1
|
Hammond SJ, Roff AJ, Robinson JL, Darby JRT, Meakin AS, Clifton VL, Bischof RJ, Stark MJ, Wallace MJ, Tai A, Morrison JL, Gatford KL. In utero exposure to experimental maternal asthma alters fetal airway development in sheep. Exp Physiol 2025. [PMID: 39869487 DOI: 10.1113/ep092502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA. We hypothesised that in utero MA exposure would reduce airway diameter and increase airway-associated smooth muscle area and reticular basement membrane thickness in neonatal offspring. Experimental MA was induced by maternal sensitisation followed by airway challenges with house dust mite before and during pregnancy. Lambs from control (n = 16) or MA (n = 26) ewes were delivered at ∼140 days gestation (term = 150 days), ventilated for 45 min, then humanely killed. Left lungs were inflation-fixed, and cross-sections of generation 2-5 airways were collected. Airway sections were stained with Haematoxylin and Eosin, Masson's Trichrome and Gordon and Sweet's histological stains for morphological analysis. Lamb body and lung weights were similar between groups (P > 0.5 and P > 0.7, respectively). Lambs that were exposed to MA had narrower airway diameters (P = 0.019) and thinner reticular basement membrane (P = 0.016) but similar airway-associated smooth muscle area (P = 0.152) compared with unexposed control lambs. Our results demonstrate a potential mechanism for increased risk of asthma in children of mothers with asthma, independent of genetic risk or behavioural changes during pregnancy.
Collapse
Affiliation(s)
- Sarah J Hammond
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrea J Roff
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation and Health Sciences, University of South Australia, Adelaide, Australia
| | - Joshua L Robinson
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation and Health Sciences, University of South Australia, Adelaide, Australia
| | - Vicki L Clifton
- Mater Medical Research Institute, University of Queensland, South Brisbane, Queensland, Australia
| | - Robert J Bischof
- Institute of Innovation, Science and Sustainability, Federation University Australia, Berwick, Victoria, Australia
| | - Michael J Stark
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Neonatal Medicine, Women's & Children's Hospital, North Adelaide, South Australia, Australia
| | - Megan J Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Andrew Tai
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Medicine, Women's & Children's Hospital, North Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Abdelazem AS, Khalil AA, Ghareeb D, Soliman AS, El Maghraby HM, Ismail NA, Hussein S. Interleukin-17 Genotypes in Egyptian Asthmatic Children at Zagazig University Hospitals. J Interferon Cytokine Res 2024; 44:461-466. [PMID: 39066696 DOI: 10.1089/jir.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Bronchial asthma (BA) is increasing among Egyptian children. It is affected by multiple factors including genetic ones. In the current study, we assessed the relationship between interleukin-17 (IL-17) genotypes and the occurrence of BA among Egyptian children. This case-control study included 100 participants. Group I (the control group) comprised 50 healthy subjects. Group II (the asthmatic group) comprised 50 subjects diagnosed with atopic asthma according to the Global Initiative for Asthma. Measurement of serum Ig E and eosinophilic count was performed. Detection of single nucleotide polymorphism rs2275913 of IL-17 gene by restriction fragment length polymorphism-polymerase chain reaction was conducted. GA and AA genotypes were more frequent in the asthmatic group compared to the control group (P = 0.03 and 0.01, respectively). Subjects carrying GA and AA genotypes were more susceptible to have asthma [odds ratio (OR) = 2.21, 95% confidence interval (CI) = 1.14-9.94, P = 0.03; OR = 7.78, 95% CI = 1.59-38.3, P = 0.01, respectively]. The A allele was higher in the asthmatic group (33%) compared to the control group (10%). A allele carriers were more susceptible to have asthma (OR = 4.43, 95% CI = 2.04-9.82 and P < 0.001). Immunoglobulin E (IgE) levels and eosinophil percentages were higher among the carriers of GA and AA genotypes when compared with the GG genotype. All pulmonary function tests were significantly lower among carriers of AA genotype compared with GG genotype. An A allele carrier, AA genotype, increased IgE level, and eosinophil level were significant predictors for occurrence of asthma (P = 0.01, 0.02, 0.004, and 0.01). In conclusion, AA genotype carriers and A allele carriers of the IL-17 gene are more likely to have asthma compared with controls.
