1
|
Fokina V, Lobastova T, Tarlachkov S, Shutov A, Kazantsev A, Donova M. Degradation of C 19-Steroids and Effect of Androstenedione on Gene Expression in Nocardioides simplex. Curr Microbiol 2025; 82:143. [PMID: 39969609 DOI: 10.1007/s00284-025-04105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Molecular mechanisms of C19-steroid core degradation have been intensively studied mostly in mycolic acid rich actinobacteria, mainly in the representatives of Mycobacterium, Mycolicibacterium and Rhodococcus genera, whilst much less data evidencing functionality of the 9(10)-seco pathway in other actinobacteria was reported. In this study, degradation of androstenedione (AD), androstadienedione (ADD), testosterone (T), Δ1-dehydrotestosterone (DT) and 9α-hydroxyandrostenedione (9α-OH-AD) by the biotechnologically relevant actinobacterium of Nocardioides simplex VKM Ac-2033D was investigated. Key intermediates of 9α-OH-AD degradation were isolated and identified as 3-hydroxy-9,10-seco-androsta-1,3,5(10)-triene-9,17-dione (3-HSA) and 3,17β-dihydroxy-9,10-seco-androsta-1,3,5(10)-trien-9-one (3,17-DHSA). The structures of the compounds were confirmed by MS, 1H- and 13C-NMR. Differential gene expression on medium with glycerol and yeast extract with and without AD addition was estimated. The expression of two sets of the genes related to the 9(10)-seco pathway was increased in the presence of AD. One set comprised the genes from the KstR2-regulons in the clusters A and C, while another set included the genes without the binding sites for KstR/KstR2 (Cluster D). These genes putatively encoded 3-oxosteroid-Δ1-dehydrogenase and 3-oxosteroid 9α-hydroxylase, as well as a group of enzymes dealing with the ring B opening (HsaA3, HsaB3, HsaC3 and HsaD3). Process of degradation of exogenous C19-steroids in N. simplex proceeds via the 9(10)-seco pathway and can be controlled not only by KstR2 regulator, but also by other transcriptional factors. The results contribute to the knowledge on steroid core degradation in actinobacteria and are of significance at the development of methods for production of valuable indane compounds.
Collapse
Affiliation(s)
- Victoria Fokina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pr. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Tatyana Lobastova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pr. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Sergey Tarlachkov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pr. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Andrei Shutov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pr. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Alexey Kazantsev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Marina Donova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Pr. Nauki 5, Pushchino, Moscow Region, 142290, Russian Federation
| |
Collapse
|
2
|
Qiu Q, Li H, Sun X, Zhang L, Tian K, Chang M, Li S, Zhou D, Huo H. Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. CHEMOSPHERE 2024; 358:142146. [PMID: 38677604 DOI: 10.1016/j.chemosphere.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Lili Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Liu X, Zhang J, Yuan C, Du G, Han S, Shi J, Sun J, Zhang B. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ 1-dehydrogenase deletions and multiple genetic modifications in Mycobacterium fortuitum. Microb Cell Fact 2023; 22:53. [PMID: 36922830 PMCID: PMC10018825 DOI: 10.1186/s12934-023-02052-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND 9α-hydroxyandrost-4-ene-3,17-dione (9-OHAD) is a significant intermediate for the synthesis of glucocorticoid drugs. However, in the process of phytosterol biotransformation to manufacture 9-OHAD, product degradation, and by-products restrict 9-OHAD output. In this study, to construct a stable and high-yield 9-OHAD producer, we investigated a combined strategy of blocking Δ1‑dehydrogenation and regulating metabolic flux. RESULTS Five 3-Ketosteroid-Δ1-dehydrogenases (KstD) were identified in Mycobacterium fortuitum ATCC 35855. KstD2 showed the highest catalytic activity on 3-ketosteroids, followed by KstD3, KstD1, KstD4, and KstD5, respectively. In particular, KstD2 had a much higher catalytic activity for C9 hydroxylated steroids than for C9 non-hydroxylated steroids, whereas KstD3 showed the opposite characteristics. The deletion of kstDs indicated that KstD2 and KstD3 were the main causes of 9-OHAD degradation. Compared with the wild type M. fortuitum ATCC 35855, MFΔkstD, the five kstDs deficient strain, realized stable accumulation of 9-OHAD, and its yield increased by 42.57%. The knockout of opccr or the overexpression of hsd4A alone could not reduce the metabolic flux of the C22 