1
|
Zhang F, Song HX, Zheng LH, An YB, Liu P. Long-term clinical efficacy of drug-coated balloon angioplasty for TASCII C/D femoropopliteal lesions in older patients with chronic limb-threatening ischemia: A retrospective study. Medicine (Baltimore) 2024; 103:e39331. [PMID: 39151525 PMCID: PMC11332706 DOI: 10.1097/md.0000000000039331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
This study aimed to evaluate the long-term clinical outcomes of drug-coated drug (DCB) angioplasty for long femoropopliteal lesions in older patients with chronic limb-threatening ischemia (CLTI). In this multi-center retrospective study, we enrolled 119 patients with CLTI due to Trans-Atlantic Inter-Society Consensus (TASCII) C/D femoropopliteal lesions who underwent DCB angioplasty. A total of 119 patients with 122 limbs (TASCII C = 67, 54.9%; TASCII D = 55, 45.1%) were enrolled. At 36-month follow-up, primary patency, assisted primary patency, secondary patency, and freedom from target lesion revascularization were 47.3%, 49.8%, 59.5%, and 62.7%, respectively, and there was a significant improvement over baseline in Rutherford class (P < .001) and ankle-brachial index measurements (P < .001). Complex target lesions (P = .017) and 1 stenosis-free outflow vessel (P = .001) were risk predictors of freedom from clinically driven target lesion revascularization. Complex target lesions (P = .044), diabetes (P = .007), and 1 stenosis-free outflow vessel (P = .003) were risk predictors of restenosis. At 2 months, the ulcer healing rate was 96.3% (26/27). At 36 months, the limb salvage and survival rates were 85.8% and 83.3%, respectively. DCB angioplasty were safe and effective for older patients with CLTI attributable to femoropopliteal TASCII C/D lesions.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Vascular and Endovascular Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Hai-Xia Song
- Department of Neurology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, PR China
| | - Li-Hua Zheng
- Department of Vascular and Endovascular Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yan-Bo An
- Department of Vascular and Endovascular Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Peng Liu
- Department of Vascular and Endovascular Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
2
|
Omachi T, Ohara M, Fujikawa T, Kohata Y, Sugita H, Irie S, Terasaki M, Mori Y, Fukui T, Yamagishi SI. Comparison of Effects of Injectable Semaglutide and Dulaglutide on Oxidative Stress and Glucose Variability in Patients with Type 2 Diabetes Mellitus: A Prospective Preliminary Study. Diabetes Ther 2024; 15:111-126. [PMID: 37880502 PMCID: PMC10786762 DOI: 10.1007/s13300-023-01493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Recent trials have shown that glucagon-like peptide-1 receptor agonists considerably reduce atherosclerotic cardiovascular disease in patients with type 2 diabetes mellitus (T2DM). Oxidative stress, a surrogate marker of cardiovascular risk, is associated with glucose variability. However, to the best of our knowledge, no studies have compared the effects of injectable semaglutide and dulaglutide therapies on oxidative stress and glucose variability assessed via continuous glucose monitoring (CGM). This study aimed to analyze and compare the effects of semaglutide and dulaglutide therapies on oxidative stress and glucose variability as assessed through CGM. METHODS This is an open-label, multicenter, randomized, prospective, parallel-group comparison study. Overall, 37 patients with T2DM treated with dulaglutide for at least 12 weeks were randomized into two groups: one receiving continuous dulaglutide therapy (n = 19) and one receiving injectable semaglutide therapy (n = 18) groups. The coprimary endpoints were changes in the results of the diacron-reactive oxygen metabolites test, an oxidative stress marker, and CGM-evaluated glucose variability after 24 weeks. The secondary endpoint was changes in the Diabetes Treatment Satisfaction Questionnaire (DTSQ) scores. RESULTS Switching to semaglutide therapy was better than continuous dulaglutide therapy in reducing oxidative stress, glucose variability, and glycated hemoglobin levels. Conversely, continuous dulaglutide therapy was better than semaglutide therapy in terms of DTSQ scores for "Convenience" and "Recommend." CONCLUSION Injectable semaglutide therapy may be more effective than dulaglutide therapy in ameliorating oxidative stress and regulating glucose metabolism, including glucose variability, in patients with T2DM, while dulaglutide therapy may be more effective in terms of treatment satisfaction. CLINICAL TRIAL REGISTRATION UMIN-CRT ID: UMIN000042670 (registered 7 December 2020).
Collapse
Affiliation(s)
- Takemasa Omachi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| | - Tomoki Fujikawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yo Kohata
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Hiroe Sugita
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shunichiro Irie
- Department of Internal Medicine, Tokatsu Hospital, Chiba, Japan
- Department of Internal Medicine, Tokatsu Hospital Huzoku Nagareyama Central Park Ekimae Clinic, Chiba, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Anti-Glycation Research Section, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
3
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
4
|
Vergès B, Aboyans V, Angoulvant D, Boutouyrie P, Cariou B, Hyafil F, Mohammedi K, Amarenco P. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol 2022; 21:242. [PMID: 36380358 PMCID: PMC9667639 DOI: 10.1186/s12933-022-01686-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Several randomized controlled trials have demonstrated the benefits of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on ischemic stroke in patients with diabetes. In this review, we summarize and discuss the potential mechanisms of stroke protection by GLP-1RAs. GLP-1RAs exert multiple anti-atherosclerotic effects contributing to stroke prevention such as enhanced plaque stability, reduced vascular smooth muscle proliferation, increased nitric oxide, and improved endothelial function. GLP-1RAs also lower the risk of stroke by reducing traditional stroke risk factors including hyperglycemia, hypertension, and dyslipidemia. Independently of these peripheral actions, GLP-1RAs show direct cerebral effects in animal stroke models, such as reduction of infarct volume, apoptosis, oxidative stress, neuroinflammation, excitotoxicity, blood-brain barrier permeability, and increased neurogenesis, neuroplasticity, angiogenesis, and brain perfusion. Despite these encouraging findings, further research is still needed to understand more thoroughly the mechanisms by which GLP-1RAs may mediate stroke protection specifically in the human diabetic brain.
Collapse
Affiliation(s)
- Bruno Vergès
- grid.5613.10000 0001 2298 9313Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, INSERM Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - Victor Aboyans
- Department of Cardiology, EpiMaCT - INSERM UMR, Dupuytren University Hospital, Limoges University, 1094 & IRD 270, Limoges, France
| | - Denis Angoulvant
- EA4245 Transplantation, Immunity & Inflammation, Department of Cardiology, University of Tours, Tours University Hospital, Tours, France
| | - Pierre Boutouyrie
- Paris Cardiovascular Research CenterUMR-970Department of Pharmacology, INSERM, Georges-Pompidou European Hospital, Paris City University, Paris, France
| | - Bertrand Cariou
- grid.462318.aUniversity of Nantes, Nantes University Hospital Centre, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Fabien Hyafil
- grid.414093.b0000 0001 2183 5849Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, APHP, Paris City University, Paris, France
| | - Kamel Mohammedi
- grid.412041.20000 0001 2106 639XDepartment of Endocrinology, Diabetes, and Nutrition, University of Bordeaux, INSERM U1034, Pessac, France
| | - Pierre Amarenco
- Neurology and Stroke Center, SOS-TIA Clinic, Bichat Hospital, University of Paris, Paris, France
| |
Collapse
|
5
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Glycaemic Control in Patients Undergoing Percutaneous Coronary Intervention: What Is the Role for the Novel Antidiabetic Agents? A Comprehensive Review of Basic Science and Clinical Data. Int J Mol Sci 2022; 23:ijms23137261. [PMID: 35806265 PMCID: PMC9266811 DOI: 10.3390/ijms23137261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease (CAD) remains one of the most important causes of morbidity and mortality worldwide, and revascularization through percutaneous coronary interventions (PCI) significantly improves survival. In this setting, poor glycaemic control, regardless of diabetes, has been associated with increased incidence of peri-procedural and long-term complications and worse prognosis. Novel antidiabetic agents have represented a paradigm shift in managing patients with diabetes and cardiovascular diseases. However, limited data are reported so far in patients undergoing coronary stenting. This review intends to provide an overview of the biological mechanisms underlying hyperglycaemia-induced vascular damage and the contrasting actions of new antidiabetic drugs. We summarize existing evidence on the effects of these drugs in the setting of PCI, addressing pre-clinical and clinical studies and drug-drug interactions with antiplatelet agents, thus highlighting new opportunities for optimal long-term management of these patients.