Collapse
Affiliation(s)
- Abdallah S Abdelazem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine , Suez University, Suez, Egypt
| | - Azza Ali Khalil
- Pediatrics Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia Ghareeb
- Department of Clinical Pathology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Ahmad Sallam Soliman
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M El Maghraby
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nagwan A Ismail
- Chest Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Lupu VV, Jechel E, Fotea S, Morariu ID, Starcea IM, Azoicai A, Mocanu A, Mitrofan EC, Lupu A, Munteanu D, Badescu MC, Cuciureanu M, Ioniuc I. Current Approaches in the Multimodal Management of Asthma in Adolescents-From Pharmacology to Personalized Therapy. Biomedicines 2023; 11:2429. [PMID: 37760870 PMCID: PMC10525469 DOI: 10.3390/biomedicines11092429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Asthma and adolescence are two sensitive points and are difficult to manage when they coexist. The first is a chronic respiratory condition, with frequent onset in early childhood (between 3 and 5 years), which can improve or worsen with age. Adolescence is the period between childhood and adulthood (12-19 years), marked by various internal and external conflicts and a limited capacity to understand and accept any aspect that is delimited by the pattern of the social circle (of the entourage) frequented by the individual. Therefore, the clinician is faced with multiple attempts regarding the management of asthma encountered during the adolescent period, starting from the individualization of the therapy to the control of compliance (which depends equally on the adverse reactions, quality of life offered and support of the close circle) and the social integration of the subject, communication probably having a more important role in the monitoring and evolution of the condition than the preference for a certain therapeutic scheme. Current statistics draw attention to the increase in morbidity and mortality among children with bronchial asthma, an aspect demonstrated by the numerous hospitalizations recorded, due either to an escalation in the severity of this pathology or to faulty management. The purpose of this article is to review the delicate aspects in terms of controlling symptoms and maintaining a high quality of life among teenagers.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| | - Elena Jechel
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| | - Alice Azoicai
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| | - Adriana Mocanu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| | | | - Ancuta Lupu
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruta Badescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (E.J.)
| |
Collapse
|
4
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
5
|
Zhou Y, Duan Q, Yang D. In vitro human cell-based models to study airway remodeling in asthma. Biomed Pharmacother 2023; 159:114218. [PMID: 36638596 DOI: 10.1016/j.biopha.2023.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Airway remodeling, as a predominant characteristic of asthma, refers to the structural changes that occurred both in the large and small airways. These pathological changes not only contribute to airway hyperresponsiveness and airway obstruction, but also predict poor outcomes of patients. In vitro models are the alternatives to animal models that facilitate airway remodeling research. Current approaches to mimic airway remodeling in vitro include mono cultures of cell lines and primary cells that are derived from the respiratory tract, and co-culture systems that consist of different cell subpopulations. Moreover, recent advances in microfluid chips and organoids show promise in simulating the complex architecture and functionality of native organs. According, they enable highly physiological-relevant investigations of human diseases in vitro. Here we aim to detail the current human cell-based models regarding their key pros and cons, and to discuss how they may be used to facilitate our understanding of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Qirui Duan
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
6
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
7
|
Huang Y, Qiu C. Research advances in airway remodeling in asthma: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1023. [PMID: 36267708 PMCID: PMC9577744 DOI: 10.21037/atm-22-2835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022]
Abstract