pathway, while the overexpression of hsd4A based on the knockout of opccr in MFΔkstD could remarkably reduce the contents of 9,21 ‑dihydroxy‑20‑methyl‑pregna‑4‑en‑3‑one (9-OHHP) by-products. The inactivation of FadE28-29 leads to a large accumulation of incomplete side-chain degradation products. Therefore, hsd4A and fadE28-29 were co-expressed in MFΔkstDΔopccr successfully eliminating the two by-products. Compared with MFΔkstD, the purity of 9-OHAD improved from 80.24 to 90.14%. Ultimately, 9‑OHAD production reached 12.21 g/L (83.74% molar yield) and the productivity of 9-OHAD was 0.0927 g/L/h from 20 g/L phytosterol. CONCLUSIONS KstD2 and KstD3 are the main dehydrogenases that lead to 9-OHAD degradation. Hsd4A and Opccr are key enzymes regulating the metabolic flux of the C19- and C22-pathways. Overexpression of fadE28-29 can reduce the accumulation of incomplete degradation products of the side chains. According to the above findings, the MF-FA5020 transformant was successfully constructed to rapidly and stably accumulate 9-OHAD from phytosterols. These results contribute to the understanding of the diversity and complexity of steroid catabolism regulation in actinobacteria and provide a theoretical basis for further optimizing industrial microbial catalysts.
Collapse
Affiliation(s)
- Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
4
|
Wójcik P, Glanowski M, Mrugała B, Procner M, Zastawny O, Flejszar M, Kurpiewska K, Niedziałkowska E, Minor W, Oszajca M, Bojarski AJ, Wojtkiewicz AM, Szaleniec M. Structure, Mutagenesis, and QM:MM Modeling of 3-Ketosteroid Δ 1-Dehydrogenase from Sterolibacterium denitrificans─The Role of a New Putative Membrane-Associated Domain and Proton-Relay System in Catalysis. Biochemistry 2023; 62:808-823. [PMID: 36625854 PMCID: PMC9960185 DOI: 10.1021/acs.biochem.2c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ1-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism. The mechanism is validated by evaluating the experimental and theoretical kinetic isotope effect for deuterium-substituted substrates. The role of the active-site residues is quantitatively assessed by point mutations, experimental activity assays, and QM/MM MD modeling of the reductive half-reaction (RHR). The pre-steady-state kinetics also reveals that the low pH (6.5) optimum of AcmB is dictated by the oxidative half-reaction (OHR), while the RHR exhibits a slight optimum at the pH usual for the KstD family of 8.5. The modeling confirms the origin of the enantioselectivity of C2-H activation and substrate specificity for Δ4-3-ketosteroids. Finally, the cholest-4-en-3-one turns out to be the best substrate of AcmB in terms of ΔG of binding and predicted rate of dehydrogenation.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Olga Zastawny
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Monika Flejszar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959Rzeszów, Poland
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Ewa Niedziałkowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Andrzej J Bojarski
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| |
Collapse
|
5
|
Wang Y, Zhang R, Feng J, Wu Q, Zhu D, Ma Y. A New 3-Ketosteroid-Δ1–Dehydrogenase with High Activity and Broad Substrate Scope for Efficient Transformation of Hydrocortisone at High Substrate Concentration. Microorganisms 2022; 10:microorganisms10030508. [PMID: 35336084 PMCID: PMC8950399 DOI: 10.3390/microorganisms10030508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
3-Ketosteroid-Δ1-dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ1-dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, nine putative kstD genes from different origins were selected and overexpressed in Escherichia coli BL21(DE3). These recombinant enzymes catalyzed the Δ1-desaturation of a variety of steroidal compounds. Among them, the KstD from Propionibacterium sp. (PrKstD) displayed the highest specific activity and broad substrate spectrum. The detailed catalytic characterization of PrKstD showed that it can convert a wide range of 3-ketosteroid compounds with diverse substituents, ranging from substituents at the C9, C10, C11 and C17 position through substrates without C4-C5 double bond, to previously inactive C6-substituted ones such as 11β,17-dihydroxy-6α-methyl-pregn-4-ene-3,20-dione. Reaction conditions were optimized for the biotransformation of hydrocortisone in terms of pH, temperature, co-solvent and electron acceptor. By using 50 g/L wet resting E. coli cells harboring PrKstD enzyme, the conversion of hydrocortisone was about 92.5% within 6 h at the substrate concentration of 80 g/L, much higher than the previously reported results, demonstrating the application potential of this new KstD.
