascular Research (DZHK)-collaboration (VIAgenomics) and the German Research Foundation (DFG) as part of the Sonderforschungsbereich SFB 1123 (B02) and the Sonderforschungsbereich SFB TRR 267 (B05).
- C.J.W. is funded by NIH grant R35-HL135824.
- This work was supported by the British Heart Foundation (BHF) grant RG/14/5/30893 (P.D.) and forms part of the research themes contributing to the translational research portfolios of the Barts Biomedical Research Centre funded by the UK National Institute for Health Research (NIHR).
Collapse
Affiliation(s)
- Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Tao Jiang
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Anuj Goel
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Deepak S Atri
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elle M Weeks
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minxian Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, Doha, Qatar
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Grace
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frederick K Kamanu
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Loreto Muñoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Paul Sherliker
- Medical Research Council Population Health Research Unit, CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Bjørn O Åsvold
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ben Brumpton
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Panagiota Giardoglou
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ulrich Güldener
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Syed M Ijlal Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | | | - Maysson Ibrahim
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Adnan Kastrati
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Tomasz Konopka
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ling Li
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Lijiang Ma
- Department of Genetics and Genomic Science, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Meitinger
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Klinikum Rechts der Isar, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Sören Mucha
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Federico Murgia
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Markus M Nöthen
- School of Medicine and University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Shichao Pang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Gavin Schnitzler
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Moritz von Scheidt
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jacob C Ulirsch
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - David O Arnar
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-National University Hospital of Iceland, Hringbraut, Reykjavik, Iceland
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria C Costanzo
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason Flannick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Dong-Keun Jang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Robert Roberts
- Cardiovascular Genomics and Genetics, University of Arizona College of Medicin, Phoenix, AZ, USA
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-National University Hospital of Iceland, Hringbraut, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas R Webb
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - George Dedoussis
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Kristian Hveem
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital and Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Pierre Zalloua
- Harvard T.H.Chan School of Public Health, Boston, MA, USA
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Farrall
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Human Genetics, Wellcome Sanger Institute, Saffron Walden, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jemma C Hopewell
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Robert Clarke
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Rajat M Gupta
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Nilesh J Samani
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hugh Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
12
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
13
|
Zeng M, Xie Z, Zhang J, Li S, Wu Y, Yan X. Arctigenin Attenuates Vascular Inflammation Induced by High Salt through TMEM16A/ESM1/VCAM-1 Pathway. Biomedicines 2022; 10:2760. [PMID: 36359280 PMCID: PMC9687712 DOI: 10.3390/biomedicines10112760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/25/2024] Open
Abstract
Salt-sensitive hypertension is closely related to inflammation, but the mechanism is barely known. Transmembrane member 16A (TMEM16A) is the Ca2+-activated chloride channel in epithelial cells, smooth muscle cells, and sensory neurons. It can promote inflammatory responses by increasing proinflammatory cytokine release. Here, we identified a positive role of TMEM16A in vascular inflammation. The expression of TMEM16A was increased in high-salt-stimulated vascular smooth muscle cells (VSMCs), whereas inhibiting TMEM16A or silencing TMEM16A with small interfering RNA (siRNA) can abolish this effect in vitro or in vivo. Transcriptome analysis of VSMCs revealed some differential downstream genes of TMEM16A related to inflammation, such as endothelial cell-specific molecule 1 (ESM1) and CXC chemokine ligand 16 (CXCL16). Overexpression of TMEM16A in VSMCs was accompanied by high levels of ESM1, CXCL16, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1). We treated VSMCs cultured with high salt and arctigenin (ARC), T16Ainh-A01 (T16), and TMEM16A siRNA (siTMEM16A), leading to greatly decreased ESM1, CXCL16, VCAM-1, and ICAM-1. Beyond that, silencing ESM1, the expression of VCAM-1 and ICAM-1, and CXCL16 was attenuated. In conclusion, our results outlined a signaling scheme that increased TMEM16 protein upregulated ESM1, which possibly activated the CXCL16 pathway and increased VCAM-1 and ICAM-1 expression, which drives VSMC inflammation. Beyond that, arctigenin, as a natural inhibitor of TMEM16A, can reduce the systolic blood pressure (SBP) of salt-sensitive hypertension mice and alleviate vascular inflammation.