Collapse
|
7
|
Wang C, Chen J, Wang P, Qing S, Li W, Lu J. Endogenous Protective Factors and Potential Therapeutic Agents for Diabetes-Associated Atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:821028. [PMID: 35557850 PMCID: PMC9086429 DOI: 10.3389/fendo.2022.821028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
The complications of macrovascular atherosclerosis are the leading cause of disability and mortality in patients with diabetes. It is generally believed that the pathogenesis of diabetic vascular complications is initiated by the imbalance between injury and endogenous protective factors. Multiple endogenous protective factors secreted by endothelium, liver, skeletal muscle and other tissues are recognized of their importance in combating injury factors and maintaining the homeostasis of vasculatures in diabetes. Among them, glucagon-like peptide-1 based drugs were clinically proven to be effective and recommended as the first-line medicine for the treatment of type 2 diabetic patients with high risks or established arteriosclerotic cardiovascular disease (CVD). Some molecules such as irisin and lipoxins have recently been perceived as new protective factors on diabetic atherosclerosis, while the protective role of HDL has been reinterpreted since the failure of several clinical trials to raise HDL therapy on cardiovascular events. The current review aims to summarize systemic endogenous protective factors for diabetes-associated atherosclerosis and discuss their mechanisms and potential therapeutic strategy or their analogues. In particular, we focus on the existing barriers or obstacles that need to be overcome in developing new therapeutic approaches for macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Pin Wang
- Department of Pharmacology, Naval Medical University, Shanghai, China
| | - Shengli Qing
- Department of Pharmacology, Naval Medical University, Shanghai, China
| | - Wenwen Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Jin Lu, ; Wenwen Li,
| | - Jin Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Jin Lu, ; Wenwen Li,
| |
Collapse
|
8
|
Nagase C, Tanno M, Kouzu H, Miki T, Nishida J, Murakami N, Kokubu N, Nagano N, Nishikawa R, Yoshioka N, Hasegawa T, Kita H, Tsuchida A, Ohnishi H, Miura T. Reduction in GLP-1 secretory capacity may be a novel independent risk factor of coronary artery stenosis. Sci Rep 2021; 11:15578. [PMID: 34341424 PMCID: PMC8329155 DOI: 10.1038/s41598-021-95065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Multiple factors regulate glucagon-like peptide-1 (GLP-1) secretion, but a group of apparently healthy subjects showed blunted responses of GLP-1 secretion in our previous study. In this study, we examined whether the reduction in GLP-1 secretory capacity is associated with increased extent of coronary artery stenosis in non-diabetic patients. Non-diabetic patients who were admitted for coronary angiography without a history of coronary interventions were enrolled. Coronary artery stenosis was quantified by Gensini score (GS), and GS ≥ 10 was used as an outcome variable based on its predictive value for cardiovascular events. The patients (mean age, 66.5 ± 8.8 years; 71% males, n = 173) underwent oral 75 g-glucose tolerant tests for determination of glucose, insulin and active GLP-1 levels. The area under the curve of plasma active GLP-1 (AUC-GLP-1) was determined as an index of GLP-1 secretory capacity. AUC-GLP-1 was not correlated with fasting glucose, AUC-glucose, serum lipids or indices of insulin sensitivity. In multivariate logistic regression analysis for GS ≥ 10, AUC-GLP-1 < median, age and hypertension were selected as explanatory variables, though fasting GLP-1 level was not selected. The findings suggest that reduction in GLP-1 secretory capacity is a novel independent risk factor of coronary stenosis.
Collapse
Affiliation(s)
- Chihiro Nagase
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Junichi Nishida
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Naoto Murakami
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Nobuaki Kokubu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| | | | - Tohru Hasegawa
- Department of Cardiology, JR Sapporo Hospital, Sapporo, Japan
| | - Hiroyuki Kita
- Department of Cardiology, JCHO Hokushin Hospital, Sapporo, Japan
| | | | - Hirofumi Ohnishi
- Department of Public Health, Sapporo Medical University, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan. .,Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-ku, Sapporo, Japan.
| |
Collapse
|
9
|
Self-assembled drug-polymer micelles with NO precursor loaded for synergistic cancer therapy. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02645-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Mori Y, Gonzalez Medina M, Liu Z, Guo J, Dingwell LS, Chiang S, Kahn CR, Husain M, Giacca A. Roles of vascular endothelial and smooth muscle cells in the vasculoprotective effect of insulin in a mouse model of restenosis. Diab Vasc Dis Res 2021; 18:14791641211027324. [PMID: 34190643 PMCID: PMC8482728 DOI: 10.1177/14791641211027324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Insulin exerts vasculoprotective effects on endothelial cells (ECs) and growth-promoting effects on vascular smooth muscle cells (SMCs) in vitro, and suppresses neointimal growth in vivo. Here we determined the role of ECs and SMCs in the effect of insulin on neointimal growth. METHODS Mice with transgene CreERT2 under the control of EC-specific Tie2 (Tie2-Cre) or SMC-specific smooth muscle myosin heavy chain promoter/enhancer (SMMHC-Cre) or littermate controls were crossbred with mice carrying a loxP-flanked insulin receptor (IR) gene. After CreERT2-loxP-mediated recombination was induced by tamoxifen injection, mice received insulin pellet or sham (control) implantation, and underwent femoral artery wire injury. Femoral arteries were collected for morphological analysis 28 days after wire injury. RESULTS Tamoxifen-treated Tie2-Cre+ mice showed lower IR expression in ECs, but not in SMCs, than Tie2-Cre- mice. Insulin treatment reduced neointimal area after arterial injury in Tie2-Cre- mice, but had no effect in Tie2-Cre+ mice. Tamoxifen-treated SMMHC-Cre+ mice showed lower IR expression in SMCs, but not in ECs, than SMMHC-Cre- mice. Insulin treatment reduced neointimal area in SMMHC-Cre- mice, whereas unexpectedly, it failed to inhibit neointima formation in SMMHC-Cre+ mice. CONCLUSION Insulin action in both ECs and SMCs is required for the "anti-restenotic" effect of insulin in vivo.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Implants
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/injuries
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Femoral Artery/drug effects
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Hypoglycemic Agents/administration & dosage
- Insulin/administration & dosage
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Receptor, Insulin/agonists
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Vascular System Injuries/drug therapy
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Mice
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Diabetes, Metabolism, and Endocrinology, Anti-Glycation Research Section, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Marel Gonzalez Medina
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhiwei Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - June Guo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Luke S Dingwell
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Simon Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Mansoor Husain
