1
|
Hua C, Wu M, Xiao Y, Zhang R, Yuan Y, Zhang L, Guo F, Liu J, Yang Z, Liu G. Dendrobium nobile lindl extract modulates integrin αIIbβ3-mediated signaling pathways to inhibit platelet activation and thrombosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119728. [PMID: 40180000 DOI: 10.1016/j.jep.2025.119728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. (DNL) is a promising medicinal plant. It has the traditional medicinal effects of promoting blood circulation and resolving stasis, as well as regulating the meridians and collaterals. AIM OF THE STUDY We studyed how DNL extract was involved in platelet activation and thrombosis and used network pharmacology and molecular docking analysis to help clarify the underlying mechanisms. MATERIALS AND METHODS The effect of DNL extract on platelet aggregation and ATP release function was examined by aggregometer; The effect of DNL extract on the binding of PAC-1 and fibrinogen to integrin was determined by flow cytometry; The effect of DNL extract on "outside-in" platelet signals was detected by platelet adhesion, spreading and clot retraction; Key compounds and major targets of platelet interactions with DNL extract were analyzed by network pharmacology and molecular docking and verified against related pathway proteins by western blotting; The effect of DNL extract on thrombosis was tested by mesenteric artery embolism model. RESULTS DNL extract exhibited inhibition of platelet function and PAC-1 and fibrinogen binding to integrin αIIbβ3. In addition, it delayed FeCl3-induced mesenteric artery thrombosis without affecting the clotting time and the hemostatic time of tail in mice. The detection of platelet "inside-out" and "outside-in" signaling by Western blot further confirmed the inhibitory effect of DNL extract on platelet activation. CONCLUSIONS DNL extract may affect the thrombosis process by inhibiting platelet activation via inhibiting integrin αⅡbβ3-mediated bidirectional signaling pathway proteins.
Collapse
Affiliation(s)
- Chaoying Hua
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Meng Wu
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Yi Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Rui Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Yujing Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Li Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Fang Guo
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jian Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Zhanzhan Yang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China.
| | - Gang Liu
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
2
|
Xu Y, Liu X, Ahmad MA, Ao Q, Yu Y, Shao D, Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration. Mater Today Bio 2024; 27:101125. [PMID: 38979129 PMCID: PMC11228803 DOI: 10.1016/j.mtbio.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianbo Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, Guangzhou, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
3
|
Zhang W, Dong J, Xu J, Qian Y, Chen D, Fan Z, Yang H, Xiang J, Xue X, Luo X, Jiang Y, Wang Y, Huang Z. Columbianadin suppresses glioblastoma progression by inhibiting the PI3K-Akt signaling pathway. Biochem Pharmacol 2024; 223:116112. [PMID: 38458331 DOI: 10.1016/j.bcp.2024.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Glioblastoma (GBM) is the most common malignant glioma among brain tumors with low survival rate and high recurrence rate. Columbianadin (CBN) has pharmacological properties such as anti-inflammatory, analgesic, thrombogenesis-inhibiting and anti-tumor effects. However, it remains unknown that the effect of CBN on GBM cells and its underlying molecular mechanisms. In the present study, we found that CBN inhibited the growth and proliferation of GBM cells in a dose-dependent manner. Subsequently, we found that CBN arrested the cell cycle in G0/G1 phase and induced the apoptosis of GBM cells. In addition, CBN also inhibited the migration and invasion of GBM cells. Mechanistically, we chose network pharmacology approach by screening intersecting genes through targets of CBN in anti-GBM, performing PPI network construction followed by GO analysis and KEGG analysis to screen potential candidate signaling pathway, and found that phosphatidylinositol 3-kinase/Protein Kinase-B (PI3K/Akt) signaling pathway was a potential target signaling pathway of CBN in anti-GBM. As expected, CBN treatment indeed inhibited the PI3K/Akt signaling pathway in GBM cells. Furthermore, YS-49, an agonist of PI3K/Akt signaling, partially restored the anti-GBM effect of CBN. Finally, we found that CBN inhibited GBM growth in an orthotopic mouse model of GBM through inhibiting PI3K/Akt signaling pathway. Together, these results suggest that CBN has an anti-GBM effect by suppressing PI3K/Akt signaling pathway, and is a promising drug for treating GBM effectively.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hao Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianglei Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
4
|
Nil Z, Deshwar AR, Huang Y, Barish S, Zhang X, Choufani S, Le Quesne Stabej P, Hayes I, Yap P, Haldeman-Englert C, Wilson C, Prescott T, Tveten K, Vøllo A, Haynes D, Wheeler PG, Zon J, Cytrynbaum C, Jobling R, Blyth M, Banka S, Afenjar A, Mignot C, Robin-Renaldo F, Keren B, Kanca O, Mao X, Wegner DJ, Sisco K, Shinawi M, Wangler MF, Weksberg R, Yamamoto S, Costain G, Bellen HJ. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet 2023; 110:1919-1937. [PMID: 37827158 PMCID: PMC10645550 DOI: 10.1016/j.ajhg.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.