Collapse
Affiliation(s)
- Mengying Zeng
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shicheng Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
14
|
Yuan X, Xiao H, Hu Q, Shen G, Qin X. RGMa promotes dedifferentiation of vascular smooth muscle cells into a macrophage-like phenotype in vivo and in vitro. J Lipid Res 2022; 63:100276. [PMID: 36089003 PMCID: PMC9587411 DOI: 10.1016/j.jlr.2022.100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023] Open
Abstract
Repulsive guidance molecule a (RGMa) is a glycosylphosphatidylinositol-anchored glycoprotein that has been demonstrated to influence inflammatory-related diseases in addition to regulating neuronal differentiation and survival during brain development. However, any function or mechanism of RGMa in dedifferentiation of contractile vascular smooth muscle cells (VSMCs) during inflammatory-related atherosclerosis is poorly understood. In the current study, we found that RGMa is expressed in VSMCs-derived macrophage-like cells from the fibrous cap of type V atherosclerotic plaques and the neointima of ligated carotid artery in ApoE-/- mice. We determined levels of RGMa mRNA and protein increased in oxidized LDL (ox-LDL)-induced VSMCs. Knockdown of RGMa, both in vivo and in vitro, inhibited the dedifferentiation of ox-LDL-induced VSMCs and their ability to proliferate and migrate, reduced the thickness of the neointima after ligation of the left common carotid artery in ApoE-/- mice. Additionally, we show RGMa promoted the dedifferentiation of VSMCs via enhancement of the role of transcription factor Slug. Slug knockdown reversed the dedifferentiation of ox-LDL-induced VSMCs promoted by RGMa overexpression. Thus, inhibition of RGMa may constitute a therapeutic strategy for atherosclerotic plaques prone to rupture and restenosis following mechanical injury.
Collapse
|
15
|
Ni L, Liu L, Zhu W, Telljohann R, Zhang J, Monticone RE, McGraw KR, Liu C, Morrell CH, Garrido‐Gil P, Labandeira‐Garcia JL, Lakatta EG, Wang M. Inflammatory Role of Milk Fat Globule-Epidermal Growth Factor VIII in Age-Associated Arterial Remodeling. J Am Heart Assoc 2022; 11:e022574. [PMID: 36000422 PMCID: PMC9496444 DOI: 10.1161/jaha.121.022574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Background Age-associated aortic remodeling includes a marked increase in intimal medial thickness (IMT), associated with signs of inflammation. Although aortic wall milk fat globule-epidermal growth factor VIII (MFG-E8) increases with age, and is associated with aortic inflammation, it is not known whether MFG-E8 is required for the age-associated increase in aortic IMT. Here, we tested whether MFG-E8 is required for the age-associated increase in aortic IMT. Methods and Results To determine the role of MFG-E8 in the age-associated increase of IMT, we compared aortic remodeling in adult (20-week) and aged (96-week) MFG-E8 (-/-) knockout and age matched wild-type (WT) littermate mice. The average aortic IMT increased with age in the WT from 50±10 to 70±20 μm (P<0.0001) but did not significantly increase with age in MFG-E8 knockout mice. Because angiotensin II signaling is implicated as a driver of age-associated increase in IMT, we infused 30-week-old MFG-E8 knockout and age-matched littermate WT mice with angiotensin II or saline via osmotic mini-pumps to determine whether MFG-E8 is required for angiotensin II-induced aortic remodeling. (1) In WT mice, angiotensin II infusion substantially increased IMT, elastic lamina degradation, collagen deposition, and the proliferation of vascular smooth muscle cells; in contrast, these effects were significantly reduced in MFG-E8 KO mice; (2) On a molecular level, angiotensin II treatment significantly increased the activation and expression of matrix metalloproteinase type 2, transforming growth factor beta 1, and its downstream signaling molecule phosphorylated mother against decapentaplegic homolog 2, and collagen type I production in WT mice; however, in the MFG-E8 knockout mice, these molecular effects were significantly reduced; and (3) in WT mice, angiotensin II increased levels of aortic inflammatory markers phosphorylated nuclear factor-kappa beta p65, monocyte chemoattractant protein 1, tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 molecular expression, while in contrast, these inflammatory markers did not change in knockout mice. Conclusions Thus, MFG-E8 is required for both age-associated proinflammatory aortic remodeling and also for the angiotensin II-dependent induction in younger mice of an aortic inflammatory phenotype observed in advanced age. Targeting MFG-E8 would be a novel molecular approach to curb adverse arterial remodeling.