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Yagi K, Imamura T, Tada H, Chujo D, Liu J, Shima Y, Ohbatake A, Miyamoto Y, Okazaki S, Ito N, Nakano K, Shikata M, Enkaku A, Takikawa A, Honoki H, Fujisaka S, Origasa H, Tobe K. Diastolic Cardiac Function Improvement by Liraglutide Is Mainly Body Weight Reduction Dependent but Independently Contributes to B-Type Natriuretic Peptide Reduction in Patients with Type 2 Diabetes with Preserved Ejection Fraction. J Diabetes Res 2021; 2021:8838026. [PMID: 33855087 PMCID: PMC8019623 DOI: 10.1155/2021/8838026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/15/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES A single-arm prospective study was conducted among Japanese patients with type 2 diabetes having preserved ejection fraction. The aim was to investigate (1) whether liraglutide therapy could improve B-type natriuretic peptide (BNP) levels and diastolic cardiac function assessed by the E-wave to E' ratio (E/E') using transthoracic echocardiography (TTE), and (2) whether E/E' contributed to BNP improvement independent of bodyweight reduction (UMIN000005565). METHODS Patients with type 2 diabetes and left ventricular ejection fraction (LVEF) ≥ 40% without heart failure symptoms were enrolled, and daily injection with liraglutide (0.9 mg) was introduced. Cardiac functions were assessed by TTE before and after 26 weeks of liraglutide treatment. Diastolic cardiac function was defined as septal E/E' ≥ 13.0. RESULTS Thirty-one patients were analyzed. BNP and E/E' improved, with BNP levels declining from 36.8 ± 30.5 pg/mL to 26.3 ± 25.9 pg/mL (p = 0.0014) and E/E' dropping from 12.7 ± 4.7 to 11.0 ± 3.3 (p = 0.0376). The LVEF showed no significant changes. E/E' improved only in patients with E/E' ≥ 13.0. Favorable changes in E/E' were canceled when adjusted for body mass index (BMI). Multivariate linear regression analysis revealed that the left ventricular diastolic diameter and ∆E/E'/∆BMI contributed to ∆BNP/baseline BNP (p = 0.0075, R 2 = 0.49264). CONCLUSIONS Liraglutide had favorable effects on BNP and E/E' but not on LVEF. E/E' improvement was only seen in patients with diastolic cardiac function. Body weight reduction affected the change of E/E'. The BMI-adjusted E/E' significantly contributed to the relative change of BNP. GLP-1 analog treatment could be considered a therapeutic option against diabetic diastolic cardiac dysfunction regardless of body weight. This trial is registered with the University Hospital Medical Information Network in Japan, with clinical trial registration number: UMIN000005565.
Collapse
Affiliation(s)
- Kunimasa Yagi
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Teruhiko Imamura
- 2nd Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| | - Hayato Tada
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Daisuke Chujo
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Jianhui Liu
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Yuuki Shima
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Azusa Ohbatake
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Yukiko Miyamoto
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Satoko Okazaki
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Naoko Ito
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Kaoru Nakano
- 2nd Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | - Masataka Shikata
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| | - Asako Enkaku
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| | - Akiko Takikawa
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| | - Hisae Honoki
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| | - Shiho Fujisaka
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| | - Hideki Origasa
- Biostatistics and Clinical Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 934-0194, Japan
| | - Kazuyuki Tobe
- 1st Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 934-0194, Japan
| |
Collapse
|
12
|
Zhou R, Lin C, Cheng Y, Zhuo X, Li Q, Xu W, Zhao L, Yang L. Liraglutide Alleviates Hepatic Steatosis and Liver Injury in T2MD Rats via a GLP-1R Dependent AMPK Pathway. Front Pharmacol 2021; 11:600175. [PMID: 33746742 PMCID: PMC7970416 DOI: 10.3389/fphar.2020.600175] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from non-alcoholic fatty liver to non-alcoholic steatohepatitis, can be prevalent in patients with type 2 diabetes mellitus (T2DM). However, no antidiabetic drug has been approved for the treatment of NAFLD in T2DM patients. Multiple daily injections of basal-bolus insulin are often the final therapeutic option for T2DM. We found that insulin treatment aggravated hepatic steatosis and oxidative stress in Zucker diabetic fatty (ZDF) rats. In addition to glycaemic control, we demonstrated the stimulatory role of liraglutide in relieving hepatic steatosis and liver injury in ZDF rats. Interestingly, liraglutide could also alleviate insulin-aggravated hepatic fatty accumulation. The glucagon-like peptide-1 (GLP-1) agonists liraglutide and Ex-4 activated the expression of peroxisome proliferator-activated receptor alpha (PPARα) via a GLP-1 receptor-dependent 5′ AMP-activated protein kinase pathway. As a nuclear transcription factor, PPARα could mediate the effect of GLP-1 in alleviating hepatic steatosis by differentially regulating the expression of its target genes, including acetyl CoA carboxylase and carnitine palmitoyl transferase la both in vitro and in vivo. Moreover, GLP-1 could relieve liver injury by decreasing oxidative stress stimulated by hepatic steatosis. Insulin might aggravate hepatic steatosis and liver injury by inhibiting GLP-1R expression. The findings indicate the feasibility of liraglutide treatment combined with basal insulin in attenuating hepatic steatosis and liver injury in ZDF rats. This knowledge, and the evidence for the underlying mechanism, provide a theoretical basis for the combination treatment recommended by the latest clinical practice guidelines for T2DM.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuman Lin
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanzhen Cheng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Zhuo
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinghua Li
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Yang
- Department of Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Empagliflozin, alone or in combination with liraglutide, limits cell death in vitro: role of oxidative stress and nitric oxide. Pharmacol Rep 2021; 73:858-867. [PMID: 33555600 DOI: 10.1007/s43440-021-00224-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor empagliflozin and glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide are characterized as having cardiovascular benefits in patients with type 2 diabetes (T2D). Little is known regarding the underlying mechanisms nor the potential interactions between cardiovascular benefits of these two drugs when combined. We sought to investigate: (1) whether combination of empagliflozin and liraglutide has additive effect against diabetes-induced cytotoxicity, and (2) potential mechanisms involved in cardioprotective effect of empagliflozin and liraglutide in diabetes. METHODS Capacity of empagliflozin and liraglutide alone and in combination to reduce cardiac injury in diabetes was evaluated. HL-1 cells, a cardiac muscle cell line, were exposed to hyperglycemia/hyperinsulinemia and treated with/without empagliflozin, liraglutide or empagliflozin + liraglutide for 24 h. At the end of treatments, cytotoxicity, oxidative stress, nitric oxide (NO) production, nitric oxide synthase (NOS) activity and phospho-eNOS (Thr495) expression were determined. RESULTS We found that empagliflozin treatment alone and combined treatment decreased in vitro HL-1 cell death caused by hyperglycemia. Liraglutide treatment alone improved NOS activity followed by increased NO production, while empagliflozin had little effect. Furthermore, the effects of empagliflozin + liraglutide to decrease diabetes-induced cytotoxicity and oxidative stress were synergistic. CONCLUSION While empagliflozin alone attenuated diabetes-induced cytotoxicity, combined treatment of liraglutide can synergistically ameliorates cell death and oxidative stress. This effect is potentially due to improved NOS activity and increased NO production induced by liraglutide.
