1
|
Lu Y, Zhang F, Wang L, Tian Z, Li Y, Li Z, Wen J. Advances in engineering and applications of microbial glutamate decarboxylases for gamma-aminobutyric acid production. Enzyme Microb Technol 2025; 188:110652. [PMID: 40203638 DOI: 10.1016/j.enzmictec.2025.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Gamma-aminobutyric acid (GABA) is a key neurotransmitter with significant health benefits, including anxiolytic and anti-hypertensive effects, and potential use in biodegradable material synthesis. The increasing market demand for GABA has intensified the search for cost-effective production methods. The key enzyme involved in GABA production is glutamate decarboxylase (GAD), which catalyzes the conversion of L-glutamate to GABA. GAD plays a central role in various production approaches, such as enzyme-based catalysis, whole-cell catalysis, and microbial fermentation. Although microbial GADs are preferred for their high catalytic activity, their low pH and thermal stability present significant challenges for large-scale GABA production. Wild-type GADs typically have an optimal pH range of 4-5, and their activity sharply declines as the pH increases, thereby reducing production efficiency. Furthermore, GADs' poor thermal stability makes them vulnerable to temperature fluctuations during industrial processes, further limiting GABA production. Recent research has focused on engineering GAD variants with improved stability and performance through rational design, directed evolution, and semi rational approaches. These advancements not only expand the potential applications of GAD in biocatalysis but also offer promising solutions for sustainable GABA production. This paper provides an in-depth review of the engineering of GADs, applications of GAD in GABA production, and strategies to overcome limitations, offering a comprehensive overview of the current state and future prospects of GAD modification in enhancing GABA production.
Collapse
Affiliation(s)
- Yuanrong Lu
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Feng Zhang
- Institute of Subtropical Agriculture Chinese Academy of Sciences, 644 Yuanda 2nd Road, Furong District, Changsha City, Hunan Province 410000, China
| | - Leli Wang
- Institute of Subtropical Agriculture Chinese Academy of Sciences, 644 Yuanda 2nd Road, Furong District, Changsha City, Hunan Province 410000, China
| | - Zhide Tian
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Yaojun Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Zhouyang Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Jingbai Wen
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China.
| |
Collapse
|
2
|
Sim MS, Park SH, Choi JI, Kim TW. Development of a highly efficient microbial fermentation process of recombinant Escherichia coli for GABA production from glucose. J Biotechnol 2025; 399:72-80. [PMID: 39828083 DOI: 10.1016/j.jbiotec.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study was aimed to develop a highly productive microbial fermentation process for gamma-aminobutyric acid (GABA) production from glucose. For this, an efficient GABA-producing E. coli strain was firstly developed through metabolic engineering with a strategy of increasing the flux of GABA biosynthetic pathway and deleting or repressing the GABA shunt pathways that compete with GABA biosynthesis. According to this strategy, three metabolically engineered E. coli strains of GTB, GTS, and A1S1 were constructed, and through batch cultivation of these strains, E. coli GTS was ultimately selected as the most efficient GABA-producing strain. From flask cultures, E. coli GTS was found to produce 3.96 g/L of GABA, a titer 2.1 times or 17 % higher than that produced by E. coli GTB or E. coli A1S1, respectively. To maximize GABA production from glucose, pH-stat fed-batch culture conditions of the E. coli GTS were optimized in a one-factor-at-a-time manner. Fed-batch cultivation of the E. coli GTS under optimal conditions resulted in the highest GABA production performance with a concentration of 85.9 g/L and a volumetric productivity of 2.37 g/L/h. This result shows that the microbial fermentation process developed in this study has outstanding potential for the mass production of GABA.
Collapse
Affiliation(s)
- Myeong-Seop Sim
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Ho Park
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Il Choi
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Tae Wan Kim
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Wang S, Zhu J, Zhao Y, Mao S, He Y, Wang F, Jia T, Cai D, Chen J, Wang D, Chen S. Developing a Bacillus licheniformis platform for de novo production of γ-aminobutyric acid and other glutamate-derived chemicals. Metab Eng 2025; 88:124-136. [PMID: 39736386 DOI: 10.1016/j.ymben.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B. licheniformis cell factory for the cost-effective production of glutamate-derived chemicals by modular metabolic engineering. Initially, the glutamate decarboxylase from E. coli was introduced into B. licheniformis DW2 to construct the artificial γ-aminobutyric acid (GABA) pathway. By systematically optimizing the central metabolic pathway, boosting the L-Glu synthesis pathway and improving the cofactor NADPH supply, the strain G35/pHY-Pr5u12-gadBE89Q/H465A achieved a remarkable yield of 62.9 g/L of GABA in a 5-L bioreactor, representing the highest yield of 0.5 g/g glucose with a significant 49.3-fold increase. Remarkably, bioinformatics analyses and function verification identified the putative glyoxylate to glycolic acid synthesis pathway and KipR, an inhibitor of the glyoxylate cycle, as the rate-limiting steps in GABA production. Additionally, a versatile and robust platform using engineered B. licheniformis for efficient production of diverse glutamate-derived chemicals was established and the titer of 5-aminolevulinic acid, heme and indigoidine was improved by 5.3-, 4.7- and 1.9-fold, respectively. This study not only facilitates extensive application of B. licheniformis for chemical production, but also sheds light on research to improve the performance of other MCFs.
Collapse
Affiliation(s)
- Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yiwen Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shufen Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yihui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Feixiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Tianli Jia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junyong Chen
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Dong Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Wang L, Jia M, Gao D, Li H. Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817. Bioprocess Biosyst Eng 2024; 47:2101-2110. [PMID: 39269502 DOI: 10.1007/s00449-024-03088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (L-glutamic acid or L-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by Levilactobacillus brevis CD0817. This strategy features a mixture of neutral monosodium L-glutamate plus acidic L-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved L-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of Levilactobacillus brevis CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery L-glutamic acid (750 g/L), monosodium L-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO4·H2O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0-4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Dandan Gao
- Biomedical Research Center, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
5
|
Zhu F, Qin N, Cen X, Dong Y, Liu D, Chen Z. Metabolic Engineering of Corynebacterium glutamicum for the Production of the Four-Carbon Platform Chemicals γ-Hydroxybutyrate and γ-Butyrolactone. ACS Synth Biol 2024; 13:3754-3764. [PMID: 39437154 DOI: 10.1021/acssynbio.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
γ-Hydroxybutyrate (GHB) is an important C4 platform chemical, serving as a crucial precursor for the synthesis of various bulk chemicals, including γ-butyrolactone (GBL) and 1,4-butanediol (1,4-BDO). In this study, we report the systematic metabolic engineering of Corynebacterium glutamicum for the biological production of GHB from glucose via the introduction of a glutamate-derived pathway. We showed that C. glutamicum is a promising host for producing GHB due to its higher tolerance to GHB as compared to other chassis. By screening key enzymes capable of converting glutamate into GHB and blocking byproduct synthesis pathways, an engineered C. glutamicum strain was developed that achieved a GHB production titer of 30.6 g/L. Comparative transcriptome analysis was subsequently employed to identify previously uncharacterized aldehyde dehydrogenases responsible for succinate accumulation, and knockout of the corresponding genes led to an increased GHB titer of 33.7 g/L. Ultimately, the integration of a phosphoketolase-mediated nonoxidative glycolysis (NOG) pathway further enhanced GHB production, resulting in an accumulation of 38.3 g/L of GHB with a yield of 0.615 mol/mol glucose during batch fermentation. The GHB in the fermentation broth can be efficiently converted into GBL by acid treatment with a yield of 0.970 mol/mol.