Collapse
|
6
|
Steroid Metabolism in Thermophilic Actinobacterium Saccharopolyspora hirsuta VKM Ac-666 T. Microorganisms 2021; 9:microorganisms9122554. [PMID: 34946155 PMCID: PMC8708139 DOI: 10.3390/microorganisms9122554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The application of thermophilic microorganisms opens new prospects in steroid biotechnology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one, 3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125 and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-pathway. The genes putatively related to the sterol and bile acid degradation pathways form three major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among thermophilic bacteria.
Collapse
|
7
|
Jia H, Cao S, Wu Y, Zhu W, Luo J, Shen Y, Wang M. Genomewide Transcriptome Responses of Arthrobacter simplex to Cortisone Acetate and its Mutants with Enhanced Δ 1-Dehydrogenation Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12773-12784. [PMID: 34694802 DOI: 10.1021/acs.jafc.1c04934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its superior Δ1-dehydrogenation ability, Arthrobacter simplex has been widely used for the biotransformation of cortisone acetate (CA) into prednisone acetate (PA) in the steroid industry. However, its molecular fundamentals are still unclear. Herein, the genome organization, gene regulation, and previously unreported genes involved in Δ1-dehydrogenation are revealed through genome and transcriptome analysis. A comparative study of transcriptomes of an industrial strain induced by CA or at different biotransformation periods was performed. By overexpression, the roles of six genes in CA conversion were confirmed, among which sufC and hsaA behaved better by reinforcing catalytic enzyme activity and substrate transmembrane transport. Additionally, GroEL endowed cells with the strongest stress tolerance by alleviating oxidative damage and enhancing energy levels. Finally, an optimal strain was created by coexpressing three genes, achieving 46.8 and 70.6% increase in PA amount and productivity compared to the initial values, respectively. Our study expanded the understanding of the Δ1-dehydrogenation mechanism and offered an effective approach for excellent steroid-transforming strains.
Collapse
Affiliation(s)
- Hongchen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shuting Cao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yan Wu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wencheng Zhu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
8
|
Harthern-Flint SL, Dolfing J, Mrozik W, Meynet P, Eland LE, Sim M, Davenport RJ. Experimental and Genomic Evaluation of the Oestrogen Degrading Bacterium Rhodococcus equi ATCC13557. Front Microbiol 2021; 12:670928. [PMID: 34276604 PMCID: PMC8281962 DOI: 10.3389/fmicb.2021.670928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Rhodococcus equi ATCC13557 was selected as a model organism to study oestrogen degradation based on its previous ability to degrade 17α-ethinylestradiol (EE2). Biodegradation experiments revealed that R. equi ATCC13557 was unable to metabolise EE2. However, it was able to metabolise E2 with the major metabolite being E1 with no further degradation of E1. However, the conversion of E2 into E1 was incomplete, with 11.2 and 50.6% of E2 degraded in mixed (E1-E2-EE2) and E2-only conditions, respectively. Therefore, the metabolic pathway of E2 degradation by R. equi ATCC13557 may have two possible pathways. The genome of R. equi ATCC13557 was sequenced, assembled, and mapped for the first time. The genome analysis allowed the identification of genes possibly responsible for the observed biodegradation characteristics of R. equi ATCC13557. Several genes within R. equi ATCC13557 are similar, but not identical in sequence, to those identified within the genomes of other oestrogen degrading bacteria, including Pseudomonas putida strain SJTE-1 and Sphingomonas strain KC8. Homologous gene sequences coding for enzymes potentially involved in oestrogen degradation, most commonly a cytochrome P450 monooxygenase (oecB), extradiol dioxygenase (oecC), and 17β-hydroxysteroid dehydrogenase (oecA), were identified within the genome of R. equi ATCC13557. These searches also revealed a gene cluster potentially coding for enzymes involved in steroid/oestrogen degradation; 3-carboxyethylcatechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde hydrolase, 3-alpha-(or 20-beta)-hydroxysteroid dehydrogenase, 3-(3-hydroxy-phenyl)propionate hydroxylase, cytochrome P450 monooxygenase, and 3-oxosteroid 1-dehydrogenase. Further, the searches revealed steroid hormone metabolism gene clusters from the 9, 10-seco pathway, therefore R. equi ATCC13557 also has the potential to metabolise other steroid hormones such as cholesterol.