Collapse
|
14
|
Zhong Z, Chen K, Zhao Y, Xia S. Effects of Liraglutide on Left Ventricular Function: A Meta-Analysis of Randomized, Placebo-Controlled Trials. Int J Endocrinol 2021; 2021:9993229. [PMID: 34221010 PMCID: PMC8219465 DOI: 10.1155/2021/9993229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The effects of liraglutide treatment on the left ventricular systolic and diastolic function remain unclear. METHODS This meta-analysis was conducted according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement. All relevant randomized, placebo-controlled trials (RCTs) were identified by searching PubMed, EMBASE, Cochrane Library, and ISI Web of Science from the establishment to January 2021 without language limitations. The weighted mean difference (WMD) with 95% confidence intervals (CIs) was calculated. RESULTS Ten placebo-controlled RCTs involving a total of 732 cases were included in the meta-analysis. Compared with the placebo group, liraglutide therapy showed no beneficial effect on the left ventricular ejection fraction (LVEF) at the end of the study (WMD: 2.120, 95% CI: -0.688 to 4.929, P=0.139) and ΔLVEF during the trial period (WMD: -0.651, 95% CI: -1.649 to 0.348, P=0.202). Similarly, no statistical differences were noted in diastolic function parameters between the two groups, including the value early diastolic filling velocity (E)/the mitral annular early diastolic velocity (e') (WMD: -0.763, 95% CI: -2.157 to 0.630, P=0.283), Δe' (WMD: -0.069, 95% CI: -0.481 to 0.343, P=0.742), and ΔE/e' (WMD: -0.683, 95% CI: -1.663 to 0.298, P=0.172). CONCLUSIONS Liraglutide treatment did not improve the left ventricular systolic and diastolic function. Given the study's limitations, further investigation may be warranted.
Collapse
Affiliation(s)
- Zhaoshuang Zhong
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China
| | - Kaiming Chen
- Department of Cardiovascular Disease, Central Hospital, Shenyang Medical College, Shenyang, China
| | - Yan Zhao
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China
| | - Shuyue Xia
- Department of Respiratory, Central Hospital, Shenyang Medical College, Shenyang, China
| |
Collapse
|
15
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
16
|
Sachinidis A, Nikolic D, Stoian AP, Papanas N, Tarar O, Rizvi AA, Rizzo M. Cardiovascular outcomes trials with incretin-based medications: a critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors. Metabolism 2020; 111:154343. [PMID: 32810485 DOI: 10.1016/j.metabol.2020.154343] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors are so called "incretin-based therapies" (IBTs) that represent innovative therapeutic approaches and are commonly used in clinical practice for the treatment of type 2 diabetes mellitus (T2DM). The cardiovascular outcome trials (CVOTs) have provided useful information that has helped to shape changes in clinical practice guidelines for the management of T2DM. At the same time, the mechanisms that may explain the nonglycemic and cardiovascular (CV) benefits of these medications are still being explored. A summary of the main findings from CVOTs performed to-date with particular emphasis on various outcomes and inconsistencies observed in the trials is provided. Overall, available data is favourable to the early deployment of GLP-1RAs in clinical practice, fully in line with recommendations from international scientific guidelines, and based on their effects on glucose metabolism parameters, body weight reduction and CV outcomes. Evidence further suggest that the CV benefits of GLP-1RAs may not be a class effect, with GLP-1 analogues having a greater benefit rather than exendin-based agents.
Collapse
Affiliation(s)
- Alexandros Sachinidis
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Omer Tarar
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, USA
| | - Ali A Rizvi
- Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, USA; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA, USA
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of South Carolina, USA
| |
Collapse
|
17
|
Ding H, Wang L, Zhang L, Zhu B, Hou L, Huang G, Xu Z. RGD-modified ZnO nanoparticles loaded with nitric oxide precursor for targeted cancer therapy. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Sukumaran V, Tsuchimochi H, Sonobe T, Waddingham MT, Shirai M, Pearson JT. Liraglutide treatment improves the coronary microcirculation in insulin resistant Zucker obese rats on a high salt diet. Cardiovasc Diabetol 2020; 19:24. [PMID: 32093680 PMCID: PMC7038553 DOI: 10.1186/s12933-020-01000-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity, hypertension and prediabetes contribute greatly to coronary artery disease, heart failure and vascular events, and are the leading cause of mortality and morbidity in developed societies. Salt sensitivity exacerbates endothelial dysfunction. Herein, we investigated the effect of chronic glucagon like peptide-1 (GLP-1) receptor activation on the coronary microcirculation and cardiac remodeling in Zucker rats on a high-salt diet (6% NaCl). METHODS Eight-week old Zucker lean (+/+) and obese (fa/fa) rats were treated with vehicle or liraglutide (LIRA) (0.1 mg/kg/day, s.c.) for 8 weeks. Systolic blood pressure (SBP) was measured using tail-cuff method in conscious rats. Myocardial function was assessed by echocardiography. Synchrotron contrast microangiography was then used to investigate coronary arterial vessel function (vessels 50-350 µm internal diameter) in vivo in anesthetized rats. Myocardial gene and protein expression levels of vasoactive factors, inflammatory, oxidative stress and remodeling markers were determined by real-time PCR and Western blotting. RESULTS We found that in comparison to the vehicle-treated fa/fa rats, rats treated with LIRA showed significant improvement in acetylcholine-mediated vasodilation in the small arteries and arterioles (< 150 µm diameter). Neither soluble guanylyl cyclase or endothelial NO synthase (eNOS) mRNA levels or total eNOS protein expression in the myocardium were significantly altered by LIRA. However, LIRA downregulated Nox-1 mRNA (p = 0.030) and reduced ET-1 protein (p = 0.044) expression. LIRA significantly attenuated the expressions of proinflammatory and profibrotic associated biomarkers (NF-κB, CD68, IL-1β, TGF-β1, osteopontin) and nitrotyrosine in comparison to fa/fa-Veh rats, but did not attenuate perivascular fibrosis appreciably. CONCLUSIONS In a rat model of metabolic syndrome, chronic LIRA treatment improved the capacity for NO-mediated dilation throughout the coronary macro and microcirculations and partially normalized myocardial remodeling independent of changes in body mass or blood glucose.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar. .,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan. .,Department of Pharmacology, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - Mark T Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan.,Department of Advanced Medical Research in Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan.,Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
19
|
GIP as a Potential Therapeutic Target for Atherosclerotic Cardiovascular Disease-A Systematic Review. Int J Mol Sci 2020; 21:ijms21041509. [PMID: 32098413 PMCID: PMC7073149 DOI: 10.3390/ijms21041509] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that are secreted from enteroendocrine L cells and K cells in response to digested nutrients, respectively. They are also referred to incretin for their ability to stimulate insulin secretion from pancreatic beta cells in a glucose-dependent manner. Furthermore, GLP-1 exerts anorexic effects via its actions in the central nervous system. Since native incretin is rapidly inactivated by dipeptidyl peptidase-4 (DPP-4), DPP-resistant GLP-1 receptor agonists (GLP-1RAs), and DPP-4 inhibitors are currently used for the treatment of type 2 diabetes as incretin-based therapy. These new-class agents have superiority to classical oral hypoglycemic agents such as sulfonylureas because of their low risks for hypoglycemia and body weight gain. In addition, a number of preclinical studies have shown the cardioprotective properties of incretin-based therapy, whose findings are further supported by several randomized clinical trials. Indeed, GLP-1RA has been significantly shown to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes. However, the role of GIP in cardiovascular disease remains to be elucidated. Recently, pharmacological doses of GIP receptor agonists (GIPRAs) have been found to exert anti-obesity effects in animal models. These observations suggest that combination therapy of GLP-1R and GIPR may induce superior metabolic and anti-diabetic effects compared with each agonist individually. Clinical trials with GLP-1R/GIPR dual agonists are ongoing in diabetic patients. Therefore, in this review, we summarize the cardiovascular effects of GIP and GIPRAs in cell culture systems, animal models, and humans.