Background and Objective Asthma is a common chronic disorder of the airway, and its disability and mortality rates continue to increase each year. Due to the lack of an ideal treatment, asthma control in China remains unsatisfactory. Airway remodeling is the pathological basis for the eventual development of the fixed airflow limitation in asthmatic patients. Early diagnosis and the prevention of airway remodeling has the potential to decrease disease severity, to improve control, and to prevent disease expression. Methods This article presents an overview. The literature was combed through via CNKi and PubMed according to the listed keywords. We considered Chinese and English original publications (basic science and clinical), reviews and abstracts of 21th Century. Key Content and Findings We review the pathological features and pathogenesis of, and the interventional treatment options for airway remodeling in asthmatic patients, emphasizing the importance of airway remodeling in asthma and providing novel insights into the prevention and control of asthma. Conclusions Thus, there have been research advances in airway remodeling, especially in the areas of slowing down or reversing airway remodeling. As growing studies showed, treating airway remodeling is a promising strategy in preventing the occurrence and progression of asthma. Breakthroughs in these difficulties airway remodeling still facing will open up new avenues in the research and treatment of asthma.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Respiratory and Critical Care Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Wawszczak M, Kulus M, Peradzyńska J. Peripheral airways involvement in children with asthma exacerbation. CLINICAL RESPIRATORY JOURNAL 2021; 16:97-104. [PMID: 34676678 PMCID: PMC9060097 DOI: 10.1111/crj.13456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Objective The literature provides some evidence of peripheral airways key role in the pathogenesis of asthma. However, the extent to which lung periphery including acinar zone contribute to asthma activity and control in pediatric population is unclear. Therefore, the aim of the study was to estimate peripheral airways involvement in children with asthma exacerbation and stable asthma simultaneously via different pulmonary function tests. Methods Children with asthma exacerbation (n = 20) and stable asthma (n = 22) performed spirometry, body plethysmography, exhaled nitric oxide, impulse oscillometry (IOS), and multiple‐breath washout (MBW). Results Peripheral airway's function indexes were increased in children with asthma, particularly in group with asthma exacerbation when compared with stable asthma group. The prevalence of abnormal results was significantly higher in asthma exacerbation. All children with asthma exacerbation had conductive ventilation inhomogeneity; 76% had acinar ventilation inhomogeneity. According to IOS measurements, resistance and reactance were within normal range, but other IOS parameters were significantly higher in children with asthma exacerbation compared with stable asthma group. The 36% of children with acute asthma had air trapping. Conclusion Significant involvement of peripheral airways was observed in children with asthma, particularly in asthma exacerbation, which determine lung periphery as important additional target for therapy and provide new insights into pathophysiological process of pediatric asthma.
Collapse
Affiliation(s)
- Maria Wawszczak
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kulus
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Peradzyńska
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Zhang X, Sun Z, Guo S, Zhang J, Gu W, Chen Z, Huang L. E3 Ubiquitin Ligase March1 Facilitates OX40L Expression in Allergen-Stimulated Dendritic Cells Through Mediating the Ubiquitination of HDAC11. J Asthma Allergy 2021; 14:955-966. [PMID: 34385821 PMCID: PMC8352640 DOI: 10.2147/jaa.s318104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background It was demonstrated that membrane-associated RING-CH 1 (March 1) might play an important role in the pathogenesis of asthma. Methods The levels of mRNA and protein were measured by qRT-PCR and Western blot, respectively. Immunofluorescence assay was used to determine whether March1 co-locates with HDAC11. Co-immunoprecipitation was performed to examine the combination of proteins. Moreover, luciferase assay was used to measure the promoter activity of genes. Results The mRNA and protein levels of both March1 and OX40 ligand (OX40L) were increased in the dendritic cells (DCs) from asthmatic children and asthmatic animals. Histone deacetylase 11 (HDAC11) protein was decreased in the DCs from asthmatic children and asthmatic model. Increasing of March1 or decreasing of March1 only affect the expression of HDAC11 in protein level. Besides, increasing of HDAC11 could inhibit OX40L expression, and decreasing of HDAC11 promoted OX40L expression in house dust mites (HDMs)-treated DCs. Increasing of HDAC11 notably reversed the promotion of March1 to OX40L expression. Our data further proved that March1 reduced the protein level of HDAC11 through inducing ubiquitination and degradation. HDAC11 combined with krüppel-like factor 4 (KLF4) to decrease the activity of OX40L gene promoter, thus to downregulate the level of OX40L. Conclusion Overall, our data showed that HDAC11 promoted KLF4-dependent OX40L decreasing. However, March1 promoted OX40L expression through enhancing the ubiquitination and degradation of HDAC11 and subsequent blocking the inhibition of HDAC11 to OX40L.