Collapse
Affiliation(s)
| | - Jan Dolfing
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.,Faculty Engineering and Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Paola Meynet
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy E Eland
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Sim
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Further Studies on the 3-Ketosteroid 9α-Hydroxylase of Rhodococcus ruber Chol-4, a Rieske Oxygenase of the Steroid Degradation Pathway. Microorganisms 2021; 9:microorganisms9061171. [PMID: 34072338 PMCID: PMC8228715 DOI: 10.3390/microorganisms9061171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
The biochemistry and genetics of the bacterial steroid catabolism have been extensively studied during the last years and their findings have been essential to the development of biotechnological applications. For instance, metabolic engineering of the steroid-eater strains has allowed to obtain intermediaries of industrial value. However, there are still some drawbacks that must be overcome, such as the redundancy of the steroid catabolism genes in the genome and a better knowledge of its genetic regulation. KshABs and KstDs are key enzymes involved in the aerobic breakage of the steroid nucleus. Rhodococcus ruber Chol-4 contains three kshAs genes, a single kshB gene and three kstDs genes within its genome. In the present work, the growth of R. ruber ΔkshA strains was evaluated on different steroids substrates; the promoter regions of these genes were analyzed; and their expression was followed by qRT-PCR in both wild type and ksh mutants. Additionally, the transcription level of the kstDs genes was studied in the ksh mutants. The results show that KshA2B and KshA1B are involved in AD metabolism, while KshA3B and KshA1B contribute to the cholesterol metabolism in R. ruber. In the kshA single mutants, expression of the remaining kshA and kstD genes is re-organized to survive on the steroid substrate. These data give insight into the fine regulation of steroid genes when several isoforms are present.
Collapse
|
10
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
11
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
12
|
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 2021; 49:107748. [PMID: 33823269 DOI: 10.1016/j.biotechadv.2021.107748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023]
Abstract
Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Shtratnikova VY, Sсhelkunov MI, Fokina VV, Bragin EY, Shutov AA, Donova MV. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol 2021; 21:7. [PMID: 33441120 PMCID: PMC7807495 DOI: 10.1186/s12896-021-00668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial degradation/transformation of steroids is widely investigated to create biotechnologically relevant strains for industrial application. The strain of Nocardioides simplex VKM Ac-2033D is well known mainly for its superior 3-ketosteroid Δ1-dehydrogenase activity towards various 3-oxosteroids and other important reactions of sterol degradation. However, its biocatalytic capacities and the molecular fundamentals of its activity towards natural sterols and synthetic steroids were not fully understood. In this study, a comparative investigation of the genome-wide transcriptome profiling of the N. simplex VKM Ac-2033D grown on phytosterol, or in the presence of cortisone 21-acetate was performed with RNA-seq. RESULTS Although the gene patterns induced by phytosterol generally resemble the gene sets involved in phytosterol degradation pathways in mycolic acid rich actinobacteria such as Mycolicibacterium, Mycobacterium and Rhodococcus species, the differences in gene organization and previously unreported genes with high expression level were revealed. Transcription of the genes related to KstR- and KstR2-regulons was mainly enhanced in response to phytosterol, and the role in steroid catabolism is predicted for some dozens of the genes in N. simplex. New transcription factors binding motifs and new candidate transcription regulators of steroid catabolism were predicted in N. simplex. Unlike phytosterol, cortisone 21-acetate does not provide induction of the genes with predicted KstR and KstR2 sites. Superior 3-ketosteroid-Δ1-dehydrogenase activity of N. simplex VKM Ac-2033D is due to the kstDs redundancy in the genome, with the highest expression level of the gene KR76_27125 orthologous to kstD2, in response to cortisone 21-acetate. The substrate spectrum of N. simplex 3-ketosteroid-Δ1-dehydrogenase was expanded in this study with progesterone and its 17α-hydroxylated and 11α,17α-dihydroxylated derivatives, that effectively were 1(2)-dehydrogenated in vivo by the whole cells of the N. simplex VKM Ac-2033D. CONCLUSION The results contribute to the knowledge of biocatalytic features and diversity of steroid modification capabilities of actinobacteria, defining targets for further bioengineering manipulations with the purpose of expansion of their biotechnological applications.