Collapse
|
20
|
Zhang WX, Tai GJ, Li XX, Xu M. Inhibition of neointima hyperplasia by the combined therapy of linagliptin and metformin via AMPK/Nox4 signaling in diabetic rats. Free Radic Biol Med 2019; 143:153-163. [PMID: 31369842 DOI: 10.1016/j.freeradbiomed.2019.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 07/28/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neointima hyperplasia is the pathological basis of atherosclerosis and restenosis which have been associated with diabetes mellitus (DM). It is controversial for linagliptin and metformin to protect against vascular neointimal hyperplasia caused by DM. Given the combined therapy of linagliptin and metformin in clinical practice, we investigated whether the combination therapy inhibited neointimal hyperplasia in the carotid artery in diabetic rats. METHODS AND RESULTS Neointima hyperplasia in the carotid artery was induced by balloon-injury in the rats fed with high fat diet (HFD) combined with low dose streptozotocin (STZ) administration. In vitro, vascular smooth muscle cells (VSMCs) were incubated with high glucose (HG, 30 mM) and the proliferation, migration, apoptosis and collagen deposition were analyzed in VSMCs. We found that the combined therapy, not the monotherapy of linagliptin and metformin significantly inhibited the neointima hyperplasia and improved the endothelium-independent contraction in the balloon-injured cardia artery of diabetic rats, which was associated with the inhibition of superoxide (O2-.) production in the cardia artery. In vitro, HG-induced VSMC remodeling was shown as the remarkable upregulation of PCNA, collagan1, MMP-9, Bcl-2 and migration rate as well as the decreased apoptosis rate. Such abnormal changes were dramatically reversed by the combined use of linagliptin and metformin. Moreover, the AMP-activated protein kinase (AMPK)/Nox4 signal pathway was found to mediate VSMC remodeling responding to HG. Linagliptin and metformin were synergistical to target AMPK/Nox4 signal pathway in VSMCs incubated with HG and in the cardia artery of diabetic rats, which was superior to the monotherapy. CONCLUSIONS We demonstrated that the potential protection of the combined use of linagliptin and metformin on VSMC remodeling through AMPK/Nox4 signal pathway, resulting in the improvement of neointima hyperplasia in diabetic rats. This study provided new therapeutic strategies for vascular stenosis associated with diabetes.
Collapse
Affiliation(s)
- Wen-Xu Zhang
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Xue Li
- Department of Pharmacology, Southeast University School of Medicine, Nanjing, 210009, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Mori Y, Terasaki M, Hiromura M, Saito T, Kushima H, Koshibu M, Osaka N, Ohara M, Fukui T, Ohtaki H, Tsutomu H, Yamagishi SI. Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling. Cardiovasc Diabetol 2019; 18:143. [PMID: 31672147 PMCID: PMC6823953 DOI: 10.1186/s12933-019-0947-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Excess fat deposition could induce phenotypic changes of perivascular adipose tissue (PVAT remodeling), which may promote the progression of atherosclerosis via modulation of adipocytokine secretion. However, it remains unclear whether and how suppression of PVAT remodeling could attenuate vascular injury. In this study, we examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, luseogliflozin on PVAT remodeling and neointima formation after wire injury in mice. METHODS Wilt-type mice fed with low-fat diet (LFD) or high-fat diet (HFD) received oral administration of luseogliflozin (18 mg/kg/day) or vehicle. Mice underwent bilateral femoral artery wire injury followed by unilateral removal of surrounding PVAT. After 25 days, injured femoral arteries and surrounding PVAT were analyzed. RESULTS In LFD-fed lean mice, neither luseogliflozin treatment or PVAT removal attenuated the intima-to-media (I/M) ratio of injured arteries. However, in HFD-fed mice, luseogliflozin or PVAT removal reduced the I/M ratio, whereas their combination showed no additive reduction. In PVAT surrounding injured femoral arteries of HFD-fed mice, luseogliflozin treatment decreased the adipocyte sizes. Furthermore, luseogliflozin reduced accumulation of macrophages expressing platelet-derived growth factor-B (PDGF-B) and increased adiponectin gene expression. Gene expression levels of Pdgf-b in PVAT were correlated with the I/M ratio. CONCLUSIONS Our present study suggests that luseogliflozin could attenuate neointimal hyperplasia after wire injury in HFD-fed mice partly via suppression of macrophage PDGF-B expression in PVAT. Inhibition of PVAT remodeling by luseogliflozin may be a novel therapeutic target for vascular remodeling after angioplasty.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Naoya Osaka
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hirano Tsutomu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan.,Diabetes Center, Ebina General Hospital, Kanagawa, 243-0433, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
22
|
Lundgren JR, Færch K, Witte DR, Jonsson AE, Pedersen O, Hansen T, Lauritzen T, Holst JJ, Vistisen D, Jørgensen ME, Torekov SS, Johansen NB. Greater glucagon-like peptide-1 responses to oral glucose are associated with lower central and peripheral blood pressures. Cardiovasc Diabetol 2019; 18:130. [PMID: 31586493 PMCID: PMC6778378 DOI: 10.1186/s12933-019-0937-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Background and aim Cardiovascular diseases (CVDs) are globally the leading cause of death and hypertension is a significant risk factor. Treatment with glucagon-like peptide-1 (GLP-1) receptor agonists has been associated with decreases in blood pressure and CVD risk. Our aim was to investigate the association between endogenous GLP-1 responses to oral glucose and peripheral and central haemodynamic measures in a population at risk of diabetes and CVD. Methods This cross-sectional study included 837 Danish individuals from the ADDITION-PRO cohort (52% men, median (interquartile range) age 65.5 (59.8 to 70.7) years, BMI 26.1 (23.4 to 28.5) kg/m2, without antihypertensive treatment and known diabetes). All participants received an oral glucose tolerance test with measurements of GLP-1 at 0, 30 and 120 min. Aortic stiffness was assessed by pulse wave velocity (PWV). The associations between GLP-1 response and central and brachial blood pressure (BP) and PWV were assessed in linear regression models adjusting for age and sex. Results A greater GLP-1 response was associated with lower central systolic and diastolic BP of − 1.17 mmHg (95% confidence interval (CI) − 2.07 to − 0.27 mmHg, P = 0.011) and − 0.74 mmHg (95% CI − 1.29 to − 0.18 mmHg, P = 0.009), respectively, as well as lower brachial systolic and diastolic BP of − 1.27 mmHg (95% CI − 2.20 to − 0.33 mmHg, P = 0.008) and − 1.00 (95% CI − 1.56 to − 0.44 mmHg, P = 0.001), respectively. PWV was not associated with GLP-1 release (P = 0.3). Individuals with the greatest quartile of GLP-1 response had clinically relevant lower BP measures compared to individuals with the lowest quartile of GLP-1 response (central systolic BP: − 4.94 (95% CI − 8.56 to − 1.31) mmHg, central diastolic BP: − 3.05 (95% CI − 5.29 to − 0.80) mmHg, brachial systolic BP: − 5.18 (95% CI − 8.94 to − 1.42) mmHg, and brachial diastolic BP: − 2.96 (95% CI − 5.26 to − 0.67) mmHg). Conclusion Greater glucose-stimulated GLP-1 responses were associated with clinically relevant lower central and peripheral blood pressures, consistent with beneficial effects on the cardiovascular system and reduced risk of CVD and mortality. Trial registration ClinicalTrials.gov Identifier: NCT00237549. Retrospectively registered 10 October 2005