Collapse
Affiliation(s)
- Xinxing Zhang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Zhichao Sun
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Suyu Guo
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Jiahui Zhang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Wenjing Gu
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Zhengrong Chen
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| | - Li Huang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215003, People's Republic of China
| |
Collapse
|
10
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Reid AT, Nichol KS, Chander Veerati P, Moheimani F, Kicic A, Stick SM, Bartlett NW, Grainge CL, Wark PAB, Hansbro PM, Knight DA. Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from Individuals with Asthma. Am J Respir Cell Mol Biol 2020; 62:513-523. [PMID: 31922915 DOI: 10.1165/rcmb.2019-0069oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In asthma, goblet cell numbers are increased within the airway epithelium, perpetuating the production of mucus that is more difficult to clear and results in airway mucus plugging. Notch1, Notch2, or Notch3, or a combination of these has been shown to influence the differentiation of airway epithelial cells. How the expression of specific Notch isoforms differs in fully differentiated adult asthmatic epithelium and whether Notch influences mucin production after differentiation is currently unknown. We aimed to quantify different Notch isoforms in the airway epithelium of individuals with severe asthma and to examine the impact of Notch signaling on mucin MUC5AC. Human lung sections and primary bronchial epithelial cells from individuals with and without asthma were used in this study. Primary bronchial epithelial cells were differentiated at the air-liquid interface for 28 days. Notch isoform expression was analyzed by Taqman quantitative PCR. Immunohistochemistry was used to localize and quantify Notch isoforms in human airway sections. Notch signaling was inhibited in vitro using dibenzazepine or Notch3-specific siRNA, followed by analysis of MUC5AC. NOTCH3 was highly expressed in asthmatic airway epithelium compared with nonasthmatic epithelium. Dibenzazepine significantly reduced MUC5AC production in air-liquid interface cultures of primary bronchial epithelial cells concomitantly with suppression of NOTCH3 intracellular domain protein. Specific knockdown using NOTCH3 siRNA recapitulated the dibenzazepine-induced reduction in MUC5AC. We demonstrate that NOTCH3 is a regulator of MUC5AC production. Increased NOTCH3 signaling in the asthmatic airway epithelium may therefore be an underlying driver of excess MUC5AC production.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Kristy S Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Punnam Chander Veerati
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Anthony Kicic
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,Occupation and Environment, School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Malmström K, Lohi J, Malmberg LP, Kotaniemi-Syrjänen A, Lindahl H, Sarna S, Pelkonen AS, Mäkelä MJ. Airway hyperresponsiveness, remodeling and inflammation in infants with wheeze. Clin Exp Allergy 2020; 50:558-566. [PMID: 32159879 DOI: 10.1111/cea.13598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/23/2020] [Accepted: 03/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The relationship of airway hyperresponsiveness to airway remodeling and inflammation in infants with wheeze is unclear. OBJECTIVE To investigate airway hyperresponsiveness, remodeling and inflammation in infants with wheeze and troublesome breathing. METHODS Inclusion criteria were as follows: full-term, 3-23 months of age; doctor -diagnosed wheeze and persistent recurrent troublesome breathing; without obvious structural defect, suspicion of ciliary dyskinesia, cystic fibrosis, immune deficiency or specified use of corticosteroids. Airway hyperresponsiveness (AHR) was evaluated by performing a methacholine bronchial challenge test combined with whole body plethysmography and rapid thoracoabdominal compression. Endobronchial biopsies were analysed for remodeling (thickness of reticular basement membrane and amount of airway smooth muscle) and for inflammation (numbers of inflammatory cells). Correlation analyses were performed. RESULTS Forty-nine infants fulfilled the inclusion criteria for the present study. Median age was 1.06 years (IQR 0.6; 1.5). Lung function was impaired in 39/49 (80%) children, at the median age of 1.1 years. Methacholine challenge was successfully performed in 38/49 children. Impaired baseline lung function was correlated with AHR (P = .047, Spearman). In children with the most sensitive quartile of AHR, the percentage of median bronchial airway smooth muscle % and the number of bronchial mast cells in airway smooth muscle were not significantly higher compared to others (P = .057 and 0.056, respectively). No association was found between AHR and thickness of reticular basement membrane or inflammatory cells. Only a small group of children with both atopy and AHR (the most reactive quartile) had thicker airway smooth muscle area than non-atopics with AHR (P = .031). CONCLUSIONS AND CLINICAL RELEVANCE These findings do not support the concept that AHR in very young children with wheeze is determined by eosinophilic inflammation or clear-cut remodeling although it is associated with impaired baseline lung function. The possible association of increased airway smooth muscle area among atopic children with AHR remains to be confirmed.