Collapse
Affiliation(s)
- Fanghuan Zhu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Qin
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuecong Cen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yufei Dong
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Icer MA, Sarikaya B, Kocyigit E, Atabilen B, Çelik MN, Capasso R, Ağagündüz D, Budán F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024; 13:2437. [PMID: 39123629 PMCID: PMC11311711 DOI: 10.3390/foods13152437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The need to increase food safety and improve human health has led to a worldwide increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs). GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD), is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic, on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory effects are also being investigated. For all these reasons, it is not surprising that efforts to identify LAB strains with a high GABA productivity and to increase GABA production from LABs through genetic engineering to increase GABA yield are accelerating. However, GABA's contributions to food safety/quality and human health have not yet been fully discussed in the literature. Therefore, this current review highlights the synthesis and food applications of GABA produced from LABs, discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and regulating obesity and overeating. Still, other potential food and drug interactions (among others) remain unanswered questions to be elucidated in the future. Hence, this review paves the way toward further studies.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Buse Sarikaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu 52000, Turkey;
| | - Büşra Atabilen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey;
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun 55000, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
7
|
Wang J, Ma W, Zhou J, Wang X, Zhao L. Microbial chassis design and engineering for production of gamma-aminobutyric acid. World J Microbiol Biotechnol 2024; 40:159. [PMID: 38607454 DOI: 10.1007/s11274-024-03951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.
Collapse
Affiliation(s)
- Jianli Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Lei Zhao
- WuXi Biologics Co., Ltd., Wuxi, 214062, China
| |
Collapse
|
8
|
Milon RB, Hu P, Zhang X, Hu X, Ren L. Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. BIORESOUR BIOPROCESS 2024; 11:32. [PMID: 38647854 PMCID: PMC10992975 DOI: 10.1186/s40643-024-00747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
GABA (Gamma-aminobutyric acid), a crucial neurotransmitter in the central nervous system, has gained significant attention in recent years due to its extensive benefits for human health. The review focused on recent advances in the biosynthesis and production of GABA. To begin with, the investigation evaluates GABA-producing strains and metabolic pathways, focusing on microbial sources such as Lactic Acid Bacteria, Escherichia coli, and Corynebacterium glutamicum. The metabolic pathways of GABA are elaborated upon, including the GABA shunt and critical enzymes involved in its synthesis. Next, strategies to enhance microbial GABA production are discussed, including optimization of fermentation factors, different fermentation methods such as co-culture strategy and two-step fermentation, and modification of the GABA metabolic pathway. The review also explores methods for determining glutamate (Glu) and GABA levels, emphasizing the importance of accurate quantification. Furthermore, a comprehensive market analysis and prospects are provided, highlighting current trends, potential applications, and challenges in the GABA industry. Overall, this review serves as a valuable resource for researchers and industrialists working on GABA advancements, focusing on its efficient synthesis processes and various applications, and providing novel ideas and approaches to improve GABA yield and quality.
Collapse
Affiliation(s)
- Ripon Baroi Milon
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Pengchen Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xueqiong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Shanghai JanStar Technology Development Co, Ltd., No. 1288, Huateng Road, Shanghai, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
9
|
Zou Z, Kaothien-Nakayama P, Ogawa-Iwamura J, Nakayama H. Metabolic engineering of high-salinity-induced biosynthesis of γ-aminobutyric acid improves salt-stress tolerance in a glutamic acid-overproducing mutant of an ectoine-deficient Halomonas elongata. Appl Environ Microbiol 2024; 90:e0190523. [PMID: 38112419 PMCID: PMC10807429 DOI: 10.1128/aem.01905-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
A moderately halophilic eubacterium, Halomonas elongata, has been used as cell factory to produce fine chemical 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine), which functions as a major osmolyte protecting the cells from high-salinity stress. To explore the possibility of using H. elongata to biosynthesize other valuable osmolytes, an ectoine-deficient salt-sensitive H. elongata deletion mutant strain KA1 (ΔectABC), which only grows well in minimal medium containing up to 3% NaCl, was subjected to an adaptive mutagenesis screening in search of mutants with restored salt tolerance. Consequently, we obtained a mutant, which tolerates 6% NaCl in minimal medium by overproducing L-glutamic acid (Glu). However, this Glu-overproducing (GOP) strain has a lower tolerance level than the wild-type H. elongata, possibly because the acidity of Glu interferes with the pH homeostasis of the cell and hinders its own cellular accumulation. Enzymatic decarboxylation of Glu to γ-aminobutyric acid (GABA) by a Glu decarboxylase (GAD) could restore cellular pH homeostasis; therefore, we introduced an engineered salt-inducible HopgadBmut gene, which encodes a wide pH-range GAD mutant, into the genome of the H. elongata GOP strain. We found that the resulting H. elongata GOP-Gad strain exhibits higher salt tolerance than the GOP strain by accumulating high concentration of GABA as an osmolyte in the cell (176.94 µmol/g cell dry weight in minimal medium containing 7% NaCl). With H. elongata OUT30018 genetic background, H. elongata GOP-Gad strain can utilize biomass-derived carbon and nitrogen compounds as its sole carbon and nitrogen sources, making it a good candidate for the development of GABA-producing cell factories.IMPORTANCEWhile the wild-type moderately halophilic H. elongata can synthesize ectoine as a high-value osmolyte via the aspartic acid metabolic pathway, a mutant H. elongata GOP strain identified in this work opens doors for the biosynthesis of alternative valuable osmolytes via glutamic acid metabolic pathway. Further metabolic engineering to install a GAD system into the H. elongata GOP strain successfully created a H. elongata GOP-Gad strain, which acquired higher tolerance to salt stress by accumulating GABA as a major osmolyte. With the ability to assimilate biomass-derived carbon and nitrogen sources and thrive in high-salinity environment, the H. elongata GOP-Gad strain can be used in the development of sustainable GABA-producing cell factories.
Collapse
Affiliation(s)
- Ziyan Zou
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Pulla Kaothien-Nakayama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Junpei Ogawa-Iwamura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Nakayama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Yim SS, Choi JW, Lee YJ, Jeong KJ. Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:29. [PMID: 36803485 PMCID: PMC9936768 DOI: 10.1186/s12934-023-02037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The disposal of plastic waste is a major environmental challenge. With recent advances in microbial genetic and metabolic engineering technologies, microbial polyhydroxyalkanoates (PHAs) are being used as next-generation biomaterials to replace petroleum-based synthetic plastics in a sustainable future. However, the relatively high production cost of bioprocesses hinders the production and application of microbial PHAs on an industrial scale. RESULTS Here, we describe a rapid strategy to rewire metabolic networks in an industrial microorganism, Corynebacterium glutamicum, for the enhanced production of poly(3-hydroxybutyrate) (PHB). A three-gene PHB biosynthetic pathway in Rasltonia eutropha was refactored for high-level gene expression. A fluorescence-based quantification assay for cellular PHB content using BODIPY was devised for the rapid fluorescence-activated cell sorting (FACS)-based screening of a large combinatorial metabolic network library constructed in C. glutamicum. Rewiring metabolic networks across the central carbon metabolism enabled highly efficient production of PHB up to 29% of dry cell weight with the highest cellular PHB productivity ever reported in C. glutamicum using a sole carbon source. CONCLUSIONS We successfully constructed a heterologous PHB biosynthetic pathway and rapidly optimized metabolic networks across central metabolism in C. glutamicum for enhanced production of PHB using glucose or fructose as a sole carbon source in minimal media. We expect that this FACS-based metabolic rewiring framework will accelerate strain engineering processes for the production of diverse biochemicals and biopolymers.
Collapse
Affiliation(s)
- Sung Sun Yim
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, Republic of Korea ,grid.37172.300000 0001 2292 0500Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Jae Woong Choi
- grid.418974.70000 0001 0573 0246Traditional Food Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Yong Jae Lee
- grid.249967.70000 0004 0636 3099Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea ,grid.412786.e0000 0004 1791 8264Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, Republic of Korea. .,Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Yao C, Shi F, Wang X. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid. Biotechnol Appl Biochem 2023; 70:7-21. [PMID: 35106837 DOI: 10.1002/bab.2324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
Corynebacterium glutamicum has been used as a sustainable microbial producer for various bioproducts using cheap biomass resources. In this study, a high GABA-producing C. glutamicum strain was constructed by chromosomal editing. Lactobacillus brevis-derived gadB2 was introduced into the chromosome of C. glutamicum ATCC 13032 to produce gamma-aminobutyric acid and simultaneously blocked the biosynthesis of lactate and acetate. GABA transport and degradation in C. glutamicum were also blocked to improve GABA production. As precursor of GABA, l-glutamic acid synthesis in C. glutamicum was enhanced by introducing E. coli gdhA encoding glutamic dehydrogenase, and the copy numbers of gdhA and gadB2 were also optimized for higher GABA production. The final C. glutamicum strain CGY705 could produce 33.17 g/L GABA from glucose in a 2.4-L bioreactor after 78 h fed-batch fermentation. Since all deletion and expression of genes were performed using chromosomal editing, fermentation of the GABA-producing strains constructed in this study does not need supplementation of any antibiotics and inducers. The strategy used in this study has potential value in the development of GABA-producing bacteria.