Collapse
Affiliation(s)
- Julie R Lundgren
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | | | - Daniel R Witte
- Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Nanna B Johansen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Danish Diabetes Academy, Odense, Denmark
| |
Collapse
|
23
|
Bonaventura A, Carbone S, Dixon DL, Abbate A, Montecucco F. Pharmacologic strategies to reduce cardiovascular disease in type 2 diabetes mellitus: focus on SGLT-2 inhibitors and GLP-1 receptor agonists. J Intern Med 2019; 286:16-31. [PMID: 30888088 DOI: 10.1111/joim.12890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with type 2 diabetes mellitus (T2D) present an increased risk for cardiovascular (CV) complications. In addition to improvement in glycaemic control, glucose-lowering therapies, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-dependent glucose cotransporter (SGLT)-2 inhibitors, have been shown to significantly reduce CV events. In 2008, the US Food and Drug Administration mandated that all new glucose-lowering drugs undergo CV outcomes trials (CVOTs) to determine their CV safety. These trials have largely demonstrated no major CV safety concerns. Most notably, the GLP-1RAs and SGLT-2 inhibitors have been found to be not only safe, but also cardioprotective compared to placebo. The SGLT-2 inhibitors have opened a new perspective for clinicians treating patients with T2D and established CV disease in light of their 'pleiotropic' effects, specifically on heart failure, while GLP-1RAs seem to present more favourable effects on atherosclerotic events. In this review, we discuss the role of GLP-1RAs and SGLT-2 inhibitors to reduce CV risk in T2D patients and suggest an individualized therapeutic approach in this population based on the presence of metabolic and CV comorbidities.
Collapse
Affiliation(s)
- A Bonaventura
- the First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia, USA
| | - S Carbone
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia, USA
| | - D L Dixon
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - A Abbate
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia, USA
| | - F Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino -Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
24
|
Tsai TH, Lee CH, Cheng CI, Fang YN, Chung SY, Chen SM, Lin CJ, Wu CJ, Hang CL, Chen WY. Liraglutide Inhibits Endothelial-to-Mesenchymal Transition and Attenuates Neointima Formation after Endovascular Injury in Streptozotocin-Induced Diabetic Mice. Cells 2019; 8:cells8060589. [PMID: 31207939 PMCID: PMC6628350 DOI: 10.3390/cells8060589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Hyperglycaemia causes endothelial dysfunction, which is the initial process in the development of diabetic vascular complications. Upon injury, endothelial cells undergo an endothelial-to-mesenchymal transition (EndMT), lose their specific marker, and gain mesenchymal phenotypes. This study investigated the effect of liraglutide, a glucagon-like peptide 1 (GLP-1) receptor agonist, on EndMT inhibition and neointima formation in diabetic mice induced by streptozotocin. The diabetic mice with a wire-induced vascular injury in the right carotid artery were treated with or without liraglutide for four weeks. The degree of neointima formation and re-endothelialisation was evaluated by histological assessments. Endothelial fate tracing revealed that endothelium-derived cells contribute to neointima formation through EndMT in vivo. In the diabetic mouse model, liraglutide attenuated wire injury-induced neointima formation and accelerated re-endothelialisation. In vitro, a high glucose condition (30 mmol/L) triggered morphological changes and mesenchymal marker expression in human umbilical vein endothelial cells (HUVECs), which were attenuated by liraglutide or Activin receptor-like 5 (ALK5) inhibitor SB431542. The inhibition of AMP-activated protein kinase (AMPK) signaling by Compound C diminished the liraglutide-mediated inhibitory effect on EndMT. Collectively, liraglutide was found to attenuate neointima formation in diabetic mice partially through EndMT inhibition, extending the potential therapeutic role of liraglutide.
Collapse
Affiliation(s)
- Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chien-Ho Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Yen-Nan Fang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Shyh-Ming Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Cheng-Jei Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chiung-Jen Wu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chi-Ling Hang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| |
Collapse
|
25
|
Luo Z, Jia A, Lu Z, Muhammad I, Adenrele A, Song Y. Associations of the NOS3 rs1799983 polymorphism with circulating nitric oxide and lipid levels: a systematic review and meta-analysis. Postgrad Med J 2019; 95:361-371. [PMID: 31138610 DOI: 10.1136/postgradmedj-2019-136396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Circulating nitric oxide (NO) and lipid levels are closely associated with coronary artery disease (CAD). It is unclear whether the rs1799983 polymorphism in endothelial nitric oxide synthase (NOS3) gene is associated with plasma levels of NO and lipids. This systematic review and meta-analysis (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) aimed to clarify the relationships between the rs1799983 polymorphism and plasma levels of NO and lipids. METHODS Sixteen studies (2702 subjects) and 59 studies (14 148 subjects) were identified for the association analyses for NO and lipids, respectively. Mean difference (MD) and 95% CI were used to estimate the effects of the rs1799983 polymorphism on plasma NO and lipid levels. The primary outcome variable was NO, and the secondary outcomes included triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). RESULTS Carriers of the T allele had lower levels of NO (MD -0.27 μmol/L, 95% CI -0.42 to -0.12 μmol/L, p<0.001) and HDL-C (MD -0.07 mmol/L, 95% CI -0.14 to -0.00 mmol/L, p=0.04), and higher levels of TC (MD 0.13 mmol/L, 95% CI 0.06 to 0.20 mmol/L, p<0.001) and LDL-C (MD 0.14 mmol/L, 95% CI 0.05 to 0.22 mmol/L, p=0.002) than the non-carriers. Triglyceride levels were comparable between the genotypes. CONCLUSION The association between the NOS3 rs1799983 polymorphism and CAD may be partly mediated by abnormal NO and lipid levels caused by the T allele.