Collapse
Affiliation(s)
- Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | | | - Carolyn Wilson
- Mission Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Arve Vøllo
- Department of Pediatrics, Hospital of Østfold, 1714 Grålum, Norway
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA; Clinical Genetics Service, Guy's Hospital, Guy's and St Thomas' NHS Trust, London, England, UK
| | - Patricia G Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA
| | - Jessica Zon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Alexandra Afenjar
- Service de génétique, CRMR des malformations et maladies congénitales du cervelet et CRMR déficience intellectuelle, hôpital Trousseau, AP-HP, Paris, France
| | - Cyril Mignot
- Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | | | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China; Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen Sisco
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Huang W, Yao W, Weng Y, Xie X, Jiang J, Zhang S, Shi Z, Fan Q. Hydroxysafflor yellow A inhibits the hyperactivation of rat platelets by regulating the miR-9a-5p/SRC axis. Arch Biochem Biophys 2023; 747:109767. [PMID: 37748625 DOI: 10.1016/j.abb.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Pathological platelet activation plays a vital role in the prevalence of cardiovascular diseases. Hydroxysafflor yellow A (HSYA) has been shown to have significant anti-platelet aggregation and anti-activation effects, but its mechanism of action is unclear. Our study showed that HSYA inhibited the expression of platelet surface glycoproteins IIβ/III α (GPIIβ/III α) and thromboxane A2 (TXA2) during platelet activation and reduced platelet Ca2+ accumulation. HSYA significantly reduced the number of platelets and inhibited adrenaline-induced platelet hyperaggregation in rats. Transcriptomic analysis of platelets suggested that HSYA significantly suppressed SRC and MAPK3 (ERK1/2) gene expression. YEEI peptide, an SRC activator, could significantly reverse the inhibition of HSYA on the phosphorylation of SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway proteins and reverse the effect of HSYA on platelet activation-related markers GPIIβ/IIIα protein, TXA2 and cAMP. The SRC genes were further predicted by transcriptome analysis of HSYA-regulated miRNAs combined with bioinformatics techniques. The results suggested that HSYA could significantly upregulate the expression level of the miR-9a-5p gene and further confirmed that miR-9a-5p had a targeted regulatory relationship with SRC by dual-luciferase activity reporter and cell transfection experiments. The inhibitory effect of HSYA on the SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway was significantly reversed after platelets were transfected with the miR-9a inhibitor, while SRC siRNA attenuated the effect of the miR-9a inhibitor. SRC siRNA was able to attenuate the effect of the miR-9a inhibitor. In conclusion, this study suggests that HSYA can inhibit the activation of the SRC/PLCγ2/PKC δ/MEK/ERK1/2 axis by upregulating platelet miR-9a-5p, thereby reducing the activation of platelets and inhibiting platelet aggregation.