Collapse
Affiliation(s)
- Chengzhen Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
13
|
Xu M, Gao H, Ma Z, Han J, Zheng K, Shao M, Rao Z. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids 2022; 54:1437-1450. [PMID: 36224443 DOI: 10.1007/s00726-022-03174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
2-Pyrrolidone is widely used in the textile and pharmaceutical industries. Here, we established a 2-pyrrolidone biosynthesis pathway in Corynebacterium glutamicum, by expressing glutamate decarboxylase (Gad) mutant and β-alanine CoA transferase (Act) which activates spontaneous dehydration cyclization of GABA to form 2-pyrrolidone. Also, the 5' untranslated regions (UTR) strategy was used to increase the expression of protein. Furthermore, considering the importance of acetyl-CoA in the 2-pyrrolidone synthesis pathway, the acetyl-CoA synthetase (acsA) gene was introduced to convert acetate into acetyl-CoA thus achieving the recyclability of the economy. Finally, the fed-batch fermentation of the final strain in a 5 L bioreactor produced 10.5 g/L 2-pyrrolidone within 78 h, which increased by 42.5% by altering the level of gene expression. This is the first time to build the basic chemical 2-pyrrolidone from glucose in one step in C. glutamicum.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhenfeng Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jin Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Keyi Zheng
- Meihua Biotechnology Group Co, Wujiaqu, 831300, China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
14
|
Ray D, Anand U, Jha NK, Korzeniewska E, Bontempi E, Proćków J, Dey A. The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. ENVIRONMENTAL RESEARCH 2022; 213:113622. [PMID: 35710026 DOI: 10.1016/j.envres.2022.113622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Ever since its discovery in 1957, Corynebacterium glutamicum has become a well-established industrial strain and is known for its massive capability of producing various amino acids (like L-lysine and L-glutamate) and other value-added chemicals. With the rising demand for these bio-based products, the revelation of the whole genome sequences of the wild type strains, and the astounding advancements made in the fields of metabolic engineering and systems biology, our perspective of C. glutamicum has been revolutionized and has expanded our understanding of its strain development. With these advancements, a new era for C. glutamicum supremacy in the field of industrial biotechnology began. This led to remarkable progress in the enhancement of tailor-made over-producing strains and further development of the substrate spectrum of the bacterium, to easily accessible, economical, and renewable resources. C. glutamicum has also been metabolically engineered and used in the degradation/assimilation of highly toxic and ubiquitous environmental contaminant, arsenic, present in water or soil. Here, we review the history, current knowledge, progress, achievements, and future trends relating to the versatile metabolic factory, C. glutamicum. This review paper is devoted to C. glutamicum which is one of the leading industrial microbes, and one of the most promising and versatile candidates to be developed. It can be used not only as a platform microorganism to produce different value-added chemicals and recombinant proteins, but also as a tool for bioremediation, allowing to enhance specific properties, for example in situ bioremediation.
Collapse
Affiliation(s)
- Durga Ray
- Department of Microbiology, St. Aloysius' College, Jabalpur, Madhya Pradesh, 482001, India.
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719, Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
15
|
Son J, Baritugo KA, Sohn YJ, Kang KH, Kim HT, Joo JC, Park SJ. Production of γ-Aminobutyrate (GABA) in Recombinant Corynebacterium glutamicum by Expression of Glutamate Decarboxylase Active at Neutral pH. ACS OMEGA 2022; 7:29106-29115. [PMID: 36033683 PMCID: PMC9404463 DOI: 10.1021/acsomega.2c02971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 05/16/2023]
Abstract
γ-Aminobutyrate (GABA) is an important chemical by itself and can be further used for the production of monomer used for the synthesis of biodegradable polyamides. Until now, GABA production usingCorynebacterium glutamicum harboring glutamate decarboxylases (GADs) has been limited due to the discrepancy between optimal pH for GAD activity (pH 4.0) and cell growth (pH 7.0). In this study, we developed recombinant C. glutamicum strains expressing mutated GAD from Escherichia coli (EcGADmut) and GADs from Lactococcus lactis CICC20209 (LlGAD) and Lactobacillus senmaizukei (LsGAD), all of which showed enhanced pH stability and adaptability at a pH of approximately 7.0. In shake flask cultivations, the GABA productions of C. glutamicum H36EcGADmut, C. glutamicum H36LsGAD, and C. glutamicum H36LlGAD were examined at pH 5.0, 6.0, and 7.0, respectively. Finally, C. glutamicum H36EcGADmut (40.3 and 39.3 g L-1), H36LlGAD (42.5 and 41.1 g L-1), and H36LsGAD (41.6 and 40.2 g L-1) produced improved GABA titers and yields in batch fermentation at pH 6.0 and pH 7.0, respectively, from 100 g L-1 glucose. The recombinant strains developed in this study could be used for the establishment of sustainable direct fermentative GABA production from renewable resources under mild culture conditions, thus increasing the availability of various GADs.
Collapse
Affiliation(s)
- Jina Son
- Department
of Chemical Engineering and Materials Science, Graduate Program in
System Health Science and Engineering, Ewha
Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department
of Chemical Engineering and Materials Science, Graduate Program in
System Health Science and Engineering, Ewha
Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department
of Chemical Engineering and Materials Science, Graduate Program in
System Health Science and Engineering, Ewha
Womans University, Seoul 03760, Republic of Korea
| | - Kyoung Hee Kang
- Center
for Bio-based Chemistry, Division of Specialty and Bio-based Chemical
Technology, Korea Research Institute of
Chemical Technology, Daejeon 34602, Republic of Korea
| | - Hee Taek Kim
- Department
of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Chan Joo
- Department
of Biotechnology, The Catholic University
of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department
of Chemical Engineering and Materials Science, Graduate Program in
System Health Science and Engineering, Ewha
Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
16
|
Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T. Model-Guided Metabolic Rewiring for Gamma-Aminobutyric Acid and Butyrolactam Biosynthesis in Corynebacterium glutamicum ATCC13032. BIOLOGY 2022; 11:biology11060846. [PMID: 35741367 PMCID: PMC9219837 DOI: 10.3390/biology11060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Gamma-aminobutyric acid (GABA) can be used as a bioactive component in the pharmaceutical industry and a precursor for the synthesis of butyrolactam, which functions as a monomer for the synthesis of polyamide 4 (nylon 4) with improved thermal stability and high biodegradability. The bio-based fermentation production of chemicals using microbes as a cell factory provides an alternative to replace petrochemical-based processes. Here, we performed model-guided metabolic engineering of Corynebacterium glutamicum for GABA and butyrolactam fermentation. A GABA biosynthetic pathway was constructed using a bi-cistronic expression cassette containing mutant glutamate decarboxylase. An in silico simulation showed that the increase in the flux from acetyl-CoA to α-ketoglutarate and the decrease in the flux from α-ketoglutarate to succinate drove more flux toward GABA biosynthesis. The TCA cycle was reconstructed by increasing the expression of acn and icd genes and deleting the sucCD gene. Blocking GABA catabolism and rewiring the transport system of GABA further improved GABA production. An acetyl-CoA-dependent pathway for in vivo butyrolactam biosynthesis was constructed by overexpressing act-encoding ß-alanine CoA transferase. In fed-batch fermentation, the engineered strains produced 23.07 g/L of GABA with a yield of 0.52 mol/mol from glucose and 4.58 g/L of butyrolactam. The metabolic engineering strategies can be used for genetic modification of industrial strains to produce target chemicals from α-ketoglutarate as a precursor, and the engineered strains will be useful to synthesize the bio-based monomer of polyamide 4 from renewable resources.
