1
|
Chen Y, Wang Z, Chen C, Xiao S, Lv J, Lin L, Liu J, Li X, Wang W, Wei D. Metabolic Engineering of Filamentous Fungus Trichoderma reesei for Itaconic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4716-4724. [PMID: 39963051 PMCID: PMC11869998 DOI: 10.1021/acs.jafc.4c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Itaconic acid (IA) is a multifunctional platform chemical with numerous biological functions. Here, Trichoderma reesei was engineered as a remarkable cell factory to produce IA. Heterologous overexpression of the mitochondrial tricarboxylate transport protein and cis-aconitate decarboxylase from Aspergillus terreus in T. reesei initiated IA production with a titer of 20 g/L. By increasing the copy number of mttA and cadA and the overexpression of the plasma membrane transporter proteins (MFSA), the titer of IA reached 56.7 g/L. The precursor synthesis pathway of IA was overexpressed by the overexpression of aconitase and citrate synthase, and the IA competition pathway was blocked by the deletion of the P450 monooxygenase gene cyp3 to further enhance IA production. The final strain resulted in a final IA titer of 93.5 g/L through fed-batch fermentation in a 1 L bioreactor. Our study demonstrates that T. reesei can serve as a relevant platform in industry for IA production.
Collapse
Affiliation(s)
- Yumeng Chen
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Wang
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Cangcang Chen
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Xiao
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Lv
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Lin
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayu Liu
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Xinrui Li
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State
Key Lab of Bioreactor Engineering, Luhua Suo Institute, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Bandbe CD, Patil KS, Pathan EK. Tuning fungal promoters for the expression of eukaryotic proteins. World J Microbiol Biotechnol 2024; 40:400. [PMID: 39617818 DOI: 10.1007/s11274-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Fungal systems, yeast as well as filamentous fungi, are effective platforms for producing recombinant eukaryotic proteins because of their efficient secretion, robust development features, and capacity for post-translational modification. However, to achieve optimum protein expression in fungal hosts, a precise regulation of gene expression levels is necessary. Promoters are critical cis-regulatory regions that drive gene expression. Therefore, understanding the structure and function of fungal promoters and the factors that influence their performance is an essential step in developing yeast and filamentous fungal platforms as hosts for the expression and secretion of eukaryotic proteins. However, literature on the characterization of filamentous fungal promoters is non-exhaustive. The present review attempts to provide a comprehensive account of available information and future applications of fungal promoters. The properties of promoters from different classes of fungi are discussed with respect to their general structure, the core and proximal components that constitute the fungal promoters, types of fungal promoters based on their functions etc. Furthermore, the utility of fungal promoters for applications in healthcare, biofuels, agriculture and biotechnology are also discussed. The comprehensive understanding of fungal promoters will help in developing tailored promoters, paving the way for the optimum production of economically important eukaryotic proteins in different host organisms.
Collapse
Affiliation(s)
- Charvi D Bandbe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Karan S Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
3
|
Ernst P, Wirtz A, Wynands B, Wierckx N. Establishing an itaconic acid production process with Ustilago species on the low-cost substrate starch. FEMS Yeast Res 2024; 24:foae023. [PMID: 39038994 PMCID: PMC11312366 DOI: 10.1093/femsyr/foae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
4
|
Geng C, Jin Z, Gu M, Li J, Tang S, Guo Q, Zhang Y, Zhang W, Li Y, Huang X, Lu X. Microbial production of trans-aconitic acid. Metab Eng 2023; 78:183-191. [PMID: 37315711 DOI: 10.1016/j.ymben.2023.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Trans-aconitic acid (TAA) is a promising bio-based chemical with the structure of unsaturated tricarboxylic acid, and also has the potential to be a non-toxic nematicide as a potent inhibitor of aconitase. However, TAA has not been commercialized because the traditional production processes of plant extraction and chemical synthesis cannot achieve large-scale production at a low cost. The availability of TAA is a serious obstacle to its widespread application. In this study, we developed an efficient microbial synthesis and fermentation production process for TAA. An engineered Aspergillus terreus strain producing cis-aconitic acid and TAA was constructed by blocking itaconic acid biosynthesis in the industrial itaconic acid-producing strain. Through heterologous expression of exogenous aconitate isomerase, we further designed a more efficient cell factory to specifically produce TAA. Subsequently, the fermentation process was developed and scaled up step-by-step, achieving a TAA titer of 60 g L-1 at the demonstration scale of a 20 m3 fermenter. Finally, the field evaluation of the produced TAA for control of the root-knot nematodes was performed in a field trial, effectively reducing the damage of the root-knot nematode. Our work provides a commercially viable solution for the green manufacturing of TAA, which will significantly facilitate biopesticide development and promote its widespread application as a bio-based chemical.