Collapse
Affiliation(s)
- Leng Ni
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
- Department of Vascular Surgery, Peking Union Medical College HospitalPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Lijuan Liu
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Wanqu Zhu
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Kimberly R. McGraw
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College HospitalPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Pablo Garrido‐Gil
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDISUniversity of Santiago de CompostelaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jose Luis Labandeira‐Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDISUniversity of Santiago de CompostelaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| |
Collapse
|
16
|
Chiang HY, Chu PH, Chen SC, Lee TH. MFG-E8 promotes osteogenic transdifferentiation of smooth muscle cells and vascular calcification by regulating TGF-β1 signaling. Commun Biol 2022; 5:364. [PMID: 35440618 PMCID: PMC9018696 DOI: 10.1038/s42003-022-03313-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular calcification occurs in arterial aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Transforming growth factor-β1 (TGF-β1) is a key modulator driving the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs), leading to vascular calcification. We hypothesize that milk fat globule–epidermal growth factor 8 (MFG-E8), a glycoprotein expressed in VSMCs, promotes the osteogenic transdifferentiation of VSMCs through the activation of TGF-β1-mediated signaling. We observe that the genetic deletion of MFG-E8 prevents calcium chloride-induced vascular calcification in common carotid arteries (CCAs). The exogenous application of MFG-E8 to aged CCAs promotes arterial wall calcification. MFG-E8-deficient cultured VSMCs exhibit decreased biomineralization and phenotypic transformation to osteoblast-like cells in response to osteogenic medium. MFG-E8 promotes β1 integrin–dependent MMP2 expression, causing TGF-β1 activation and subsequent VSMC osteogenic transdifferentiation and biomineralization. Thus, the established molecular link between MFG-E8 and vascular calcification suggests that MFG-E8 can be therapeutically targeted to mitigate vascular calcification. A molecular link between the milk fat globule–epidermal growth factor 8 (MFG-E8), activation of vascular calcification driver TGF-β1 and osteogenic differentiation of vascular smooth muscle cells suggests that MFG-E8 could be a therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shao-Chi Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
17
|
Ikemoto‐Uezumi M, Zhou H, Kurosawa T, Yoshimoto Y, Toyoda M, Kanazawa N, Nakazawa T, Morita M, Tsuchida K, Uezumi A. Increased MFG-E8 at neuromuscular junctions is an exacerbating factor for sarcopenia-associated denervation. Aging Cell 2022; 21:e13536. [PMID: 34953020 PMCID: PMC8761010 DOI: 10.1111/acel.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Sarcopenia is an important health problem associated with adverse outcomes. Although the etiology of sarcopenia remains poorly understood, factors apart from muscle fibers, including humoral factors, might be involved. Here, we used cytokine antibody arrays to identify humoral factors involved in sarcopenia and found a significant increase in levels of milk fat globule epidermal growth factor 8 (MFG‐E8) in skeletal muscle of aged mice, compared with young mice. We found that the increase in MFG‐E8 protein at arterial walls and neuromuscular junctions (NMJs) in muscles of aged mice. High levels of MFG‐E8 at NMJs and an age‐related increase in arterial MFG‐E8 have also been identified in human skeletal muscle. In NMJs, MFG‐E8 is localized on the surface of terminal Schwann cells, which are important accessory cells for the maintenance of NMJs. We found that increased MFG‐E8 at NMJs precedes age‐related denervation and is more prominent in sarcopenia‐susceptible fast‐twitch than in sarcopenia‐resistant slow‐twitch muscle. Comparison between fast and slow muscles further revealed that arterial MFG‐E8 can be uncoupled from sarcopenic phenotype. A genetic deficiency in MFG‐E8 attenuated age‐related denervation of NMJs and muscle weakness, providing evidence of a pathogenic role of increased MFG‐E8. Thus, our study revealed a mechanism by which increased MFG‐E8 at NMJs leads to age‐related NMJ degeneration and suggests that targeting MFG‐E8 could be a promising therapeutic approach to prevent sarcopenia.