Collapse
Affiliation(s)
- Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.Z.); (T.W.)
| | - Jing Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Tang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.Z.); (T.W.)
| |
Collapse
|
17
|
Wendisch VF, Nampoothiri KM, Lee JH. Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Front Microbiol 2022; 13:835131. [PMID: 35211108 PMCID: PMC8861201 DOI: 10.3389/fmicb.2022.835131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of amino acids. Valorization of sidestreams from agri- and aqua-culture has focused on the production of biofuels and carboxylic acids. Nitrogen present in various amounts in sidestreams may be valuable for the production of amines, amino acids and other nitrogenous compounds. Metabolic engineering of C. glutamicum for valorization of agri- and aqua-culture sidestreams addresses to bridge this gap. The product portfolio accessible via C. glutamicum fermentation primarily features amino acids and diamines for large-volume markets in addition to various specialty amines. On the one hand, this review covers metabolic engineering of C. glutamicum to efficiently utilize components of various sidestreams. On the other hand, examples of the design and implementation of synthetic pathways not present in native metabolism to produce sought after nitrogenous compounds will be provided. Perspectives and challenges of this concept will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| |
Collapse
|
18
|
Wei L, Zhao J, Wang Y, Gao J, Du M, Zhang Y, Xu N, Du H, Ju J, Liu Q, Liu J. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Metab Eng 2021; 69:134-146. [PMID: 34856366 DOI: 10.1016/j.ymben.2021.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/28/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Synthetic biology seeks to reprogram microbial cells for efficient production of value-added compounds from low-cost renewable substrates. A great challenge of chemicals biosynthesis is the competition between cell metabolism and target product synthesis for limited cellular resource. Dynamic regulation provides an effective strategy for fine-tuning metabolic flux to maximize chemicals production. In this work, we created a tunable growth phase-dependent autonomous bifunctional genetic switch (GABS) by coupling growth phase responsive promoters and degrons to dynamically redirect the carbon flux for metabolic state switching from cell growth mode to production mode, and achieved high-level GABA production from low-value glycerol in Corynebacterium glutamicum. A ribosome binding sites (RBS)-library-based pathway optimization strategy was firstly developed to reconstruct and optimize the glycerol utilization pathway in C. glutamicum, and the resulting strain CgGly2 displayed excellent glycerol utilization ability. Then, the initial GABA-producing strain was constructed by deleting the GABA degradation pathway and introducing an exogenous GABA synthetic pathway, which led to 5.26 g/L of GABA production from glycerol. In order to resolve the conflicts of carbon flux between cell growth and GABA production, we used the GABS to reconstruct the GABA synthetic metabolic network, in which the competitive modules of GABA biosynthesis, including the tricarboxylic acid (TCA) cycle module and the arginine biosynthesis module, were dynamically down-regulated while the synthetic modules were dynamically up-regulated after sufficient biomass accumulation. Finally, the resulting strain G7-1 accumulated 45.6 g/L of GABA with a yield of 0.4 g/g glycerol, which was the highest titer of GABA ever reported from low-value glycerol. Therefore, these results provide a promising technology to dynamically balance the metabolic flux for the efficient production of other high value-added chemicals from a low-value substrate in C. glutamicum.
Collapse
Affiliation(s)
- Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinhua Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yiran Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinshan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhua Du
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huanmin Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingdai Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
19
|
Kim K, Hou CY, Choe D, Kang M, Cho S, Sung BH, Lee DH, Lee SG, Kang TJ, Cho BK. Adaptive laboratory evolution of Escherichia coli W enhances gamma-aminobutyric acid production using glycerol as the carbon source. Metab Eng 2021; 69:59-72. [PMID: 34775076 DOI: 10.1016/j.ymben.2021.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon. Adaptive evolution of E. coli W under glycerol-limited conditions for 1300 generations harnessed an adapted strain with a metabolic system optimized for glycerol utilization. Mutation profiling, enzyme kinetic assays, and transcriptome analysis of the adapted strain allowed us to decipher the basis of glycerol adaptation at the molecular level. Importantly, increased substrate influx mediated by the mutant glpK and modulation of intracellular cAMP levels were the key drivers of improved fitness in the glycerol-limited condition. Leveraging the enhanced capability of glycerol utilization in the strain, we constructed a GABA-producing E. coli W-derivative with superior GABA production compared to the wild-type. Furthermore, rationally designed inactivation of the non-essential metabolic genes, including ackA, mgsA, and gabT, in the glycerol-adapted strain improved the final GABA titer and specific productivity by 3.9- and 4.3-fold, respectively, compared with the wild-type.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chen Yuan Hou
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Su A, Yu Q, Luo Y, Yang J, Wang E, Yuan H. Metabolic engineering of microorganisms for the production of multifunctional non-protein amino acids: γ-aminobutyric acid and δ-aminolevulinic acid. Microb Biotechnol 2021; 14:2279-2290. [PMID: 33675575 PMCID: PMC8601173 DOI: 10.1111/1751-7915.13783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA), playing important roles in agriculture, medicine and other fields, are multifunctional non-protein amino acids with similar and comparable properties and biosynthesis pathways. Recently, microbial synthesis has become an inevitable trend to produce GABA and ALA due to its green and sustainable characteristics. In addition, the development of metabolic engineering and synthetic biology has continuously accelerated and increased the GABA and ALA yield in microorganisms. Here, focusing on the current trends in metabolic engineering strategies for microbial synthesis of GABA and ALA, we analysed and compared the efficiency of various metabolic strategies in detail. Moreover, we provide the insights to meet challenges of realizing industrially competitive strains and highlight the future perspectives of GABA and ALA production.
Collapse
Affiliation(s)
- Anping Su
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Qijun Yu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Ying Luo
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Entao Wang
- Departamento de MicrobiologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico City11340Mexico
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| |
Collapse
|
21
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
22
|
Soma Y, Takahashi M, Fujiwara Y, Tomiyasu N, Goto M, Hanai T, Izumi Y, Bamba T. Quantitative metabolomics for dynamic metabolic engineering using stable isotope labeled internal standards mixture (SILIS). J Biosci Bioeng 2021; 133:46-55. [PMID: 34620543 DOI: 10.1016/j.jbiosc.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The production of chemicals and fuels from renewable resources using engineered microbes is an attractive alternative for current fossil-dependent industries. Metabolic engineering has contributed to pathway engineering for the production of chemicals and fuels by various microorganisms. Recently, dynamic metabolic engineering harnessing synthetic biological tools has become a next-generation strategy in this field. The dynamic regulation of metabolic flux during fermentation optimizes metabolic states according to each fermentation stage such as cell growth phase and compound production phase. However, it is necessary to repeat the evaluation and redesign of the dynamic regulation system to achieve the practical use of engineered microbes. In this study, we performed quantitative metabolome analysis to investigate the effects of dynamic metabolic flux regulation on engineered Escherichia coli for γ-amino butyrate (GABA) fermentation. We prepared a stable isotope-labeled internal standard mixture (SILIS) for the stable isotope dilution method (SIDM), a mass spectrometry-based quantitative metabolome analysis method. We found multiple candidate bottlenecks for GABA production. Some metabolic reactions in the GABA production pathway should be engineered for further improvement in the direct GABA fermentation with dynamic metabolic engineering strategy.