Collapse
Affiliation(s)
- Kristiina Malmström
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- Dept. of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leo Pekka Malmberg
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Kotaniemi-Syrjänen
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harry Lindahl
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Sarna
- Dept. of Public Health, University of Helsinki, Helsinki, Finland
| | - Anna S Pelkonen
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika J Mäkelä
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Jiang JX, Shen HJ, Guan Y, Jia YL, Shen J, Liu Q, Xie QM, Yan XF. ZDHXB-101 (3',5-Diallyl-2, 4'-dihydroxy-[1,1'-biphen-yl]-3,5'-dicarbaldehyde) protects against airway remodeling and hyperresponsiveness via inhibiting both the activation of the mitogen-activated protein kinase and the signal transducer and activator of transcription-3 signaling pathways. Respir Res 2020; 21:22. [PMID: 31931796 PMCID: PMC6958776 DOI: 10.1186/s12931-020-1281-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/05/2020] [Indexed: 02/12/2023] Open
Abstract
Airway remodeling consists of the structural changes of airway walls, which is often considered the result of longstanding airway inflammation, but it may be present to an equivalent degree in the airways of children with asthma, raising the need for early and specific therapeutic interventions. The arachidonic acid cytochrome P-450 (CYP) pathway has thus far received relatively little attention in its relation to asthma. In this study, we studied the inhibition of soluble epoxide hydrolase (sEH) on airway remodeling and hyperresponsiveness (AHR) in a chronic asthmatic model which long-term exposure to antigen over a period of 12 weeks. The expression of sEH and CYP2J2, the level of 14, 15-epoxyeicosatrienoic acids (EETs), airway remodeling, hyperresponsiveness and inflammation were analyzed to determine the inhibition of sEH. The intragastric administration of 3 or 10 mg/kg ZDHXB-101, which is a structural derivative of natural product honokiol and a novel soluble epoxide hydrolase (sEH) inhibitor, daily for 9 weeks significantly increased the level of 14, 15-EETs by inhibiting the expression of sEH and increasing the expression of CYP2J2 in lung tissues. ZDHXB-101 reduced the expression of remodeling-related markers such as interleukin (IL)-13, IL-17, MMP-9 N-cadherin, α-smooth muscle actin, S100A4, Twist, goblet cell metaplasia, and collagen deposition in the lung tissue or in bronchoalveolar lavage fluid. Moreover, ZDHXB-101 alleviated AHR, which is an indicator that is used to evaluate the airway remodeling function. The inhibitory effects of ZDHXB-101 were demonstrated to be related to its direct inhibition of the extracellular signal-regulated kinase (Erk1/2) phosphorylation, as well as inhibition of c-Jun N-terminal kinases (JNK) and the signal transducer and activator of transcription-3 (STAT3) signal transduction. These findings first revealed the anti-remodeling potential of ZDHXB-101 lead in chronic airway disease.