Collapse
Affiliation(s)
- Madoka Ikemoto‐Uezumi
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| | - Heying Zhou
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
- Laboratory of Veterinary Pharmacology Department of Veterinary Medical Sciences Graduate School of Agriculture and Life Sciences Tokyo University Tokyo Japan
| | - Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| | | | - Nobuo Kanazawa
- Department of Surgery Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology Tokyo Japan
| | | | - Mitsuhiro Morita
- Department of Orthopaedic Surgery Fujita Health University Toyoake Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases Institute for Comprehensive Medical Science Fujita Health University Toyoake Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine Tokyo Metropolitan Institute of Gerontology (TMIG) Tokyo Japan
| |
Collapse
|
18
|
Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int J Mol Sci 2021; 22:ijms221810175. [PMID: 34576337 PMCID: PMC8468233 DOI: 10.3390/ijms221810175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Vascular aging is accompanied by the fragmentation of elastic fibers and collagen deposition, leading to reduced distensibility and increased vascular stiffness. A rigid artery facilitates elastin to degradation by MMPs, exposing vascular cells to greater mechanical stress and triggering signaling mechanisms that only exacerbate aging, creating a self-sustaining inflammatory environment that also promotes vascular calcification. In this review, we highlight the role of crosstalk between smooth muscle cells and the vascular extracellular matrix (ECM) and how aging promotes smooth muscle cell phenotypes that ultimately lead to mechanical impairment of aging arteries. Understanding the underlying mechanisms and the role of associated changes in ECM during aging may contribute to new approaches to prevent or delay arterial aging and the onset of cardiovascular diseases.
Collapse
|
19
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
20
|
Tao W, Hong Y, He H, Han Q, Mao M, Hu B, Zhang H, Huang X, You W, Liang X, Zhang Y, Li X. MicroRNA-199a-5p aggravates angiotensin II-induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm. J Cell Mol Med 2021; 25:6056-6069. [PMID: 34132029 PMCID: PMC8366448 DOI: 10.1111/jcmm.16485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) senescence contributes to abdominal aortic aneurysm (AAA) formation although the underlying mechanisms remain unclear. This study aimed to investigate the role of miR-199a-5p in regulating VSMC senescence in AAA. VSMC senescence was determined by a senescence-associated β-galactosidase (SA-β-gal) assay. RT-PCR and Western blotting were performed to measure miRNA and protein level, respectively. The generation of reactive oxygen species (ROS) was evaluated by H2DCFDA staining. Dual-luciferase reporter assay was used to validate the target gene of miR-199a-5p. VSMCs exhibited increased senescence in AAA tissue relative to healthy aortic tissue from control donors. Compared with VSMCs isolated from control donors (control-VSMCs), those derived from patients with AAA (AAA-VSMCs) exhibited increased cellular senescence and ROS production. Angiotensin II (Ang II) induced VSMC senescence by promoting ROS generation. The level of miR-199a-5p expression was upregulated in the plasma from AAA patients and Ang II-treated VSMCs. Mechanistically, Ang II treatment significantly elevated miR-199a-5p level, thereby stimulating ROS generation by repressing Sirt1 and consequent VSMC senescence. Nevertheless, Ang II-induced VSMC senescence was partially attenuated by a miR-199a-5p inhibitor or Sirt1 activator. Our study revealed that miR-199a-5p aggravates Ang II-induced VSMC senescence by targeting Sirt1 and that miR-199a-5p is a potential therapeutic target for AAA.
Collapse
Affiliation(s)
- Wuyuan Tao
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yimei Hong
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Haiwei He
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Qian Han
- Department of MedicineState Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory HealthGuangzhouChina
| | - Mengmeng Mao
- Department of MedicineState Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory HealthGuangzhouChina
| | - Bei Hu
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hao Zhang
- School of PharmacyBengbu Medical CollegeBengbuChina
| | - Xiaoran Huang
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Wei You
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xiaoting Liang
- Clinical Translational Medical Research CenterShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yuelin Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xin Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Emergency MedicineDepartment of Emergency and Critical Care MedicineGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
21
|
Abstract
Chloride channel 3 (ClC-3), a Cl-/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Dun Niu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| |
Collapse
|
22
|
Kim SH, Monticone RE, McGraw KR, Wang M. Age-associated proinflammatory elastic fiber remodeling in large arteries. Mech Ageing Dev 2021; 196:111490. [PMID: 33839189 PMCID: PMC8154723 DOI: 10.1016/j.mad.2021.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Elastic fibers are the main components of the extracellular matrix of the large arterial wall. Elastic fiber remodeling is an intricate process of synthesis and degradation of the core elastin protein and microfibrils accompanied by the assembly and disassembly of accessory proteins. Age-related morphological, structural, and functional proinflammatory remodeling within the elastic fiber has a profound effect upon the integrity, elasticity, calcification, amyloidosis, and stiffness of the large arterial wall. An age-associated increase in arterial stiffness is a major risk factor for the pathogenesis of diseases of the large arteries such as hypertensive and atherosclerotic vasculopathy. This mini review is an update on the key molecular, cellular, functional, and structural mechanisms of elastic fiber proinflammatory remodeling in large arteries with aging. Targeting structural and functional integrity of the elastic fiber may be an effective approach to impede proinflammatory arterial remodeling with advancing age.