Collapse
Affiliation(s)
- Yuki Soma
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Fujiwara
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriyuki Tomiyasu
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Maiko Goto
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taizo Hanai
- Laboratory for Synthetic Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, W5-729, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
23
|
Burgardt A, Prell C, Wendisch VF. Utilization of a Wheat Sidestream for 5-Aminovalerate Production in Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 9:732271. [PMID: 34660554 PMCID: PMC8511785 DOI: 10.3389/fbioe.2021.732271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Production of plastics from petroleum-based raw materials extensively contributes to global pollution and CO2 emissions. Biotechnological production of functionalized monomers can reduce the environmental impact, in particular when using industrial sidestreams as feedstocks. Corynebacterium glutamicum, which is used in the million-ton-scale amino acid production, has been engineered for sustainable production of polyamide monomers. In this study, wheat sidestream concentrate (WSC) from industrial starch production was utilized for production of l-lysine-derived bifunctional monomers using metabolically engineered C. glutamicum strains. Growth of C. glutamicum on WSC was observed and could be improved by hydrolysis of WSC. By heterologous expression of the genes xylA Xc B Cg (xylA from Xanthomonas campestris) and araBAD Ec from E. coli, xylose, and arabinose in WSC hydrolysate (WSCH), in addition to glucose, could be consumed, and production of l-lysine could be increased. WSCH-based production of cadaverine and 5-aminovalerate (5AVA) was enabled. To this end, the lysine decarboxylase gene ldcC Ec from E. coli was expressed alone or for conversion to 5AVA cascaded either with putrescine transaminase and dehydrogenase genes patDA Ec from E. coli or with putrescine oxidase gene puo Rq from Rhodococcus qingshengii and patD Ec . Deletion of the l-glutamate dehydrogenase-encoding gene gdh reduced formation of l-glutamate as a side product for strains with either of the cascades. Since the former cascade (ldcC Ec -patDA Ec ) yields l-glutamate, 5AVA production is coupled to growth by flux enforcement resulting in the highest 5AVA titer obtained with WSCH-based media.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
24
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
25
|
Jeon EJ, Choi JW, Cho MS, Jeong KJ. Enhanced production of neoagarobiose from agar with Corynebacterium glutamicum producing exo-type and endo-type β-agarases. Microb Biotechnol 2021; 14:2164-2175. [PMID: 34310855 PMCID: PMC8449658 DOI: 10.1111/1751-7915.13899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
Neoagarobiose (NA2) derived from agar marine biomass is a rare reagent that acts as an anti-melanogenesis reagent and moisturizer. Here, for the economical manufacturing of NA2, we developed the co-secretory production system of endo-type β-agarases (DagA) and exo-type β-agarases (EXB3) in Corynebacterium glutamicum. For this purpose, we first developed a secretory system of DagA via Tat pathway. To improve the secretion efficiency, we coexpressed two Tat pathway components (TatA and TatC), and to improve the purity of secreted DagA in the culture supernatant, two endogenous protein genes (Cg2052 and Cg1514) were removed. Using the engineered strain (C. glutamicum SP002), we confirmed that DagA as high as 1.53 g l-1 was successfully produced in the culture media with high purity (72.7% in the supernatant protein fraction). Next, we constructed the expression system (pHCP-CgR-DagA-EXB3) for the simultaneous secretion of EXB3 via Sec-pathway together with DagA, and it was clearly confirmed that DagA and EXB3 were successfully secreted as high as 54% and 24.5%, respectively. Finally, using culture medium containing DagA and EXB3, we successfully demonstrated the conversion of high-concentration agar (40 g l-1 ) into NA2 via a two-stage hydrolysis process.
Collapse
Affiliation(s)
- Eun Jung Jeon
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Min Soo Cho
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,Korea Advanced Institute of Science and Technology (KAIST), Institute for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
26
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Prell C, Busche T, Rückert C, Nolte L, Brandenbusch C, Wendisch VF. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microb Cell Fact 2021; 20:97. [PMID: 33971881 PMCID: PMC8112011 DOI: 10.1186/s12934-021-01586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The demand for biobased polymers is increasing steadily worldwide. Microbial hosts for production of their monomeric precursors such as glutarate are developed. To meet the market demand, production hosts have to be improved constantly with respect to product titers and yields, but also shortening bioprocess duration is important. RESULTS In this study, adaptive laboratory evolution was used to improve a C. glutamicum strain engineered for production of the C5-dicarboxylic acid glutarate by flux enforcement. Deletion of the L-glutamic acid dehydrogenase gene gdh coupled growth to glutarate production since two transaminases in the glutarate pathway are crucial for nitrogen assimilation. The hypothesis that strains selected for faster glutarate-coupled growth by adaptive laboratory evolution show improved glutarate production was tested. A serial dilution growth experiment allowed isolating faster growing mutants with growth rates increasing from 0.10 h-1 by the parental strain to 0.17 h-1 by the fastest mutant. Indeed, the fastest growing mutant produced glutarate with a twofold higher volumetric productivity of 0.18 g L-1 h-1 than the parental strain. Genome sequencing of the evolved strain revealed candidate mutations for improved production. Reverse genetic engineering revealed that an amino acid exchange in the large subunit of L-glutamic acid-2-oxoglutarate aminotransferase was causal for accelerated glutarate production and its beneficial effect was dependent on flux enforcement due to deletion of gdh. Performance of the evolved mutant was stable at the 2 L bioreactor-scale operated in batch and fed-batch mode in a mineral salts medium and reached a titer of 22.7 g L-1, a yield of 0.23 g g-1 and a volumetric productivity of 0.35 g L-1 h-1. Reactive extraction of glutarate directly from the fermentation broth was optimized leading to yields of 58% and 99% in the reactive extraction and reactive re-extraction step, respectively. The fermentation medium was adapted according to the downstream processing results. CONCLUSION Flux enforcement to couple growth to operation of a product biosynthesis pathway provides a basis to select strains growing and producing faster by adaptive laboratory evolution. After identifying candidate mutations by genome sequencing causal mutations can be identified by reverse genetics. As exemplified here for glutarate production by C. glutamicum, this approach allowed deducing rational metabolic engineering strategies.
Collapse
Affiliation(s)
- Carina Prell
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Christian Rückert
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Lea Nolte
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Christoph Brandenbusch
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
28
|
Wen J, Bao J. Improved fermentative γ-aminobutyric acid production by secretory expression of glutamate decarboxylase by Corynebacterium glutamicum. J Biotechnol 2021; 331:19-25. [PMID: 33711360 DOI: 10.1016/j.jbiotec.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/01/2023]
Abstract
Fermentative production of γ-aminobutyric acid by the glutamate overproducing Corynebacterium glutamicum from cheap sugar feedstock is generally regarded as one of the most promising methods to reduce the production cost. However, the intracellularly expressed glutamate decarboxylase in C. glutamicum often showed feeble catalysis activity to convert glutamate into γ-aminobutyric acid. Here we tried to secretory express glutamate decarboxylase to achieve efficient extracellular decarboxylation of glutamate, thus improving the γ-aminobutyric acid production by C. glutamicum. We first tested glutamate decarboxylases from different sources, and the mutated glutamate decarboxylase GadBmut from E. coli with better catalytic performance was selected. Then, a signal peptide of the SEC translocation pathway directed the successful secretion of glutamate decarboxylase in C. glutamicum. The extracellular catalysis by secreted glutamate decarboxylase increased the γ-aminobutyric acid generation by three-fold, compared with intracellular catalysis. Enhancing glutamate decarboxylase expression and decreasing γ-aminobutyric acid degradation further increased γ-aminobutyric acid production by 39 %. The fed-batch fermentation of the engineered C. glutamicum strain reached the record high titer (77.6 ± 0.0 g /L), overall yield (0.44 ± 0.00 g/g glucose), and productivity (1.21 ± 0.00 g/L/h). This study demonstrated a unique design of extracellular catalysis for efficient γ-aminobutyric acid production by C. glutamicum.
Collapse
Affiliation(s)
- Jingbai Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; School of Chemical and Biological Engineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
29
|
Tsuge Y, Matsuzawa H. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microbiol Biotechnol 2021; 37:49. [PMID: 33569648 DOI: 10.1007/s11274-021-03007-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/17/2021] [Indexed: 01/07/2023]
Abstract
Green chemical production by microbial processes is critical for the development of a sustainable society in the twenty-first century. Among the important industrial microorganisms, the gram-positive bacterium Corynebacterium glutamicum has been utilized for amino acid fermentation, which is one of the largest microbial-based industries. To date, several amino acids, including L-glutamic acid, L-lysine, and L-threonine, have been produced by C. glutamicum. The capability to produce substantial amounts of amino acids has gained immense attention because the amino acids can be used as a precursor to produce other high-value-added chemicals. Recent developments in metabolic engineering and synthetic biology technologies have enabled the extension of metabolic pathways from amino acids. The present review provides an overview of the recent progress in the microbial production of amino acid-derived bio-based monomers such as 1,4-diaminobutane, 1,5-diaminopentane, glutaric acid, 5-aminolevulinic acid, L-pipecolic acid, 4-amino-1-butanol, and 5-aminolevulinic acid, as well as building blocks for healthcare products and pharmaceuticals such as ectoine, L-theanine, and gamma-aminobutyric acid by metabolically engineered C. glutamicum.