Collapse
Affiliation(s)
- Jun-Xia Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, # 88 Jiefang Rd, Hangzhou, 310009, Zhejiang Province, China.,Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Hui-Juan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, # 88 Jiefang Rd, Hangzhou, 310009, Zhejiang Province, China.,Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Yan Guan
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Qi Liu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Qiang-Min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China.
| | - Xiao-Feng Yan
- The Second Affiliated Hospital, Zhejiang University School of Medicine, # 88 Jiefang Rd, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
14
|
Jiang JX, Guan Y, Shen HJ, Jia YL, Shen J, Zhang LH, Liu Q, Zhu YL, Xie QM. Inhibition of soluble epoxide hydrolase attenuates airway remodeling in a chronic asthma model. Eur J Pharmacol 2019; 868:172874. [PMID: 31866410 DOI: 10.1016/j.ejphar.2019.172874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Airway remodeling in asthma is difficult to treat because of its complex pathophysiology that involves proinflammatory cytokines, as well as the arachidonic acid cytochrome P-450 (CYP) pathway; however, it has received little attention. In this study, we assessed the efficacy of a soluble epoxide hydrolase (sEH) on airway remodeling in a mouse model of chronic asthma. The expression of sEH and CYP2J2 and the level of 14,15-epoxyeicosatrienoic acid (14,15-EET), airway remodeling and hyperresponsiveness (AHR) were analyzed to determine the level of sEH inhibition. AUDA, a sEH inhibitor, was given daily for 9 weeks orally, which significantly increased the level of 14,15-EET by inhibiting the expression of sEH and increasing the expression of CYP2J2 in lung tissues. The inhibition of sEH reduced the expression of remodeling-related molecular markers, such as interleukin (IL)-13, IL-17, matrix metalloproteinase 9, N-cadherin, α-smooth muscle actin (α-SMA), S100A4, Twist, epithelial goblet cell metaplasia, and collagen deposition in bronchoalveolar lavage fluid (BAL fluid) and lung tissues. Moreover, remodeling-related eosinophil accumulation in the BAL fluid and infiltration into the lung tissue were improved by AUDA. Finally, AUDA alleviated AHR, which is a functional indicator of airway remodeling. The effect of AUDA on airway remodeling was related to the downregulation of extracellular-regulated protein kinases (Erk1/2), c-Jun N-terminal kinases (JNK) and signal transducer and activator of transcription 3 (STAT3). To our knowledge, this is the first report to demonstrate that inhibition of sEH exerts significant protective effects on airway remodeling in asthma.
Collapse
Affiliation(s)
- Jun-Xia Jiang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yan Guan
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui-Juan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong-Liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lin-Hui Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qi Liu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-Liang Zhu
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Qiang-Min Xie
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Cockcroft DW, Davis BE, Blais CM. Thunderstorm asthma: An allergen-induced early asthmatic response. Ann Allergy Asthma Immunol 2019; 120:120-123. [PMID: 29413334 DOI: 10.1016/j.anai.2017.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Donald W Cockcroft
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Beth E Davis
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christianne M Blais
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
The anatomic substrate of irreversible airway obstruction and barotrauma in a case of hurricane-triggered fatal status asthmaticus during puerperium: Lessons from an autopsy. Respir Med Case Rep 2018; 26:136-141. [PMID: 30603604 PMCID: PMC6306954 DOI: 10.1016/j.rmcr.2018.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023] Open
Abstract
Non-fully reversible airway obstruction in fatal asthma is often seen in association with profound structural changes of the bronchial wall, termed airway remodeling. Evidence suggests that heavy precipitation events can trigger epidemics of severe asthma. We present a case of fatal asthma in a young woman with no prior near-fatal exacerbations and postulate that the patient's extensive airway remodeling and puerperal state (susceptibility factors), in combination with a massive allergen challenge during a hurricane landfall (triggering factor), played a central role in her death. The autopsy revealed diffuse obstruction of proximal and distal bronchi by mucous plugs together with transmural chronic inflammation, tissue eosinophilia, extensive goblet cell hyperplasia with MUC-5 expression and airway smooth muscle (ASM) thickening. The observed distribution of airway remodeling was heterogeneous with sparing of the lingula, which exhibited hyperinflation and expansion of perivascular spaces indicative of dissecting air. The massive stagnation of mucus and significant inter-airway structural heterogeneity created an anatomical substrate for unequal airflow distribution facilitating the development of barotrauma. Although not considered conventional risk factors for fatal asthma, we believe that in this case, the patient's puerperal state in conjunction with an extreme environmental event dispersing aeroallergens were major contributors to the development of a fatal asthma attack. Our autopsy findings suggest that effective strategies to evacuate stagnated mucus and induce relaxation of thickened ASM are crucial in the management of life-threatening asthma exacerbations.