Collapse
Affiliation(s)
- Soo Hyuk Kim
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Robert E Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institution on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
23
|
Chiang HY, Chu PH, Chen SC, Lee TH. MFG-E8 Regulates Vascular Smooth Muscle Cell Migration Through Dose-Dependent Mediation of Actin Polymerization. J Am Heart Assoc 2021; 10:e020870. [PMID: 34041925 PMCID: PMC8483510 DOI: 10.1161/jaha.121.020870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Migration of vascular smooth muscle cells (VSMCs) is the main contributor to neointimal formation. The Arp2/3 (actin-related proteins 2 and 3) complex activates actin polymerization and is involved in lamellipodia formation during VSMC migration. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein expressed in VSMCs. We hypothesized that MFG-E8 regulates VSMC migration through modulation of Arp2/3-mediated actin polymerization. Methods and Results To determine whether MFG-E8 is essential for VSMC migration, a model of neointimal hyperplasia was induced in the common carotid artery of wild-type and MFG-E8 knockout mice, and the extent of neointimal formation was evaluated. Genetic deletion of MFG-E8 in mice attenuated injury-induced neointimal hyperplasia. Cultured VSMCs deficient in MFG-E8 exhibited decreased cell migration. Immunofluorescence and immunoblotting revealed decreased Arp2 but not Arp3 expression in the common carotid arteries and VSMCs deficient in MFG-E8. Exogenous administration of recombinant MFG-E8 biphasically and dose-dependently regulated the cultured VSMCs. At a low concentration, MFG-E8 upregulated Arp2 expression. By contrast, MFG-E8 at a high concentration reduced the Arp2 level and significantly attenuated actin assembly. Arp2 upregulation mediated by low-dose MFG-E8 was abolished by treating cultured VSMCs with β1 integrin function-blocking antibody and Rac1 inhibitors. Moreover, treatment of the artery with a high dose of recombinant MFG-E8 diminished injury-induced neointimal hyperplasia and reduced VSMC migration. Conclusions MFG-E8 plays a critical role in VSMC migration through dose-dependent regulation of Arp2-mediated actin polymerization. These findings suggest that high doses of MFG-E8 may have therapeutic potential for treating vascular occlusive diseases.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy College of Medicine Chang Gung University Taoyuan Taiwan.,Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan.,Division of Cardiology Department of Internal Medicine Chang Gung Memorial Hospital Linkou Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology Department of Internal Medicine Chang Gung Memorial Hospital Linkou Taiwan.,College of Medicine Chang Gung University Taoyuan Taiwan
| | - Shao-Chi Chen
- Department of Anatomy College of Medicine Chang Gung University Taoyuan Taiwan
| | - Ting-Hein Lee
- Department of Anatomy College of Medicine Chang Gung University Taoyuan Taiwan.,Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan.,Division of Cardiology Department of Internal Medicine Chang Gung Memorial Hospital Linkou Taiwan
| |
Collapse
|
24
|
Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circ Res 2021; 129:240-258. [PMID: 34024118 PMCID: PMC8260472 DOI: 10.1161/circresaha.121.318971] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation.
Collapse
Affiliation(s)
- Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
| | - Valtteri Nurminen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland (T.L.)
| | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Mete Civelek
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| |
Collapse
|
25
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
Ni YQ, Zhan JK, Liu YS. Roles and mechanisms of MFG-E8 in vascular aging-related diseases. Ageing Res Rev 2020; 64:101176. [PMID: 32971257 DOI: 10.1016/j.arr.2020.101176] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
The aging of the vasculature plays a crucial role in the pathological progression of various vascular aging-related diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are essential parts in the inner and medial layers of vessel wall, respectively, the structural and functional alterations of ECs and VSMCs are the major causes of vascular aging. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein which exerts a regulatory role in the intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that MFG-E8 is a novel and outstanding modulator for vascular aging via targeting at ECs and VSMCs. In this review, we will summarise the cumulative roles and mechanisms of MFG-E8 in vascular aging and vascular aging-related diseases with special emphasis on the functions of ECs and VSMCs. In addition, we also aim to focus on the promising diagnostic function as a biomarker and the potential therapeutic application of MFG-E8 in vascular aging and the clinical evaluation of vascular aging-related diseases.