Collapse
Affiliation(s)
- Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Zhigang Jin
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China; Shandong Lukang Pharmaceutical Co. Ltd., Jining, 272021, Shandong, China
| | - Meng Gu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Qiang Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, Shandong, China.
| |
Collapse
|
5
|
Diankristanti PA, Ng IS. Microbial itaconic acid bioproduction towards sustainable development: Insights, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023:129280. [PMID: 37290713 DOI: 10.1016/j.biortech.2023.129280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Microbial biomanufacturing is a promising approach to produce high-value compounds with low-carbon footprint and significant economic benefits. Among twelve "Top Value-Added Chemicals from Biomass", itaconic acid (IA) stands out as a versatile platform chemical with numerous applications. IA is naturally produced by Aspergillus and Ustilago species through a cascade enzymatic reaction between aconitase (EC 4.2.1.3) and cis-aconitic acid decarboxylase (EC 4.1.1.6). Recently, non-native hosts such as Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Yarrowia lipolytica have been genetically engineered to produce IA through the introduction of key enzymes. This review provides an up-to-date summary of the progress made in IA bioproduction, from native to engineered hosts, covers in vivo and in vitro approaches, and highlights the prospects of combination tactics. Current challenges and recent endeavors are also addressed to envision comprehensive strategies for renewable IA production in the future towards sustainable development goals (SDGs).
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
6
|
Zhou S, Fatma Z, Xue P, Mishra S, Cao M, Zhao H, Sweedler JV. Mass Spectrometry-Based High-Throughput Quantification of Bioproducts in Liquid Culture. Anal Chem 2023; 95:4067-4076. [PMID: 36790390 DOI: 10.1021/acs.analchem.2c04845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To meet the ever-increasing need for high-throughput screening in metabolic engineering, information-rich, fast screening methods are needed. Mass spectrometry (MS) provides an efficient and general approach for metabolite screening and offers the capability of characterizing a broad range of analytes in a label-free manner, but often requires a range of sample clean-up and extraction steps. Liquid extraction surface analysis (LESA) coupled MS is an image-guided MS surface analysis approach that directly samples and introduces metabolites from a surface to MS. Here, we combined the advantages of LESA-MS and an acoustic liquid handler with stable isotope-labeled internal standards. This approach provides absolute quantitation of target chemicals from liquid culture-dried droplets and enables high-throughput quantitative screening for microbial metabolites. In this study, LESA-MS was successfully applied to quantify several different metabolites (itaconic acid, triacetic acid lactone, and palmitic acid) from different yeast strains in different mediums, demonstrating its versatility, accuracy, and efficiency across a range of microbial engineering applications.
Collapse
Affiliation(s)
- Shuaizhen Zhou
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shekhar Mishra
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Recent Advances on the Production of Itaconic Acid via the Fermentation and Metabolic Engineering. FERMENTATION 2023. [DOI: 10.3390/fermentation9010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Itaconic acid (ITA) is one of the top 12 platform chemicals. The global ITA market is expanding due to the rising demand for bio-based unsaturated polyester resin and its non-toxic qualities. Although bioconversion using microbes is the main approach in the current industrial production of ITA, ecological production of bio-based ITA faces several issues due to: low production efficiency, the difficulty to employ inexpensive raw materials, and high manufacturing costs. As metabolic engineering advances, the engineering of microorganisms offers a novel strategy for the promotion of ITA bio-production. In this review, the most recent developments in the production of ITA through fermentation and metabolic engineering are compiled from a variety of perspectives, including the identification of the ITA synthesis pathway, the metabolic engineering of natural ITA producers, the design and construction of the ITA synthesis pathway in model chassis, and the creation, as well as application, of new metabolic engineering strategies in ITA production. The challenges encountered in the bio-production of ITA in microbial cell factories are discussed, and some suggestions for future study are also proposed, which it is hoped offers insightful views to promote the cost-efficient and sustainable industrial production of ITA.