Collapse
Affiliation(s)
- Zhi Luo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong city, Sichuan province, China
| | - Aimei Jia
- School of Preclinical Medicine, North Sichuan Medical College, Nanchong city, Sichuan province, China
| | - Zhan Lu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong city, Sichuan province, China
| | - Irfan Muhammad
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong city, Sichuan province, China
| | - Adebayo Adenrele
- Department of Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Yongyan Song
- School of Preclinical Medicine, North Sichuan Medical College, Nanchong city, Sichuan province, China
| |
Collapse
|
26
|
Madsbad S. Liraglutide for the prevention of major adverse cardiovascular events in diabetic patients. Expert Rev Cardiovasc Ther 2019; 17:377-387. [DOI: 10.1080/14779072.2019.1615444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
27
|
Koshibu M, Mori Y, Saito T, Kushima H, Hiromura M, Terasaki M, Takada M, Fukui T, Hirano T. Antiatherogenic effects of liraglutide in hyperglycemic apolipoprotein E-null mice via AMP-activated protein kinase-independent mechanisms. Am J Physiol Endocrinol Metab 2019; 316:E895-E907. [PMID: 30860874 DOI: 10.1152/ajpendo.00511.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert potent glucose-lowering effects without increasing risks for hypoglycemia and weight gain. Preclinical studies have demonstrated direct antiatherogenic effects of GLP-1RAs in normoglycemic animal models; however, the underlying mechanisms in hyperglycemic conditions have not been fully clarified. Here we aimed to elucidate the role of AMP-activated protein kinase (AMPK) in antiatherogenic effects of GLP-1RAs in hyperglycemic mice. Streptozotocin-induced hyperglycemic apolipoprotein E-null mice were treated with vehicle, low-dose liraglutide (17 nmol·kg-1·day-1), or high-dose liraglutide (107 nmol·kg-1·day-1) in experiment 1 and the AMPK inhibitor dorsomorphin, dorsomorphin + low-dose liraglutide, or dorsomorphin + high-dose liraglutide in experiment 2. Four weeks after treatment, aortas were collected to assess atherosclerosis. In experiment 1, metabolic parameters were similar among the groups. Assessment of atherosclerosis revealed that high-dose liraglutide treatments reduced lipid deposition on the aortic surface and plaque volume and intraplaque macrophage accumulation at the aortic sinus. In experiment 2, liraglutide-induced AMPK phosphorylation in the aorta was abolished by dorsomorphin; however, the antiatherogenic effects of high-dose liraglutide were preserved. In cultured human umbilical vein endothelial cells, liraglutide suppressed tumor necrosis factor-induced expression of proatherogenic molecules; these effects were maintained under small interfering RNA-mediated knockdown of AMPKα1 and in the presence of dorsomorphin. Conversely, in human monocytic U937 cells, the anti-inflammatory effects of liraglutide were abolished by dorsomorphin. In conclusion, liraglutide exerted AMPK-independent antiatherogenic effects in hyperlipidemic mice with streptozotocin-induced hyperglycemia, with the possible involvement of AMPK-independent suppression of proatherogenic molecules in vascular endothelial cells.
Collapse
Affiliation(s)
- Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Michiya Takada
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| |
Collapse
|
28
|
Mori Y, Shimizu H, Kushima H, Saito T, Hiromura M, Terasaki M, Koshibu M, Ohtaki H, Hirano T. Nesfatin-1 suppresses peripheral arterial remodeling without elevating blood pressure in mice. Endocr Connect 2019; 8:536-546. [PMID: 30939447 PMCID: PMC6499920 DOI: 10.1530/ec-19-0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Nesfatin-1 is a novel anorexic peptide hormone that also exerts cardiovascular protective effects in rodent models. However, nesfatin-1 treatment at high doses also exerts vasopressor effects, which potentially limits its therapeutic application. Here, we evaluated the vasoprotective and vasopressor effects of nesfatin-1 at different doses in mouse models. Wild-type mice and those with the transgene nucleobindin-2, a precursor of nesfatin-1, were employed. Wild-type mice were randomly assigned to treatment with vehicle or nesfatin-1 at 0.2, 2.0 or 10 μg/kg/day (Nes-0.2, Nes-2, Nes-10, respectively). Subsequently, mice underwent femoral artery wire injury to induce arterial remodeling. After 4 weeks, injured arteries were collected for morphometric analysis. Compared with vehicle, nesfatin-1 treatments at 2.0 and 10 μg/kg/day decreased body weights and elevated plasma nesfatin-1 levels with no changes in systolic blood pressure. Furthermore, these treatments reduced neointimal hyperplasia without inducing undesirable remodeling in injured arteries. However, nesfatin-1 treatment at 0.2 μg/kg/day was insufficient to elevate plasma nesfatin-1 levels and showed no vascular effects. In nucleobindin-2-transgenic mice, blood pressure was slightly higher but neointimal area was lower than those observed in littermate controls. In cultured human vascular endothelial cells, nesfatin-1 concentration-dependently increased nitric oxide production. Additionally, nesfatin-1 increased AMP-activated protein kinase phosphorylation, which was abolished by inhibiting liver kinase B1. We thus demonstrated that nesfatin-1 treatment at appropriate doses suppressed arterial remodeling without affecting blood pressure. Our findings indicate that nesfatin-1 can be a therapeutic target for improved treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hiroyuki Shimizu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Maebashi Hirosegawa Clinic, Maebashi, Gunma, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
29
|
Bizino MB, Jazet IM, Westenberg JJM, van Eyk HJ, Paiman EHM, Smit JWA, Lamb HJ. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol 2019; 18:55. [PMID: 31039778 PMCID: PMC6492440 DOI: 10.1186/s12933-019-0857-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Liraglutide is an antidiabetic agent with cardioprotective effect. The purpose of this study is to test efficacy of liraglutide to improve diabetic cardiomyopathy in patients with diabetes mellitus type 2 (DM2) without cardiovascular disease. Methods Patients with DM2 were randomly assigned to receive liraglutide 1.8 mg/day or placebo in this double-blind trial of 26 weeks. Primary outcome measures were LV diastolic function (early (E) and late (A) transmitral peak flow rate, E/A ratio, early deceleration peak (Edec), early peak mitral annular septal tissue velocity (Ea) and estimated LV filling pressure (E/Ea), and systolic function (stroke volume, ejection fraction, cardiac output, cardiac index and peak ejection rate) assessed with CMR. Intention-to-treat analysis of between-group differences was performed using ANCOVA. Mean estimated treatment differences (95% confidence intervals) are reported. Results 23 patients were randomized to liraglutide and 26 to placebo. As compared with placebo, liraglutide significantly reduced E (− 56 mL/s (− 91 to − 21)), E/A ratio (− 0.17 (− 0.27 to − 0.06)), Edec (− 0.9 mL/s2 * 10−3 (− 1.3 to − 0.2)) and E/Ea (− 1.8 (− 3.0 to − 0.6)), without affecting A (3 mL/s (− 35 to 41)) and Ea (0.4 cm/s (− 0.9 to 1.4)). Liraglutide reduced stroke volume (− 9 mL (− 16 to − 2)) and ejection fraction (− 3% (− 6 to − 0.1)), but did not change cardiac output (− 0.4 L/min (− 0.9 to 0.2)), cardiac index (− 0.1 L/min/m2 (− 0.4 to 0.1)) and peak ejection rate (− 46 mL/s (− 95 to 3)). Conclusions Liraglutide reduced early LV diastolic filling and LV filling pressure, thereby unloading the left ventricle. LV systolic function reduced and remained within normal range. Future studies are needed to investigate if liraglutide-induced left ventricular unloading slows progression of diabetic cardiomyopathy into symptomatic stages. Trial registration ClinicalTrials.gov: NCT01761318.