Collapse
|
17
|
Eguíluz-Gracia I, Malmstrom K, Dheyauldeen SA, Lohi J, Sajantila A, Aaløkken R, Sundaram AYM, Gilfillan GD, Makela M, Baekkevold ES, Jahnsen FL. Monocytes accumulate in the airways of children with fatal asthma. Clin Exp Allergy 2018; 48:1631-1639. [PMID: 30184280 DOI: 10.1111/cea.13265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. OBJECTIVE To investigate whether monocytes are recruited to the lungs in paediatric asthma. METHODS Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. RESULTS Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. CONCLUSIONS AND CLINICAL RELEVANCE Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.
Collapse
Affiliation(s)
- Ibon Eguíluz-Gracia
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Kristiina Malmstrom
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Sinan Ahmed Dheyauldeen
- Department of Otorhinolaryngology, Head and Neck Surgery, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Jouko Lohi
- Department of Pathology, Helsinki University Central Hospital, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Ragnhild Aaløkken
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mika Makela
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Espen S Baekkevold
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Persson C. Airways exudation of plasma macromolecules: Innate defense, epithelial regeneration, and asthma. J Allergy Clin Immunol 2018; 143:1271-1286. [PMID: 30170125 PMCID: PMC7112321 DOI: 10.1016/j.jaci.2018.07.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 01/09/2023]
Abstract
This review discusses in vivo airway aspects of plasma exudation in relation to current views on epithelial permeability and epithelial regeneration in health and disease. Microvascular-epithelial exudation of bulk plasma proteins characteristically occurs in asthmatic patients, being especially pronounced in those with severe and exacerbating asthma. Healthy human and guinea pig airways challenged by noninjurious histamine-leukotriene–type autacoids also respond through prompt mucosal exudation of nonsieved plasma macromolecules. Contrary to current beliefs, epithelial permeability in the opposite direction (ie, absorption of inhaled molecules) has not been increased in patients with asthma and allergic rhinitis or in acutely exuding healthy airways. A slightly increased subepithelial hydrostatic pressure produces such unidirectional outward perviousness to macromolecules. Lack of increased absorption permeability in asthmatic patients can further be reconciled with occurrence of epithelial shedding, leaving small patches of denuded basement membrane. Counteracting escalating barrier breaks, plasma exudation promptly covers the denuded patches. Here it creates and sustains a biologically active barrier involving a neutrophil-rich, fibrin-fibronectin net. Furthermore, in the plasma-derived milieu, all epithelial cell types bordering the denuded patch dedifferentiate and migrate from all sides to cover the denuded basement membrane. However, this speedy epithelial regeneration can come at a cost. Guinea pig in vivo studies demonstrate that patches of epithelial denudation regeneration are exudation hot spots evoking asthma-like features, including recruitment/activation of granulocytes, proliferation of fibrocytes/smooth muscle cells, and basement membrane thickening. In conclusion, nonsieved plasma macromolecules can operate on the intact airway mucosa as potent components of first-line innate immunity responses. Exuded plasma also takes center stage in epithelial regeneration. When exaggerated, epithelial regeneration can contribute to the inception and development of asthma.