Collapse
|
8
|
WANG B, ZHONG Z, HOU Y, Zhao X, ZHANG P, WEI J, LI X, MENG L, QIU L. Biomanufacturing of food-grade citric acid and comprehensive utilization of its production wastewater. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Baoshi WANG
- Henan Agricultural University, China; Henan Institute of Science and Technology, China; Henan Institute of Science and Technology, China
| | - Zhiyi ZHONG
- Henan Institute of Science and Technology, China
| | - Yaozong HOU
- Henan Institute of Science and Technology, China
| | - Xiuxiu Zhao
- Henan Institute of Science and Technology, China
| | - Peiran ZHANG
- Henan Institute of Science and Technology, China
| | | | - Xiaoyue LI
- Henan Institute of Science and Technology, China
| | - Li MENG
- Henan Agricultural University, China; Henan Institute of Science and Technology, China
| | - Liyou QIU
- Henan Agricultural University, China
| |
Collapse
|
9
|
Matsuo BT, Oliveira PHR, Pissinati EF, Vega KB, de Jesus IS, Correia JTM, Paixao M. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chem Commun (Camb) 2022; 58:8322-8339. [PMID: 35843219 DOI: 10.1039/d2cc02585j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of amide-containing compounds is among the most interesting and challenging topics for the synthetic community. Such relevance is given by their reactive aspects explored in the context of organic synthesis and by the direct application of these compounds as pharmaceuticals and useful materials, and their key roles in biological structures. A simple and straightforward strategy for the amide moiety installation is the use of carbamoyl radicals - this nucleophilic one-electron intermediate is prone to undergo a series of transformations, providing a range of structurally relevant derivatives. In this review, we summarize the latest advances in the field from the perspective of photoinduced protocols. To this end, their synthetic applications are organized accordingly to the nature of the radical precursor (formamides through HAT, 4-substituted-1,4-dihydropyridines, oxamic acids, and N-hydroxyphthalimido esters), the mechanistic aspects also being highlighted. The discussion also includes a recent approach proceeding via photolytic C-S cleavage of dithiocarbamate-carbamoyl intermediates. By exploring fundamental concepts, this material aims to offer an understanding of the topic, which will encourage and facilitate the design of new synthetic strategies applying the carbamoyl radical.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil. .,Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Pedro H R Oliveira
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Kimberly B Vega
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Iva S de Jesus
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Jose Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Márcio Paixao
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
10
|
Recent Advances in Bio-Based Additive Flame Retardants for Thermosetting Resins. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084828. [PMID: 35457696 PMCID: PMC9030075 DOI: 10.3390/ijerph19084828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Thermosetting resins are used in many applications due to their great mechanical properties, chemical resistance, and dimensional stability. However, the flammability of thermosets needs to be improved to minimize fire risk and meet fire safety regulations. Some commercially available flame retardants have an adverse effect on people’s health and the environment. Thus, the development of novel, more sustainable flame retardants obtained or derived from biomass has become an objective of contemporary research. The objective of this study is to summarize recent progress on bio-based flame retardants for thermosetting resins so as to promote their prompt development. Groups of biomass compounds with a potential for flame retardant industrial applications were introduced, and their thermal degradation was investigated. The authors focused mostly on the thermal degradation of composites containing bio-based flame retardants determined by thermogravimetric analysis, their tendency to sustain a flame determined by a limiting oxygen index, and fire behavior determined by a cone calorimeter test. The results showed that the mode of action is mostly based on the forming of the char layer. However, in many cases, there is still a necessity to input a high amount of additive to achieve significant flame retardancy effects, which may adversely impact mechanical properties.
Collapse
|
11
|
Narisetty V, Prabhu AA, Al-Jaradah K, Gopaliya D, Hossain AH, Kumar Khare S, Punt PJ, Kumar V. Microbial itaconic acid production from starchy food waste by newly isolated thermotolerant Aspergillus terreus strain. BIORESOURCE TECHNOLOGY 2021; 337:125426. [PMID: 34174767 DOI: 10.1016/j.biortech.2021.125426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we have explored the potential of newly isolated Aspergillus terreus BD strain, which can accumulate itaconic acid (IA) at higher temperature. The shake flask cultivation of thermotolerant strain with medium optimized using Box-Behnken Design at 45 °C resulted in IA accumulation of 28.9 g/L with yield of 0.27 g/g. The enzymatic saccharification of the synthetic food waste (SFW) consisting of potatoes, rice & noodles were optimized using Taguchi method of orthogonal array to maximize the release of fermentable sugar. The maximum glucose release of 0.60 g/g was achieved with 10% biomass loading, 5% enzyme concentration, pH 5.5 and temperature 60 0C. The sugars obtained from SFW was integrated with IA production and maximum IA titer achieved with SFW hydrolysate during bioreactor cultivation was 41.1 g/L with conversion yield of 0.27 g/g while with pure glucose IA titer and yield were 44.7 g/L and 0.30 g/g, respectively.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Ashish A Prabhu
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Khalid Al-Jaradah
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Deeksha Gopaliya
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abeer H Hossain
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sunil Kumar Khare
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Peter J Punt
- Dutch DNA Biotech B.V., Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
12
|
Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Huang X, Men P, Tang S, Lu X. Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr Opin Biotechnol 2021; 69:273-280. [PMID: 33713917 DOI: 10.1016/j.copbio.2021.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Aspergillus terreus is an important Aspergillus species, which has been applied in the industrial production of the bio-based chemical itaconic acid and the lipid-lowering drug lovastatin. The excellent fermentation capability has been demonstrated in these industrial applications. The genomic information revealed that the outstanding capacity of natural product synthesis by A. terreus remains to be further explored. With advances of the genome mining strategy, the products of several cryptic biosynthetic gene clusters have been discovered recently. In addition, a series of metabolic engineering studies have been performed in the industrial strains of lovastatin and itaconic acid to further improve the production processes. This review presents the current progress and the future outlook in the field of A. terreus biotechnology.