Collapse
Affiliation(s)
- Wei Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Wendong Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Yayun Weng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Xianze Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Jiali Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Shuo Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Zheng Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| | - Qiaomei Fan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
6
|
Krystofiak J, Bruins J, Bates E, Kummer J. Long Duration Ultrasound Combined with Platelet-Rich Plasma Injection for Return to Sport after Soft Tissue Injury: A Single Center Study. ORTHOPEDIC & MUSCULAR SYSTEM : CURRENT RESEARCH 2023; 12:1000366. [PMID: 38213829 PMCID: PMC10783208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Objective The use of Long-Duration Ultrasound (LDU) and Platelet-Rich Plasma (PRP) treatments to facilitate injury healing and pain relief are typically utilized independently in sports medicine. Our study aimed to investigate the combined regenerative effect of daily LDU with high-concentration single-injection PRP for treating sport-related musculoskeletal injuries. Methods In total, thirty-five competitive athletes (n=35) with grade II sprains and strains and tendinopathies injured during sport and unable to continue to play were sequentially administered PRP (n=20, 20.4 yoa, 18 male, 2 female) or PRP+LDU (n=15, 20.27 yoa, 14 male, 1 female). In the PRP treatment group, each subject was treated with a single injection of PRP consisting of 1.28 billion platelets/mL under ultrasound-image guidance to the injury site. The PRP+LDU treatment group received the same PRP injection procedure with a 14-day, 4 hr per day, 18,720 J ultrasound treatment applied over the injection site. The Numeric Ration pain Scale (NRS, 0-10), Range of Motion (ROM, 0-100%), Clinical Strength numeric score (CS, 0-5), and time of injury to return to sport (days) were measured at baseline and Return to Play (RTP). The global health improvement score (GROC -7 to +7) was measured upon RTP. Results All patients completed rehabilitation and returned to the sport after debilitating injuries. PRP+LDU returned athletes to play 21.33 days quicker (p<0.0001), decreased injury pain by 0.88 NRS points (p=0.0086), and improved patient global health by 1.28 points GROC (p<0.0001) over PRP treatment alone (95% Confidence interval, 11.26 to 31.40 days faster). There were no significant differences in strength (p=0.498) or range of motion (p=0.8581) improvement between PRP and PRP+LDU at the RTP or baseline patient demographic variables. Conclusion Adding LDU at-home treatment to PRP injection therapy significantly reduces the time to return to sport, increases pain reduction, and improves overall health for patients recovering from sport-related injury. The daily LDU treatment facilitates and enhances regenerative medicine therapies such as PRP.
Collapse
Affiliation(s)
- Jason Krystofiak
- Department of Sports Medicine, RWJ Barnabas Health, New Jersey, USA
| | - Jan Bruins
- Department of Athletic Rehabilitation, RWJ Barnabas Health, New Jersey, USA
| | - Ethan Bates
- Department of Biomedical Engineering, University of Cincinnati, Ohio, USA
| | - Josh Kummer
- Department of Biomedical Engineering, University of Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Chaudhary PK, Kim S, Kim S. Antiplatelet Effect of Daphnetin Is Regulated by cPLA 2-Mediated Thromboxane A 2 Generation in Mice. Int J Mol Sci 2023; 24:ijms24065779. [PMID: 36982853 PMCID: PMC10055769 DOI: 10.3390/ijms24065779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Coumarin derivatives have been recognized for their antithrombotic, anti-inflammatory, and antioxidant properties, and daphnetin is one of the natural coumarin derivatives isolated from Daphne Koreana Nakai. Although the pharmacological value of daphnetin is well documented in diverse biological activities, its antithrombotic effect has not been studied to date. Here, we characterized the role and underlying mechanism of daphnetin in the regulation of platelet activation using murine platelets. In order to check