Collapse
Affiliation(s)
- Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Hiroki Matsuzawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
30
|
Luo H, Liu Z, Xie F, Bilal M, Liu L, Yang R, Wang Z. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol 2021; 41:491-512. [PMID: 33541153 DOI: 10.1080/07388551.2020.1869688] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important non-protein amino acid with wide-ranging applications. Currently, GABA can be produced by a variety of methods, including chemical synthesis, plant enrichment, enzymatic methods, and microbial production. Among these methods, microbial production has gained increasing attention to meet the strict requirements of an additive in the fields of food, pharmaceutical, and livestock. In addition, renewable and abundant resources, such as glucose and lignocellulosic biomass can also be used for GABA microbial production under mild and environmentally friendly processing conditions. In this review, the applications, metabolic pathways and physiological functions of GABA in different microorganisms were firstly discussed. A comprehensive overview of the current status of process engineering strategies for enhanced GABA production, including fermentation optimization and whole-cell conversion from different feedstocks by various host strains is also provided. We also presented the state-of-the-art achievements in strain development strategies for industrial lactic acid bacteria (LAB), Corynebacterium glutamicum and Escherichia coli to enhance the performance of GABA bioproduction. In order to use bio-based GABA in the fields of food and pharmaceutical, some Generally Recognized as Safe (GRAS) strains such as LAB and C. glutamicum will be the promising chassis hosts. Toward the end of this review, current challenges and valuable research directions/strategies on the improvements of process and strain engineering for economic microbial production of GABA are also suggested.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
31
|
Sohn YJ, Kim HT, Jo SY, Song HM, Baritugo KA, Pyo J, Choi JI, Joo JC, Park SJ. Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0508-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Yogeswara IBA, Maneerat S, Haltrich D. Glutamate Decarboxylase from Lactic Acid Bacteria-A Key Enzyme in GABA Synthesis. Microorganisms 2020; 8:microorganisms8121923. [PMID: 33287375 PMCID: PMC7761890 DOI: 10.3390/microorganisms8121923] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Glutamate decarboxylase (l-glutamate-1-carboxylase, GAD; EC 4.1.1.15) is a pyridoxal-5’-phosphate-dependent enzyme that catalyzes the irreversible α-decarboxylation of l-glutamic acid to γ-aminobutyric acid (GABA) and CO2. The enzyme is widely distributed in eukaryotes as well as prokaryotes, where it—together with its reaction product GABA—fulfils very different physiological functions. The occurrence of gad genes encoding GAD has been shown for many microorganisms, and GABA-producing lactic acid bacteria (LAB) have been a focus of research during recent years. A wide range of traditional foods produced by fermentation based on LAB offer the potential of providing new functional food products enriched with GABA that may offer certain health-benefits. Different GAD enzymes and genes from several strains of LAB have been isolated and characterized recently. GABA-producing LAB, the biochemical properties of their GAD enzymes, and possible applications are reviewed here.
Collapse
Affiliation(s)
- Ida Bagus Agung Yogeswara
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences BOKU, Muthgasse 18, 1190 Vienna, Austria;
- Nutrition Department, Faculty of Health, Science and Technology, Universitas Dhyana Pura, Dalung Kuta utara 80361, Bali, Indonesia
- Correspondence:
| | - Suppasil Maneerat
- Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences BOKU, Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|
33
|
Park JY, Park YL, Choi TR, Kim HJ, Song HS, Han YH, Lee SM, Park SL, Lee HS, Bhatia SK, Gurav R, Yang YH. Production of γ-aminobutyric acid from monosodium glutamate using Escherichia coli whole-cell biocatalysis with glutamate decarboxylase from Lactobacillus brevis KCTC 3498. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0633-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Gordillo Sierra AR, Alper HS. Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors. Biotechnol Adv 2020; 43:107587. [DOI: 10.1016/j.biotechadv.2020.107587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
|
35
|
Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T. Metabolic Engineering of Shikimic Acid-Producing Corynebacterium glutamicum From Glucose and Cellobiose Retaining Its Phosphotransferase System Function and Pyruvate Kinase Activities. Front Bioeng Biotechnol 2020; 8:569406. [PMID: 33015020 PMCID: PMC7511668 DOI: 10.3389/fbioe.2020.569406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023] Open
Abstract
The production of aromatic compounds by microbial production is a promising and sustainable approach for producing biomolecules for various applications. We describe the metabolic engineering of Corynebacterium glutamicum to increase its production of shikimic acid. Shikimic acid and its precursor-consuming pathways were blocked by the deletion of the shikimate kinase, 3-dehydroshikimate dehydratase, shikimate dehydratase, and dihydroxyacetone phosphate phosphatase genes. Plasmid-based expression of shikimate pathway genes revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase, encoded by aroG, and DHQ synthase, encoded by aroB, are key enzymes for shikimic acid production in C. glutamicum. We constructed a C. glutamicum strain with aroG, aroB and aroE3 integrated. This strain produced 13.1 g/L of shikimic acid from 50 g/L of glucose, a yield of 0.26 g-shikimic acid/g-glucose, and retained both its phosphotransferase system and its pyruvate kinase activity. We also endowed β-glucosidase secreting ability to this strain. When cellobiose was used as a carbon source, the strain produced shikimic acid at 13.8 g/L with the yield of 0.25 g-shikimic acid/g-glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing shikimic acid and its derivatives using an engineered C. glutamicum strain from cellobiose as well as glucose.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
36
|
Im D, Hong J, Gu B, Sung C, Oh M. 13
C Metabolic Flux Analysis of
Escherichia coli
Engineered for Gamma‐Aminobutyrate Production. Biotechnol J 2020; 15:e1900346. [DOI: 10.1002/biot.201900346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/12/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Dae‐Kyun Im
- Department of Chemical and Biological EngineeringKorea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Korea
| | - Jaeseung Hong
- Department of Chemical and Biological EngineeringKorea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Korea
| | - Boncheol Gu
- Department of Chemical and Biological EngineeringKorea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Korea
| | - Changmin Sung
- Doping Control CenterKorea Institute of Science and Technology 5 Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Korea
| | - Min‐Kyu Oh
- Department of Chemical and Biological EngineeringKorea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Korea
| |
Collapse
|
37
|
Park SH, Sohn YJ, Park SJ, Choi JI. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions. Microb Cell Fact 2020; 19:64. [PMID: 32156293 PMCID: PMC7063819 DOI: 10.1186/s12934-020-01322-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/01/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Gamma aminobutyric acid (GABA) is an important platform chemical, which has been used as a food additive and drug. Additionally, GABA is a precursor of 2-pyrrolidone, which is used in nylon synthesis. GABA is usually synthesized from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD). Currently, there are several reports on GABA production from monosodium glutamate (MSG) or glucose using engineered microbes. However, the optimal pH for GAD activity is 4, which is the limiting factor for the efficient microbial fermentative production of GABA as fermentations are performed at pH 7. Recently, DR1558, a response regulator in the two-component signal transduction system was identified in Deinococcus radiodurans. DR1558 is reported to confer cellular robustness to cells by binding the promoter regions of genes via DNA-binding domains or by binding to the effector molecules, which enable the microorganisms to survive in various environmental stress conditions, such as oxidative stress, high osmotic shock, and low pH. RESULTS In this study, the effect of DR1558 in enhancing GABA production was examined using two different strategies: whole-cell bioconversion of GABA from MSG and direct fermentative production of GABA from glucose under acidic culture conditions. In the whole-cell bioconversion, GABA produced by E. coli expressing GadBC and DR1558 (6.52 g/L GABA from 13 g/L MSG·H2O) in shake flask culture at pH 4.5 was 2.2-fold higher than that by E. coli expressing only GadBC (2.97 g/L of GABA from 13 g/L MSG·H2O). In direct fermentative production of GABA from glucose, E. coli ∆gabT expressing isocitrate dehydrogenase (IcdA), glutamate dehydrogenase (GdhA), GadBC, and DR1558 produced 1.7-fold higher GABA (2.8 g/L of GABA from 30 g/L glucose) than E. coli ∆gabT expressing IcdA, GdhA, and GadBC (1.6 g/L of GABA from 30 g/L glucose) in shake flask culture at an initial pH 7.0. The transcriptional analysis of E. coli revealed that DR1558 conferred acid resistance to E. coli during GABA production. The fed-batch fermentation of E. coli expressing IcdA, GdhA, GadBC, and DR1558 performed at pH 5.0 resulted in the final GABA titer of 6.16 g/L by consuming 116.82 g/L of glucose in 38 h. CONCLUSION This is the first report to demonstrate GABA production by acidic fermentation and to provide an engineering strategy for conferring acid resistance to the recombinant E. coli for GABA production.