Collapse
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 1, Aoshanwei, Qingdao, China.
| |
Collapse
|
14
|
Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, Chen C, Wang M, Chen B, Tan T. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
16
|
Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biotechnol 2019; 103:7519-7535. [PMID: 31378837 DOI: 10.1007/s00253-019-10044-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Bacillus subtilis natto is a GRAS bacterium. Nattokinase, with fibrinolytic and antithrombotic activities, is one of the major products of this organism. It is being gradually recognized that B. subtilis natto can also be used as a biosynthetic strain for vitamin K2, which has phenomenal benefits, such as effects in the prevention of cardiovascular diseases and osteoporosis along with antitumor effects. Knocking out of the aprN gene by homologous recombination could improve the redox potential and slightly increase the concentration of MK-7. By detecting the change in redox potential during the growth of B. subtilis natto, a good oxygen supply and state of the cell membrane were found to be beneficial to vitamin K2 synthesis. A two-step RSM was used to optimize the operation parameters and substrate concentration in the new residue-free fermentation culture. The optimal conditions for the residue-free medium and control were determined. The optimum concentrations of soybean flour, corn flour, and peptone were 78.9, 72.4, and 24.8 g/L, respectively. The optimum rotational speed and volume of the culture medium using a shaking flask were 117 rpm and 10%, respectively. The state and composition of the cell membranes were more stable when engineered bacteria were cultured in this residue-free fermentation medium. Finally, the concentration of MK-7 increased by 37% to 18.9 mg/L, and the fermentation time was shortened by 24 h.
Collapse
|
17
|
Teleky BE, Vodnar DC. Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers. Polymers (Basel) 2019; 11:E1035. [PMID: 31212656 PMCID: PMC6630286 DOI: 10.3390/polym11061035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers. The present review summarizes the latest research regarding major IA production pathways, metabolic engineering procedures, and the synthesis and applications of novel polymeric materials.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
18
|
Bafana R, Sivanesan S, Pandey RA. Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor. Biotechnol Prog 2019; 35:e2774. [DOI: 10.1002/btpr.2774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Richa Bafana
- Academy of Scientific and Innovative Research; CSIR-National Environmental Engineering Research Institute; Nagpur, 440020 India
| | - Saravanadevi Sivanesan
- Academy of Scientific and Innovative Research; CSIR-National Environmental Engineering Research Institute; Nagpur, 440020 India
| | - R. A. Pandey
- Academy of Scientific and Innovative Research; CSIR-National Environmental Engineering Research Institute; Nagpur, 440020 India
| |
Collapse
|
19
|
Zhao C, Cui Z, Zhao X, Zhang J, Zhang L, Tian Y, Qi Q, Liu J. Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl Microbiol Biotechnol 2019; 103:2181-2192. [DOI: 10.1007/s00253-019-09627-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022]
|
20
|
Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo EF. World market and biotechnological production of itaconic acid. 3 Biotech 2018; 8:138. [PMID: 29484277 DOI: 10.1007/s13205-018-1151-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/02/2018] [Indexed: 11/28/2022] Open
Abstract
The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.