the effect of daphnetin on platelet function, we first measured the effect of daphnetin on platelet aggregation and secretion. Collagen-induced platelet aggregation and dense granule secretion were partially inhibited by daphnetin. Interestingly, 2-MeSADP-induced secondary waves of aggregation and secretion were completely inhibited by daphnetin. It is known that 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by the positive feedback effect of thromboxane A2 (TxA2) generation, suggesting the important role of daphnetin on TxA2 generation in platelets. Consistently, daphnetin did not affect the 2-MeSADP-induced platelet aggregation in aspirinated platelets where the contribution of TxA2 generation was blocked. Additionally, platelet aggregation and secretion induced by a low concentration of thrombin, which is affected by the positive feedback effect of TxA2 generation, were partially inhibited in the presence of daphnetin. Importantly, 2-MeSADP- and thrombin-induced TxA2 generation was significantly inhibited in the presence of daphnetin, confirming the role of daphnetin on TxA2 generation. Finally, daphnetin significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets. Only cPLA2 phosphorylation, not ERK phosphorylation, was significantly inhibited by daphnetin in aspirinated platelets. In conclusion, daphnetin plays a critical role in platelet function by inhibiting TxA2 generation through the regulation of cPLA2 phosphorylation.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Jo HG, Seo J, Lee D. Clinical evidence construction of East Asian herbal medicine for inflammatory pain in rheumatoid arthritis based on integrative data mining approach. Pharmacol Res 2022; 185:106460. [PMID: 36152738 DOI: 10.1016/j.phrs.2022.106460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to a significant social burden. East Asian herbal medicine (EAHM) has long been used to treat RA. Therefore, a systematic study of how EAHM treatments can be developed into new drugs using specific materials is needed. METHODS Eleven databases containing literature in English, Korean, Chinese, and Japanese were searched for randomized controlled trials comparing EAHM with conventional medicine (CM). A meta-analysis was performed on the variable data to assess their effects on inflammatory pain. Subsequently, we searched for core materials and combinations of core material-based data mining methods. RESULTS A total of 186 trials involving 19,716 patients with RA met the inclusion criteria. According to the meta-analysis, EAHM had a significantly superior effect on continuous pain intensity, tender joint count, and response rate. Patients treated with EAHM had a significantly reduced incidence of adverse events compared with those treated with CM. Based on additional analysis of the EAHM formula data included in this meta-analysis, 21 core materials and five core herbal combinations were identified. CONCLUSION EAHM remedies for RA have the adequate potential for use as candidate materials for treating inflammatory pain in RA. The candidate core herbs evaluated in this study act on multiple pathways and are expected to provide pain relief, sustained inflammation suppression, immune regulation, and prevention of joint destruction. It seems worthwhile to conduct follow-up research on drug development using the core materials derived from this review.
Collapse
Affiliation(s)
- Hee-Geun Jo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| | - Jihye Seo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Donghun Lee
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| |
Collapse
|
9
|
Zhou H, Zhu J, Wan H, Shao C, Chen T, Yang J, He Y, Wan H. The combination of danhong injection plus tissue plasminogen activator ameliorates mouse tail thrombosis-induced by κ-carrageenan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154320. [PMID: 35830758 DOI: 10.1016/j.phymed.2022.154320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbβ3 signaling pathway were analyzed in mice. RESULTS In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCβ), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbβ3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.