Collapse
|
27
|
Medin aggregation causes cerebrovascular dysfunction in aging wild-type mice. Proc Natl Acad Sci U S A 2020; 117:23925-23931. [PMID: 32900929 DOI: 10.1073/pnas.2011133117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.
Collapse
|
28
|
张 艺, 盛 帅, 梁 庆, 张 莉. [Olmesartan inhibits age-associated migration and invasion of human aortic vascular smooth muscle cells by upregulating miR-3133 axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:499-505. [PMID: 32895132 PMCID: PMC7225100 DOI: 10.12122/j.issn.1673-4254.2020.04.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/08/2022]
Abstract
OBJECTIVE To explore the effects of olmesartan on age-associated migration and invasion capacities and microRNA (miRAN) axis in human aortic vascular smooth muscle cells (HA-VSMCs). METHODS Cultured HA-VSMCs were divided into control group, bleomycin-mediated senescence (BLM) group and bleomycin + olmesartan treatment group. Wound-healing assay and Boyden chambers invasion assay were used to assess the changes in migration and invasion of the cells, gelatin zymography was used to analyze matrix metalloproteinase-2 (MMP-2) activation in the cells. The differentially expressed miRNAs were identified by miRNA microarray assay and validated by quantitative real-time PCR. MiR-3133 inhibitor was used to examine the effects of molecular manipulation of olmesartan on age-associated migration and invasion and MMP-2 activation in the cells. RESULTS Compared with those of the control group, the percentage of the repopulated cells and the number of cells crossing the basement membrane increased significantly in BLM group [(78.43±12.76)% vs (42.47±7.22)%, P < 0.05; 33.33±5.51 vs 13.00±4.36, P < 0.05]. A significant increase of MMP-2 activation was found in BLM group as compared with the control group (1.66 ± 0.27 vs 0.87 ± 0.13, P < 0.05). Olmesartan significantly inhibited BLM-induced enhancement of cell migration and invasion and MMP-2 secretion in the cells. MiR-3133 was significantly downregulated in BLM group and upregulated in olmesartan group. Transfection with miR-3133 inhibitor significantly reversed the effects of olmesartan on age-associated migration and invasion of the cells [(85.87±7.39)% vs (49.77±3.05)%; 34.67±2.31 vs 20.00±4.58, P < 0.05] and MMP-2 activation in the cells (1.76±0.19 vs 0.94±0.10, P < 0.05). CONCLUSIONS Olmesartan inhibits the migration and invasion of ageassociated HA-VSMCs probably by upregulating of the miR-3133 axis.
Collapse
Affiliation(s)
- 艺 张
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 帅 盛
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 庆阳 梁
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 莉 张
- />广东药科大学附属第一医院心血管内科,广东 广州 510080Department of Cardiology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
29
|
Wang M, Monticone RE, McGraw KR. Proinflammation, profibrosis, and arterial aging. Aging Med (Milton) 2020; 3:159-168. [PMID: 33103036 PMCID: PMC7574637 DOI: 10.1002/agm2.12099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for quintessential cardiovascular diseases, which are closely related to arterial proinflammation. The age-related alterations of the amount, distribution, and properties of the collagen fibers, such as cross-links and degradation in the arterial wall, are the major sequelae of proinflammation. In the aging arterial wall, collagen types I, II, and III are predominant, and are mainly produced by stiffened vascular smooth muscle cells (VSMCs) governed by proinflammatory signaling, leading to profibrosis. Profibrosis is regulated by an increase in the proinflammatory molecules angiotensin II, milk fat globule-EGF-VIII, and transforming growth factor-beta 1 (TGF-β1) signaling and a decrease in the vasorin signaling cascade. The release of these proinflammatory factors triggers the activation of matrix metalloproteinase type II (MMP-2) and activates profibrogenic TGF-β1 signaling, contributing to profibrosis. The age-associated increase in activated MMP-2 cleaves latent TGF-β and subsequently increases TGF-β1 activity leading to collagen deposition in the arterial wall. Furthermore, a blockade of the proinflammatory signaling pathway alleviates the fibrogenic signaling, reduces profibrosis, and prevents arterial stiffening with aging. Thus, age-associated proinflammatory-profibrosis coupling is the underlying molecular mechanism of arterial stiffening with advancing age.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| | - Robert E Monticone
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| |
Collapse
|