Collapse
Affiliation(s)
- Victoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, h. 1, b. 40, Moscow, Russian Federation 119991
| | - Mikhail I. Sсhelkunov
- Skolkovo Institute of Science and Technology, Nobelya str., 3, Moscow, Russian Federation 121205
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per., h. 19, b. 1, Moscow, Russian Federation 127994
| | - Victoria V. Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Eugeny Y. Bragin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
| | - Andrey A. Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Marina V. Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| |
Collapse
|
14
|
Genome-Wide Transcriptome Profiling Provides Insight on Cholesterol and Lithocholate Degradation Mechanisms in Nocardioides simplex VKM Ac-2033D. Genes (Basel) 2020; 11:genes11101229. [PMID: 33092158 PMCID: PMC7593942 DOI: 10.3390/genes11101229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Steroid microbial degradation plays a significant ecological role for biomass decomposition and removal/detoxification of steroid pollutants. In this study, the initial steps of cholesterol degradation and lithocholate bioconversion by a strain with enhanced 3-ketosteroid dehydrogenase (3-KSD) activity, Nocardioides simplex VKM Ac-2033D, were studied. Biochemical, transcriptomic, and bioinformatic approaches were used. Among the intermediates of sterol sidechain oxidation cholest-5-en-26-oic acid and 3-oxo-cholesta-1,4-dien-26-oic acid were identified as those that have not been earlier reported for N. simplex and related species. The transcriptomic approach revealed candidate genes of cholesterol and lithocholic acid (LCA) catabolism by the strain. A separate set of genes combined in cluster and additional 3-ketosteroid Δ1-dehydrogenase and 3-ketosteroid 9α-hydroxylases that might be involved in LCA catabolism were predicted. Bioinformatic calculations based on transcriptomic data showed the existence of a previously unknown transcription factor, which regulates cholate catabolism gene orthologs. The results contribute to the knowledge on diversity of steroid catabolism regulation in actinobacteria and might be used at the engineering of microbial catalysts for ecological and industrial biotechnology.
Collapse
|
15
|
Luo JM, Cui HL, Jia HC, Li F, Cheng HJ, Shen YB, Wang M. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ 1-Dehydrogenase Homologues from Arthrobacter simplex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9496-9512. [PMID: 32786835 DOI: 10.1021/acs.jafc.0c03360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Lin Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Chen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Fang Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| |
Collapse
|
16
|
Wojtkiewicz AM, Wójcik P, Procner M, Flejszar M, Oszajca M, Hochołowski M, Tataruch M, Mrugała B, Janeczko T, Szaleniec M. The efficient Δ 1-dehydrogenation of a wide spectrum of 3-ketosteroids in a broad pH range by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans. J Steroid Biochem Mol Biol 2020; 202:105731. [PMID: 32777354 DOI: 10.1016/j.jsbmb.2020.105731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans, a key enzyme of the central degradation pathway of cholesterol, is a protein catalyzing Δ1-dehydrogenation of a wide range of 3-ketosteroids. In this study, we demonstrate the application of AcmB in the synthesis of 1-dehydro-3-ketosteroids and investigate the influence of reaction conditions on the catalytic performance of the enzyme. The recombinant AcmB expressed in E. coli BL21(DE3)Magic exhibits a broad pH optimum and pH stability in the range of 6.5 to 9.0. The activity-based pH optimum of AcmB reaction depends on the type of electron acceptor (2,6-dichloroindophenol - DCPIP, phenazine methosulfate - PMS or potassium hexacyanoferrate - K3[Fe(CN)6]) used in the biocatalytic process yielding the best kinetic properties for the reaction with a DCPIP/PMS mixture (kcat/Km = 1.4·105 s-1·M-1 at pH 9.0) followed by DCPIP (kcat/Km = 1.0·105 s-1·M-1 at pH = 6.5) and K3[Fe(CN)6] (kcat/Km = 0.5·102 s-1·M-1 at pH = 8.0). The unique feature of AcmB is its capability to convert both testosterone derivatives (C20-C22) as well as steroids substituted at C17 (C27-C30) such as cholest-4-en-3-one or (25R)-spirost-4-en-3-one (diosgenone). Apparent steady-state kinetic parameters were determined for both groups of AcmB substrates. In a batch reactor synthesis, the solubility of water-insoluble steroids was facilitated by the addition of a solubilizer, 2-hydroxypropyl-β-cyclodextrin, and organic co-solvent, 2-methoxyethanol. Catalytic properties characterization of AcmB was tested in fed-batch reactor set-ups, using 0.81 μM of isolated enzyme, PMS and aerobic atmosphere resulting in >99% conversion of the C17-C20 3-ketosteroids within 2 h. Finally, the whole cell E. coli system with recombinant enzyme was demonstrated as an efficient biocatalyst in the synthesis of 1-dehydro-3-ketosteroids.