Collapse
Affiliation(s)
- Huifen Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiaqi Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chongyu Shao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Haitong Wan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
10
|
Chen S, Bai Y, Wang Y, Liang C, Du K, Wang S, Li J, Chang YX. Immunosuppressive effect of Columbianadin on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced dendritic cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114918. [PMID: 34919989 DOI: 10.1016/j.jep.2021.114918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was unclear. Columbianadin (CBN) was one of the main bioactive compounds of APR, and has many pharmacological effects. But the immunosuppressive effect of CBN on DCs and the potential mechanism needed to be explored. AIM OF THE STUDY The study was aimed to clarify the immunosuppressive effect of CBN on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced DCs. MATERIALS AND METHODS Bone marrow-derived DCs were obtained and cultured from C57BL/6 mice in accordance with protocol. The phenotypic study (CD11c, CD40, CD80, CD86 and MHC Ⅱ) were measured by flow cytometry. FITC-dextran were uptaked by DCs and the change of endocytosis activity were mediated by acquired mannose receptor. Transwell chambers were used to detect the migration ability of DCs. Mixed leukocyte reaction (MLR) assay was used to detect the allostimulatory ability of CBN on TNF-α stimulated DCs. The secretion of cytokines and chemokines was measured by ELISA Kit. TLRs gene and MAPKs/NF-κB protein expression were checked by qRT-PCR and Western blot. RESULTS CBN inhibited the maturation of TNF-α-induced DCs while maintaining phagocytosis capabilities. Additionally, CBN inhibited the migration of TNF-α stimulated DCs, which related to reduce the production of chemokines (MCP-1, MIP-1α). Notably, CBN could suppress the proliferation of CD4+T cells by inhibiting DCs maturation, and decrease the proinflammatory cytokines IL-6 production. Furthermore, CBN inhibited mRNA expression of TLR2, TLR7 and TLR9 in TNF-α-activated DCs. Meanwhile, the phosphorylation of p38, JNK1/2 and NF-κB protein were significantly inhibited in CBN treated DCs. CONCLUSIONS These findings provided novel insights into the pharmacological activity of CBN. They also indicated that inhibition DCs maturation owning to the immunosuppressive effect of CBN. CBN was expected as a potential immunosuppressant and TLRs/MAPKs/NF-κB pathway may be an important mechanism for CBN's immunosuppressive activity.
Collapse
Affiliation(s)
- Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yun Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules 2021; 26:molecules26175340. [PMID: 34500771 PMCID: PMC8434001 DOI: 10.3390/molecules26175340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Vincristine is a clinically used antimicrotubule drug for treating patients with lymphoma. Due to its property of increasing platelet counts, vincristine is also used to treat patients with immune thrombocytopenia. Moreover, antiplatelet agents were reported to be beneficial in thrombotic thrombocytopenic purpura (TTP). Therefore, we investigated the detailed mechanisms underlying the antiplatelet effect of vincristine. Our results revealed that vincristine inhibited platelet aggregation induced by collagen, but not by thrombin, arachidonic acid, and the thromboxane A2 analog U46619, suggesting that vincristine exerts higher inhibitory effects on collagen-mediated platelet aggregation. Vincristine also reduced collagen-mediated platelet granule release and calcium mobilization. In addition, vincristine inhibited glycoprotein VI (GPVI) signaling, including Syk, phospholipase Cγ2, protein kinase C, Akt, and mitogen-activated protein kinases. In addition, the in vitro PFA-100 assay revealed that vincristine did not prolong the closure time, and the in vivo study tail bleeding assay showed that vincristine did not prolong the tail bleeding time; both findings suggested that vincristine may not affect normal hemostasis. In conclusion, we demonstrated that vincristine exerts antiplatelet effects at least in part through the suppression of GPVI signaling. Moreover, this property of antiplatelet activity of vincristine may provide additional benefits in the treatment of TTP.
Collapse
|
12
|
Shih TL, Lin KH, Chen RJ, Chen TY, Kao WT, Liu JW, Wang HH, Peng HY, Sun YY, Lu WJ. A novel naphthalimide derivative reduces platelet activation and thrombus formation via suppressing GPVI. J Cell Mol Med 2021; 25:9434-9446. [PMID: 34448532 PMCID: PMC8500964 DOI: 10.1111/jcmm.16886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Naphthalimide derivatives have multiple biological activities, including antitumour and anti‐inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5–10 μM) inhibited collagen‐ and convulxin‐ but not thrombin‐ or U46619‐mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.