Collapse
Affiliation(s)
- Sung-Ho Park
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Yu Jung Sohn
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
38
|
Somasundaram S, Jeong J, Irisappan G, Kim TW, Hong SH. Enhanced Production of Malic Acid by Co-localization of Phosphoenolpyruvate Carboxylase and Malate Dehydrogenase Using Synthetic Protein Scaffold in Escherichia coli. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Cui Y, Miao K, Niyaphorn S, Qu X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int J Mol Sci 2020; 21:ijms21030995. [PMID: 32028587 PMCID: PMC7037312 DOI: 10.3390/ijms21030995] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/04/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is widely distributed in nature and considered a potent bioactive compound with numerous and important physiological functions, such as anti-hypertensive and antidepressant activities. There is an ever-growing demand for GABA production in recent years. Lactic acid bacteria (LAB) are one of the most important GABA producers because of their food-grade nature and potential of producing GABA-rich functional foods directly. In this paper, the GABA-producing LAB species, the biosynthesis pathway of GABA by LAB, and the research progress of glutamate decarboxylase (GAD), the key enzyme of GABA biosynthesis, were reviewed. Furthermore, GABA production enhancement strategies are reviewed, from optimization of culture conditions and genetic engineering to physiology-oriented engineering approaches and co-culture methods. The advances in both the molecular mechanisms of GABA biosynthesis and the technologies of synthetic biology and genetic engineering will promote GABA production of LAB to meet people’s demand for GABA. The aim of the review is to provide an insight of microbial engineering for improved production of GABA by LAB in the future.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; (K.M.)
- Correspondence:
| | - Kai Miao
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; (K.M.)
| | - Siripitakyotin Niyaphorn
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; (K.M.)
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China;
| |
Collapse
|
40
|
Leszczewicz M, Walczak P. Selection of Thermotolerant Corynebacterium glutamicum Strains for Organic Acid Biosynthesis. Food Technol Biotechnol 2019; 57:249-259. [PMID: 31537974 PMCID: PMC6718964 DOI: 10.17113/ftb.57.02.19.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, Corynebacterium glutamicum has been considered as producer of many valuable chemical compounds. Among them, organic acids such as l-lactic and succinic acids are the most important ones. It is known that the wild-type C. glutamicum grows well in the temperature range between 25 and 37 °C. Above 40 °C, the biomass growth usually abruptly stops; however, the bacteria remain metabolically active. High temperature affects the metabolic activity of C. glutamicum cells and can lead to changes in the composition and quantity of the fermentation products. Therefore, in a series of subsequent selection steps, we tried to obtain prototrophic strains capable of growing at 44 °C from the culture of homoserine auxotroph C. glutamicum ATCC 13287. During selection, we used complex and mineral media containing succinic and citric acids. As a result, we obtained 47 clones able to grow at elevated temperature. Moreover, the estimated optimal growth temperature for several of them was about 40 °C or higher. Under oxygen limitation conditions, C. glutamicum strains produce organic acids. Regardless of the tested clone, l-lactic acid was the main product. However, its concentration was the highest in the cultures performed at 44 °C. The elevated temperature also affected the biosynthesis of other organic acids. Compared to the parental strain, the concentration of acetic acid increased, and of succinic acid decreased in the cultures of thermotolerant strains. Strain RCG44.3 exhibited interesting properties; it was able to synthesise 27.1 g/L l-lactic acid, with production yield of 0.57 g/g, during 24 h of fermentation at 44 °C.
Collapse
Affiliation(s)
- Martyna Leszczewicz
- Industrial Biotechnology Laboratory, "Bionanopark" Ltd., Dubois 114/116, 93-465 Łódź, Poland.,Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Piotr Walczak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| |
Collapse
|
41
|
Lyu CJ, Liu L, Huang J, Zhao WR, Hu S, Mei LH, Yao SJ. Biosynthesis of γ-aminobutyrate by engineered Lactobacillus brevis cells immobilized in gellan gum gel beads. J Biosci Bioeng 2019; 128:123-128. [DOI: 10.1016/j.jbiosc.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
|
42
|
High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst Expressing Hafnia alvei l-lysine Decarboxylase. Polymers (Basel) 2019; 11:polym11071184. [PMID: 31337154 PMCID: PMC6680443 DOI: 10.3390/polym11071184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022] Open
Abstract
Cadaverine is a C5 diamine monomer used for the production of bio-based polyamide 510. Cadaverine is produced by the decarboxylation of l-lysine using a lysine decarboxylase (LDC). In this study, we developed recombinant Escherichia coli strains for the expression of LDC from Hafnia alvei. The resulting recombinant XBHaLDC strain was used as a whole cell biocatalyst for the high-level bioconversion of l-lysine into cadaverine without the supplementation of isopropyl β-d-1-thiogalactopyranoside (IPTG) for the induction of protein expression and pyridoxal phosphate (PLP), a key cofactor for an LDC reaction. The comparison of results from enzyme characterization of E. coli and H. alvei LDC revealed that H. alvei LDC exhibited greater bioconversion ability than E. coli LDC due to higher levels of protein expression in all cellular fractions and a higher specific activity at 37 °C (1825 U/mg protein > 1003 U/mg protein). The recombinant XBHaLDC and XBEcLDC strains were constructed for the high-level production of cadaverine. Recombinant XBHaLDC produced a 1.3-fold higher titer of cadaverine (6.1 g/L) than the XBEcLDC strain (4.8 g/L) from 10 g/L of l-lysine. Furthermore, XBHaLDC, concentrated to an optical density (OD600) of 50, efficiently produced 136 g/L of cadaverine from 200 g/L of l-lysine (97% molar yield) via an IPTG- and PLP-free whole cell bioconversion reaction. Cadaverine synthesized via a whole cell biocatalyst reaction using XBHaLDC was purified to polymer grade, and purified cadaverine was successfully used for the synthesis of polyamide 510. In conclusion, an IPTG- and PLP-free whole cell bioconversion process of l-lysine into cadaverine, using recombinant XBHaLDC, was successfully utilized for the production of bio-based polyamide 510, which has physical and thermal properties similar to polyamide 510 synthesized from chemical-grade cadaverine.