Collapse
Affiliation(s)
- Maurice B Bizino
- Department of Radiology, Leiden University Medical Center, LUMC Postzone C2S, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Ingrid M Jazet
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, LUMC Postzone C2S, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Huub J van Eyk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, LUMC Postzone C2S, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jan W A Smit
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hildebrandus J Lamb
- Department of Radiology, Leiden University Medical Center, LUMC Postzone C2S, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
30
|
Yue W, Li Y, Ou D, Yang Q. The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2. IUBMB Life 2019; 71:1347-1354. [PMID: 30969479 DOI: 10.1002/iub.2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/05/2023]
Abstract
Cardiovascular complications are the major causes of the mortality and morbidities in diabetic patients. The diabetic patients have an increased risk of developing atherosclerosis, which could lead to heart attack and stroke. Glucagon-like peptide 1 (GLP-1) receptor agonists are a class of potent anti-glycemic agents to treat diabetes. Recently, several GLP-1 receptor agonists have been found to have cardiovascular benefit independent of their glucose lowing ability. Liraglutide is one of clinically approved effective GLP-1 receptor agonists. In this study, we explored the molecular mechanism of Liraglutide against oxidized low-density lipoprotein (ox-LDL) in cultured endothelial cells. Our data show that Liraglutide treatment ameliorates ox-LDL caused reduction of the transcriptional factor KLF2. In the same experiment, Liraglutide also rescues ox-LDL induced reduction of mitogen-activated protein kinase (MAPK) kinase extracellular signal regulated kinase 5 (ERK5) phosphorylation, and blockage of ERK5 activity by its inhibitor XMD8-92 abolishes the protection of Liraglutide on KLF2 expression. These facts suggest that the action of Liraglutide on endothelial KLF2 is dependent on ERK5. Liraglutide also recovers ox-LDL caused reduction of endothelial tight junctions protein Occludin and ameliorates ox-LDL induced endothelial monolayer permeability increase. On the other hand, Liraglutide inhibits ox-LDL induced expression of vascular adhesion molecules (E-selectin and vascular cell adhesion molecule 1), and prevents ox-LDL induced attachment of monocytes adhesion to endothelial cells. Moreover, Liraglutide mitigates ox-LDL triggered reduction of endothelial nitric oxide synthase (eNOS) expression and NO release. Collectively, our study provides multiple facets of the mechanisms that Liraglutide is a protective agent in endothelial cells and has the potential implication in therapeutic usage of vascular complication in diabetes patients. © 2019 IUBMB Life, 71(9):1347-1354, 2019.
Collapse
Affiliation(s)
- Wen Yue
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yi Li
- Department of Cardiology, Jiajiang Rehabilitation Hospital, Leshan, Sichuan, People's Republic of China
| | - Dengke Ou
- Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qing Yang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
31
|
Role of oxidative stress in the process of vascular remodeling following coronary revascularization. Int J Cardiol 2018; 268:27-33. [DOI: 10.1016/j.ijcard.2018.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
32
|
Mori Y, Kushima H, Koshibu M, Saito T, Hiromura M, Kohashi K, Terasaki M, Seino Y, Yamada Y, Hirano T. Glucose-Dependent Insulinotropic Polypeptide Suppresses Peripheral Arterial Remodeling in Male Mice. Endocrinology 2018; 159:2717-2732. [PMID: 29846588 DOI: 10.1210/en.2018-00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) exhibits direct cardiovascular actions in addition to its well-known insulinotropic effect. However, the role of GIP in peripheral artery disease remains unclear. In this study, we evaluated the effects of GIP against peripheral arterial remodeling in mouse models. The genetic deletion of GIP receptor (GIPR) led to exaggerated neointimal hyperplasia after transluminal femoral artery wire injury. Conversely, chronic GIP infusion suppressed neointimal hyperplasia and facilitated endothelial regeneration. The beneficial effects of GIP were abrogated by inhibiting nitric oxide (NO) synthase, suggesting a possible mechanism mediated by NO. In cultured human umbilical vein endothelial cells (HUVECs), GIP elevated cytosolic calcium levels without affecting intracellular cAMP levels. Furthermore, GIP dose-dependently increased NO production, whereas this effect was abolished by inhibiting AMP-activated protein kinase (AMPK). GIP induced AMPK phosphorylation, which was abrogated by inhibiting phospholipase C and calcium-calmodulin-dependent protein kinase kinase but not by adenylate cyclase or liver kinase B1, suggesting the existence of a calcium-mediated GIPR signaling pathway. These effects of GIP were retained in severe hyperglycemic Leprdb/ Leprdb mice and in high-glucose-cultured HUVECs. Overall, we demonstrated the protective effects of GIP against peripheral arterial remodeling as well as the involvement of a calcium-mediated GIPR signaling pathway in vascular endothelial cells. Our findings imply the potential vascular benefits of multiple agonists targeting G protein-coupled receptors, including GIPR, which are under development for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kyoko Kohashi
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yutaka Seino
- Kansai Electric Power Medical Research Institute, Kobe-shi, Hyogo, Japan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Akita-shi, Akita, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
33
|
Tanaka A, Node K. Clinical application of glucagon-like peptide-1 receptor agonists in cardiovascular disease: lessons from recent clinical cardiovascular outcomes trials. Cardiovasc Diabetol 2018; 17:85. [PMID: 29895290 PMCID: PMC5996475 DOI: 10.1186/s12933-018-0731-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Recent clinical trials investigating cardiovascular (CV) safety of newer antidiabetic agents have been rapidly and largely changing the landscape of diabetes care and providing highly important clinical information on decision-making regarding the choice of antidiabetic agents. Similar to the sodium-glucose cotransporter 2 (SGLT2) inhibitors, some glucagon-like peptide-1 receptor agonists (GLP-1RAs) have also demonstrated a marked risk reduction in major adverse CV events (MACE) in patients with type 2 diabetes at high risk of CV events. However, the two classes of agents differ largely in their pharmacological modes of action on glucose-lowering and CV parameters. Furthermore, CV benefits on individual components of MACE and other outcomes, including heart failure (HF), appear to differ partly between the two classes. Specifically, improvement of overall CV outcomes was likely driven by reduction in HF-related events in trials investigating SGLT2 inhibitors, and by reduction in atherosclerotic events in those investigating GLP-1RAs. This difference in CV benefit observed in the trials has important clinical implications regarding how to use the two classes of agents and how to identify suitable patients to obtain the best benefit from each class during routine diabetes care, possibly leading to a treatment plan tailored to an individual patient’s CV risk and clinical condition. At this stage, however, we cardiologists may overlook such differences and may be unfamiliar with GLP-1RAs specifically. Herein, we highlight the potential benefits of GLP-1RAs on CV parameters observed in recent CV outcomes trials and further discuss clinical application of GLP-1RAs in CV medicine.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
34
|
GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2814-2821. [PMID: 29778663 DOI: 10.1016/j.bbadis.2018.05.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic condition with an elevated impact on cardiovascular (CV) risk. The innovative therapeutic approaches for T2DM - incretin-based therapies (IBTs), including glucagon-like peptide 1 (GLP-1) receptor agonists, have become popular and more widely used in recent years. The available scientific data from clinical studies and clinical practice highlights their beyond glucose-lowering effects, which is achieved without any increase in hypoglycaemia. The former effects include reduction in body weight, lipids, blood pressure, inflammatory markers, oxidative stress, endothelial dysfunction, and subclinical atherosclerosis, thus reducing and potentially preventing CV events. In fact, the introduction of IBTs is one of the key moments in the history of diabetes research and treatment. Such therapeutic strategies allow customization of antidiabetic treatment to each patient's need and therefore obtain better metabolic control with reduced CV risk. The aim of the present paper is to provide a comprehensive overview of the effects of GLP-1RA on various cardiometabolic markers and overall CV risk, with particular attention on recent CV outcome studies and potential mechanisms. In particular, the effects of liraglutide on formation and progression of atherosclerotic plaque and mechanisms explaining its cardioprotective effects are highlighted.
Collapse
|