Collapse
Affiliation(s)
- Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Hung Lin
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ray-Jade Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Kao
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Jen-Wei Liu
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wan-Jung Lu
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Liu G, Yuan Z, Tian X, Xiong X, Guo F, Lin Z, Qin Z. Pimpinellin Inhibits Collagen-induced Platelet Aggregation and Activation Through Inhibiting Granule Secretion and PI3K/Akt Pathway. Front Pharmacol 2021; 12:706363. [PMID: 34366861 PMCID: PMC8339208 DOI: 10.3389/fphar.2021.706363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Pimpinellin is a coumarin-like compound extracted from the root of Toddalia asiatica. Its effects on platelet function has not been investigated. This study found that pimpinellin pretreatment effectively inhibited collagen-induced platelet aggregation, but did not alter ADP- and thrombin-induced aggregation. Platelets pretreated with pimpinellin showed reduced α granule (CD62) level and secretion of dense granule (ATP release). Pimpinellin-treated platelets also exhibited decreased clot reaction and TxB2 production. Pimpinellin pretreatment suppressed adhesion and spreading of human platelets on the fibrinogen coated surface. Analysis of tail bleeding time of mice administered with pimpinellin (40 mg/kg) revealed that pimpinellin did not change tail bleeding time significantly, number of blood cells, and APTT and PT levels. Pimpinellin inhibited collagen-induced ex vivo aggregation of mice platelets. Immunoblotting results showed that pimpinellin suppressed collagen-induced phosphorylation of PI3K-Akt-Gsk3β and PKC/MAPK in platelets.
Collapse
Affiliation(s)
- Gang Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Zhaowei Yuan
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaoyun Tian
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiuqin Xiong
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fang Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zihan Lin
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Zhen Qin
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Columbianadin Dampens In Vitro Inflammatory Actions and Inhibits Liver Injury via Inhibition of NF-κB/MAPKs: Impacts on ∙OH Radicals and HO-1 Expression. Antioxidants (Basel) 2021; 10:antiox10040553. [PMID: 33918237 PMCID: PMC8067002 DOI: 10.3390/antiox10040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Columbianadin (CBN), a natural coumarin isolated from Angelica decursiva, is reported to have numerous biological activities, including anticancer and platelet aggregation inhibiting properties. Here, we investigated CBN’s anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell activation and deciphered the signaling process, which could be targeted by CBN as part of the mechanisms. Using a mouse model of LPS-induced acute liver inflammation, the CBN effects were examined by distinct histologic methods using trichrome, reticulin, and Weigert’s resorcin fuchsin staining. The result showed that CBN decreased LPS-induced expressions of TNF-α, IL-1β, and iNOS and NO production in RAW 264.7 cells and mouse liver. CBN inhibited LPS-induced ERK and JNK phosphorylation, increased IκBα levels, and inhibited NF-κB p65 phosphorylation and its nuclear translocation. Application of inhibitors for ERK (PD98059) and JNK (SP600125) abolished the LPS-induced effect on NF-κB p65 phosphorylation, which indicated that ERK and JNK signaling pathways were involved in CBN-mediated inhibition of NF-κB activation. Treatment with CBN decreased hydroxyl radical (•OH) generation and increased HO-1 expression in RAW 264.7 cells. Furthermore, LPS-induced liver injury, as indicated by elevated serum levels of liver marker enzymes (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and histopathological alterations, were reversed by CBN. This work demonstrates the utility of CBN against LPS-induced inflammation, liver injury, and oxidative stress by targeting JNK/ERK and NF-κB signaling pathways.