Collapse
|
43
|
Jung Park H, Shim HS, Lee GR, Yoon KH, Ho Kim J, Lee JM, Sohn M, Yin CS, Park CY, Kang YM, Jin Lee B, Shim I. A randomized, double-blind, placebo-controlled study on the memory-enhancing effect of lactobacillus fermented Saccharina japonica extract. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Yuan H, Wang H, Fidan O, Qin Y, Xiao G, Zhan J. Identification of new glutamate decarboxylases from Streptomyces for efficient production of γ-aminobutyric acid in engineered Escherichia coli. J Biol Eng 2019; 13:24. [PMID: 30949236 PMCID: PMC6429771 DOI: 10.1186/s13036-019-0154-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes. Results By sequencing and analyzing the genomes of three Streptomyces strains, three putative GADs were discovered, including StGAD from Streptomyces toxytricini NRRL 15443, SsGAD from Streptomyces sp. MJ654-NF4 and ScGAD from Streptomyces chromofuscus ATCC 49982. The corresponding genes were cloned from these strains and heterologously expressed in E. coli BL21(DE3). The purified GAD proteins showed a similar molecular mass to GadB from E. coli BL21(DE3). The optimal reaction temperature is 37 °C for all three enzymes, while the optimum pH values for StGAD, SsGAD and ScGAD are 5.2, 3.8 and 4.2, respectively. The kinetic parameters including Vmax, Km, kcat and kcat/Km values were investigated and calculated through in vitro reactions. SsGAD and ScGAD showed high biocatalytic efficiency with kcat/Km values of 0.62 and 1.21 mM− 1·s− 1, respectively. In addition, engineered E. coli strains harboring StGAD, SsGAD and ScGAD were used as whole-cell biocatalysts for production of GABA from L-Glu. E. coli/SsGAD showed the highest capability of GABA production. The cells were repeatedly used for 10 times, with an accumulated yield of 2.771 kg/L and an average molar conversion rate of 67% within 20 h. Conclusions Three new GADs have been functionally characterized from Streptomyces, among which two showed higher catalytic efficiency than previously reported GADs. Engineered E. coli harboring SsGAD provides a promising cost-effective bioconversion system for industrial production of GABA. Electronic supplementary material The online version of this article (10.1186/s13036-019-0154-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haina Yuan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA.,2School of Biological and Chemical Engineering, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China
| | - Hongbo Wang
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Ozkan Fidan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Yong Qin
- Hangzhou Viablife Biotech Co., Ltd., 1 Jingyi Road, Yuhang District, Hangzhou, 311113 Zhejiang China
| | - Gongnian Xiao
- 2School of Biological and Chemical Engineering, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Produces, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China
| | - Jixun Zhan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| |
Collapse
|
45
|
Yuan SF, Alper HS. Metabolic engineering of microbial cell factories for production of nutraceuticals. Microb Cell Fact 2019; 18:46. [PMID: 30857533 PMCID: PMC6410520 DOI: 10.1186/s12934-019-1096-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022] Open
Abstract
Metabolic engineering allows for the rewiring of basic metabolism to overproduce both native and non-native metabolites. Among these biomolecules, nutraceuticals have received considerable interest due to their health-promoting or disease-preventing properties. Likewise, microbial engineering efforts to produce these value-added nutraceuticals overcome traditional limitations of low yield from extractions and complex chemical syntheses. This review covers current strategies of metabolic engineering employed for the production of a few key nutraceuticals with selecting polyunsaturated fatty acids, polyphenolic compounds, carotenoids and non-proteinogenic amino acids as exemplary molecules. We focus on the use of both mono-culture and co-culture strategies to produce these molecules of interest. In each of these cases, metabolic engineering efforts are enabling rapid production of these molecules.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
46
|
Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Wada M, Yokota A, Matsushita K. Engineering of Corynebacterium glutamicum as a prototrophic pyruvate-producing strain: Characterization of a ramA-deficient mutant and its application for metabolic engineering. Biosci Biotechnol Biochem 2019; 83:372-380. [DOI: 10.1080/09168451.2018.1527211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ABSTRACT
To construct a prototrophic Corynebacterium glutamicum strain that efficiently produces pyruvate from glucose, the effects of inactivating RamA, a global regulator responsible for activating the oxidative tricarboxylic acid (TCA) cycle, on glucose metabolism were investigated. ΔramA showed an increased specific glucose consumption rate, decreased growth, comparable pyruvate production, higher formation of lactate and acetate, and lower accumulation of succinate and 2-oxoglutarate compared to the wild type. A significant decrease in pyruvate dehydrogenase complex activity was observed for ΔramA, indicating reduced carbon flow to the TCA cycle in ΔramA. To create an efficient pyruvate producer, the ramA gene was deleted in a strain lacking the genes involved in all known lactate- and acetate-producing pathways. The resulting mutant produced 161 mM pyruvate from 222 mM glucose, which was significantly higher than that of the parent (89.3 mM; 1.80-fold).
Collapse
Affiliation(s)
- Naoya Kataoka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Alisa S Vangnai
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | | | - Toshiharu Yakushi
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Masaru Wada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazunobu Matsushita
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
47
|
Peng F, Liu X, Wang X, Chen J, Liu M, Yang Y, Bai Z. Triple deletion of clpC, porB, and mepA enhances production of small ubiquitin-like modifier-N-terminal pro-brain natriuretic peptide in Corynebacterium glutamicum. ACTA ACUST UNITED AC 2019; 46:67-79. [DOI: 10.1007/s10295-018-2091-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 01/29/2023]
Abstract
Abstract
In our previous work, a two-plasmid CRISPR/Cas9 system was constructed for genome editing in Corynebacterium glutamicum. To increase the transformation efficiency and simplify the plasmid curing steps, an all-in-one CRISPR/Cas9 system was constructed for efficient genome editing. In addition, to research proteolysis during the production of recombinant proteins and generate a host for enhanced expression of recombinant proteins, the system was used to delete three genes, clpC, porB, and mepA in C. glutamicum CGMCC1.15647, which encoded the Clp protease subunit ClpC, anion selective channel protein B, and metallopeptidase A, respectively. After the evaluation of different plasmids and hosts, small ubiquitin-like modifier-N-terminal pro-brain natriuretic peptide (SUMO-NT-proBNP), an important protein used for the diagnosis of mild heart failure was successfully expressed in the triple mutant ΔclpCΔporBΔmepA, which exhibit threefold higher levels of protein expression compared with the wild-type. In conclusion, we created a simplified CRISPR tool for genome editing in C. glutamicum, provided a method to generate a host for enhanced expression of recombinant proteins and successfully expressed SUMO-NT-proBNP in C. glutamicum. This tool and method will greatly facilitate genetic engineering and metabolic optimization of this important platform organism.
Collapse
Affiliation(s)
- Feng Peng
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a Jiangsu Provincial Research Center for Bioactive Product Processing Technology Jiangnan University 214122 Wuxi China
| | - Xiuxia Liu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a Jiangsu Provincial Research Center for Bioactive Product Processing Technology Jiangnan University 214122 Wuxi China
| | - Xinyue Wang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a Jiangsu Provincial Research Center for Bioactive Product Processing Technology Jiangnan University 214122 Wuxi China
| | - Jing Chen
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a Jiangsu Provincial Research Center for Bioactive Product Processing Technology Jiangnan University 214122 Wuxi China
| | - Meng Liu
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Yankun Yang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a Jiangsu Provincial Research Center for Bioactive Product Processing Technology Jiangnan University 214122 Wuxi China
| | - Zhonghu Bai
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- 0000 0001 0708 1323 grid.258151.a Jiangsu Provincial Research Center for Bioactive Product Processing Technology Jiangnan University 214122 Wuxi China
| |
Collapse
|
48
|
Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab Eng 2019; 51:99-109. [DOI: 10.1016/j.ymben.2018.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 01/24/2023]
|
49
|
Yang Z, Pei X, Xu G, Wu J, Yang L. Efficient inducible expression of nitrile hydratase in Corynebacterium glutamicum. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Current advance in bioconversion of methanol to chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:260. [PMID: 30258494 PMCID: PMC6151904 DOI: 10.1186/s13068-018-1265-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/19/2018] [Indexed: 05/25/2023]
Abstract
Methanol has become an attractive substrate for biotechnological applications due to its abundance and low-price. Chemicals production from methanol could alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Recently, a growing fraction of research has focused on metabolites production using methanol as sole carbon and energy source or as co-substrate with carbohydrates by native or synthetic methylotrophs. In this review, we summarized the recent significant progress in native and synthetic methylotrophs and their application for methanol bioconversion into various products. Moreover, strategies for improvement of methanol metabolism and new perspectives on the generation of desired products from methanol were also discussed, which will benefit for the development of a methanol-based economy.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Meng Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Qiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| |
Collapse
|