Collapse
|
21
|
Zhao M, Lu X, Zong H, Li J, Zhuge B. Itaconic acid production in microorganisms. Biotechnol Lett 2018; 40:455-464. [DOI: 10.1007/s10529-017-2500-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
|
22
|
Liu J, Li J, Shin HD, Du G, Chen J, Liu L. Metabolic engineering of Aspergillus oryzae for efficient production of l -malate directly from corn starch. J Biotechnol 2017; 262:40-46. [DOI: 10.1016/j.jbiotec.2017.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/04/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022]
|
23
|
Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. BIORESOURCE TECHNOLOGY 2017; 241:25-34. [PMID: 28550772 DOI: 10.1016/j.biortech.2017.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/28/2023]
Abstract
The replacement of the carbon source in the microbial production of itaconic acid (IA) with economic alternatives has attracted significant attention. In this study, an Aspergillus terreus CICC40205 mutant was used to increase the IA titer and decrease the citric acid titer in the wheat bran hydrolysate compared with the parental strain. The results showed that the IA titer was increased by 33.4%, whereas the citric acid titer was decreased by 75.8%, and were in accordance with those of the improved pathway of co-metabolism of glucose and xylose according to the metabolic flux analysis. Additionally, the maximum IA titer obtained in a 7-L stirred tank was 49.65gL-1±0.38gL-1. Overall, A. terreus CICC40205 showed a great potential for the industrial production of IA through the biotransformation of the wheat bran hydrolysate.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yongdong Deng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Jinghong Li
- China Rural Technology Development Center, Beijing 100045, PR China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Yongzhong Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xijun Lv
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China.
| |
Collapse
|
24
|
Bafana R, Pandey RA. New approaches for itaconic acid production: bottlenecks and possible remedies. Crit Rev Biotechnol 2017; 38:68-82. [DOI: 10.1080/07388551.2017.1312268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Richa Bafana
- AcSIR (Academy of Scientific & Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, India
| | - R. A. Pandey
- AcSIR (Academy of Scientific & Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, India
| |
Collapse
|
25
|
Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. ACTA ACUST UNITED AC 2017; 44:303-315. [DOI: 10.1007/s10295-016-1878-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
Abstract
Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (>80 g L−1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (>200 g L−1). This review summarizes the latest progress on enhancing the yield and productivity of IA production. IA biosynthesis involves the decarboxylation of the TCA cycle intermediate cis-aconitate through the action of cis-aconitate decarboxylase (CAD) enzyme encoded by the CadA gene in A. terreus. A number of recombinant microorganisms have been developed in an effort to overproduce it. IA is used as a monomer for production of superabsorbent polymer, resins, plastics, paints, and synthetic fibers. Its applications as a platform chemical are highlighted. It has a strong potential to replace petroleum-based methylacrylic acid in industry which will create a huge market for IA.
Collapse
|
26
|
Huang X, Chen M, Li J, Lu X. Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnol Lett 2016; 38:1603-10. [DOI: 10.1007/s10529-016-2143-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
|
27
|
The opposite roles of agdA and glaA on citric acid production in Aspergillus niger. Appl Microbiol Biotechnol 2016; 100:5791-803. [DOI: 10.1007/s00253-016-7324-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/09/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
|
28
|
Jeon HG, Cheong DE, Han Y, Song JJ, Choi JH. Itaconic acid production from glycerol usingEscherichia coliharboring a random synonymous codon-substituted 5′-coding region variant of thecadA gene. Biotechnol Bioeng 2016; 113:1504-10. [DOI: 10.1002/bit.25914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Ho-Geun Jeon
- Integrated Biorefinery Research Institute; Industrial Microbiology and Bioprocess Research Center; Jeonbuk Branch Institute; Korea Research Institute of Bioscience and Biotechnology; 181 Ipsin-gil Jeongeup Jeonbuk 580-185 Korea
| | - Dae-Eun Cheong
- Integrated Biorefinery Research Institute; Industrial Microbiology and Bioprocess Research Center; Jeonbuk Branch Institute; Korea Research Institute of Bioscience and Biotechnology; 181 Ipsin-gil Jeongeup Jeonbuk 580-185 Korea
| | - Yunjon Han
- Integrated Biorefinery Research Institute; Industrial Microbiology and Bioprocess Research Center; Jeonbuk Branch Institute; Korea Research Institute of Bioscience and Biotechnology; 181 Ipsin-gil Jeongeup Jeonbuk 580-185 Korea
| | - Jae Jun Song
- Integrated Biorefinery Research Institute; Industrial Microbiology and Bioprocess Research Center; Jeonbuk Branch Institute; Korea Research Institute of Bioscience and Biotechnology; 181 Ipsin-gil Jeongeup Jeonbuk 580-185 Korea
| | - Jong Hyun Choi
- Integrated Biorefinery Research Institute; Industrial Microbiology and Bioprocess Research Center; Jeonbuk Branch Institute; Korea Research Institute of Bioscience and Biotechnology; 181 Ipsin-gil Jeongeup Jeonbuk 580-185 Korea
| |
Collapse
|