Collapse
|
15
|
Chang WT, Wu SN. Effectiveness of Columbianadin, a Bioactive Coumarin Derivative, in Perturbing Transient and Persistent INa. Int J Mol Sci 2021; 22:ijms22020621. [PMID: 33435511 PMCID: PMC7827714 DOI: 10.3390/ijms22020621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Columbianadin (CBN) is a bioactive coumarin-type compound with various biological activities. However, the action of CBN on the ionic mechanism remains largely uncertain, albeit it was reported to inhibit voltage-gated Ca2+ current or to modulate TRP-channel activity. In this study, whole-cell patch-clamp current recordings were undertaken to explore the modifications of CBN or other related compounds on ionic currents in excitable cells (e.g., pituitary GH3 cells and HL-1 atrial cardiomyocytes). GH3-cell exposure to CBN differentially decreased peak or late component of voltage-gated Na+ current (INa) with effective IC50 of 14.7 or 2.8 µM, respectively. The inactivation time course of INa activated by short depolarization became fastened in the presence of CBN with estimated KD value of 3.15 µM. The peak INa diminished by 10 µM CBN was further suppressed by subsequent addition of either sesamin (10 µM), ranolazine (10 µM), or tetrodotoxin (1 µM), but it was reversed by 10 µM tefluthrin (Tef); however, further application of 10 µM nimodipine failed to alter CBN-mediated inhibition of INa. CBN (10 µM) shifted the midpoint of inactivation curve of INa to the leftward direction. The CBN-mediated inhibition of peak INa exhibited tonic and use-dependent characteristics. Using triangular ramp pulse, the hysteresis of persistent INa enhanced by Tef was noticed, and the behavior was attenuated by subsequent addition of CBN. The delayed-rectifier or erg-mediated K+ current was mildly inhibited by 10 µM CBN, while it also slightly inhibited the amplitude of hyperpolarization-activated cation current. In HL-1 atrial cardiomyocytes, CBN inhibited peak INa and raised the inactivation rate of the current; moreover, further application of 10 µM Tef attenuated CBN-mediated decrease in INa. Collectively, this study provides an important yet unidentified finding revealing that CBN modifies INa in electrically excitable cells.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71004, Taiwan
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: +886-6-2362780
| |
Collapse
|
16
|
Hsia CW, Yang CH, Sheu JR, Hsia CH, Tsai CL, Huang WC, Chen TY, Jayakumar T, Bhavan PS, Chang Y. Reduction of NF-κB Signals in Platelets and Prolongation of Platelet Plug Formation against High Shear Flow in Whole Blood on Human Subject by Columbianadin. APPLIED SCIENCES 2020; 10:7323. [DOI: 10.3390/app10207323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Myocardial infarction and cerebral ischemic stroke during the process of arterial thrombosis are prominently causes of death worldwide. Platelets are anucleated cells and play a critical factor in these diseases. Columbianadin (CBN), a coumarin derivative from plants, inhibits effective platelet activation. In this study, platelet function analysis revealed that the closure time of the platelet plug in human whole blood significantly prolonged by CBN, whereas CBN did not pointedly prolong the bleeding time in mice. BAY11-7082 (an inhibitor of IκB kinase) and MG-132 (an inhibitor of proteasome) inhibited collagen-stimulated platelet aggregation and ATP-release in human platelets, BAY11-7082 exhibited a higher potency than MG-132. Moreover, CBN markedly reduced NF-κB activation (e.g., IκBα and p65 phosphorylation) and reversed IκBα degradation in activated platelets. We investigated intercellular signaling events between mitogen-activated protein kinases and NF-κB, and found that BAY11-7082 abolished JNK1/2 and ERK1/2 phosphorylation. Interestingly, SP600125 (an inhibitor of JNK) but not PD98059 (an inhibitor of ERK) had no effect in NF-κB activation in activated platelets. Moreover, CBN but not BAY11-7082 significantly reduced hydroxyl radical (HO●) formation in platelets. Therefore, we propose that CBN inhibits NF-κB activation in human platelets and could present a potent clinical treatment for thromboembolic diseases.
Collapse
Affiliation(s)
- Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hao Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Cheng-Lin Tsai
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ting-Yu Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | - Yi Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|