Collapse
Affiliation(s)
- Carl Persson
- Department of Laboratory Medicine, University Hospital of Lund, Lund, Sweden.
| |
Collapse
|
19
|
Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 2018; 24:56-62. [PMID: 29076828 DOI: 10.1097/mcp.0000000000000441] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The term 'airway remodeling' reflects changes in the type, quantity, and nature of airway wall components and their organization. The purpose of this review is to look at recent publications on airway remodeling in asthma. RECENT FINDINGS Animal models and in-vitro studies have confirmed the involvement of airway epithelium, airway smooth muscle (ASM), and extracellular matrix components in asthma-related airway remodeling. They report influences on proliferation of ASM cells, and how their orientation or morphology, in addition to the heterogeneity of ASM mass at different levels of airways could influence their effects. Clinical benefits have been observed following reduction of ASM following bronchial thermoplasty. Asthmatic epithelial cell transcriptome alterations were found to involve metabolism and epigenetics, beyond epithelial mesenchymal trophic unit driven by injury and repair in chronic inflammation. New ways to explore airway remodeling such as imaging or endoscopic techniques have been evaluated. Finally, new data support the role of eosinophils and mast cells in remodeling and show the influence of new asthma drugs on this process. SUMMARY As recently stated by an American Thoracic Society task force, we need more research on airway remodeling, its determinants and clinical relevance, and on the effects of asthma drugs on its various components.
Collapse
|
20
|
Herrera AM, Fitzgerald DA. Question 1: Why do children still die from asthma? Paediatr Respir Rev 2018; 27:40-43. [PMID: 29576240 DOI: 10.1016/j.prrv.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Asthma is one of the commonest chronic conditions in children and can occasionally be fatal. Little has changed regarding the risk factors for children dying from asthma in the last 30 years. The majority of deaths from asthma occur in children from socio-economically disadvantaged backgrounds. These should be preventable with better education of families, oversight of medication adherence and improved communication between health care professionals and families. More needs to be done to deliver basic messages more effectively about asthma management to the most vulnerable in communities around the world.
Collapse
Affiliation(s)
- Ana Maria Herrera
- Department of Pediatric Respiratory Medicine, Clínica Santa María, Santiago, Chile; Medical School, Universidad de Los Andes, Santiago, Chile
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Castro-Rodriguez JA, Saglani S, Rodriguez-Martinez CE, Oyarzun MA, Fleming L, Bush A. The relationship between inflammation and remodeling in childhood asthma: A systematic review. Pediatr Pulmonol 2018; 53:824-835. [PMID: 29469196 DOI: 10.1002/ppul.23968] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We aimed to perform a systematic review of all studies with direct measurements of both airway inflammation and remodeling in the subgroup of children with repeated wheezing and/or persistent asthma severe enough to warrant bronchoscopy, to address whether airway inflammation precedes remodeling or is a parallel process, and also to assess the impact of remodeling on lung function. METHODS Four databases were searched up to June 2017. Two independent reviewers screened the literature and extracted relevant data. RESULTS We found 526 references, and 39 studies (2390 children under 18 years old) were included. Airway inflammation (eosinophilic/neutrophilic) and remodeling were not present in wheezers at a mean age of 12 months, but in older pre-school children (mean 2.5 years), remodeling (mainly increased reticular basement membrane [RBM] thickness and increased area of airway smooth muscle) and also airway eosinophilia was reported. This was worse in school-age children. RBM thickness was similar in atopic and non-atopic preschool wheezers. Airway remodeling was correlated with lung function in seven studies, with FeNO in three, and with HRCT-scan in one. Eosinophilic inflammation was not seen in patients without remodeling. There were no invasive longitudinal or intervention studies. CONCLUSION The relationship between inflammation and remodeling in children cannot be determined. Failure to demonstrate eosinophilic inflammation in the absence of remodeling is contrary to the hypothesis that inflammation causes these changes. We need reliable, non-invasive markers of remodeling in particular if this is to be addressed.
Collapse
Affiliation(s)
- Jose A Castro-Rodriguez
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Maria A Oyarzun
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Louis Fleming
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| |
Collapse
|