Collapse
Affiliation(s)
- Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland
| | - Monika Flejszar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland; Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, PL35959 Rzeszów, Poland; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL30387 Kraków, Poland
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL30387 Kraków, Poland
| | - Mateusz Hochołowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland
| | - Mateusz Tataruch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, PL50375 Wrocław, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL30239, Krakow, Poland.
| |
Collapse
|
17
|
Kreit J. Aerobic catabolism of sterols by microorganisms: key enzymes that open the 3-ketosteroid nucleus. FEMS Microbiol Lett 2020; 366:5544764. [PMID: 31390014 DOI: 10.1093/femsle/fnz173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 01/15/2023] Open
Abstract
Aerobic degradation of the sterol tetracyclic nucleus by microorganisms comprises the catabolism of A/B-rings, followed by that of C/D-rings. B-ring rupture at the C9,10-position is a key step involving 3-ketosteroid Δ1-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KstH). Their activities lead to the aromatization of C4,5-en-containing A-ring causing the rupture of B-ring. C4,5α-hydrogenated 3-ketosteroid could be produced by the growing microorganism containing a 5α-reductase. In this case, the microorganism synthesizes, in addition to KstD and KstH, a 3-ketosteroid Δ4-(5α)-dehydrogenase (Kst4D) in order to produce the A-ring aromatization, and consequently B-ring rupture. KstD and Kst4D are FAD-dependent oxidoreductases. KstH is composed of a reductase and a monooxygenase. This last component is the catalytic unit; it contains a Rieske-[2Fe-2S] center with a non-haem mononuclear iron in the active site. Published data regarding these enzymes are reviewed.
Collapse
Affiliation(s)
- Joseph Kreit
- Mohammed V University, Laboratory of Biology of Human Pathologies, Department of Biology, Faculty of Sciences, Ibn-Batouta Avenue, P.O. Box 1014, Rabat, Morocco
| |
Collapse
|
18
|
Guevara G, Olortegui Flores Y, Fernández de las Heras L, Perera J, Navarro Llorens JM. Metabolic engineering of Rhodococcus ruber Chol-4: A cell factory for testosterone production. PLoS One 2019; 14:e0220492. [PMID: 31348804 PMCID: PMC6660089 DOI: 10.1371/journal.pone.0220492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
Abstract
Rhodococcus ruber Chol-4 is a potent steroid degrader that has a great potential as a biotechnological tool. As proof of concept, this work presents testosterone production from 4-androstene-3,17-dione by tailoring innate catabolic enzymes of the steroid catabolism inside the strain. A R. ruber quadruple mutant was constructed in order to avoid the breakage of the steroid nucleus. At the same time, an inducible expression vector for this strain was developed. The 17-ketoreductase gene from the fungus Cochliobolus lunatus was cloned and overexpressed in this vector. The engineered strain was able to produce testosterone from 4-androstene-3,17-dione using glucose for cofactor regeneration with a molar conversion of 61%. It is important to note that 91% of the testosterone was secreted outside the cell after 3 days of cell biotransformation. The results support the idea that Rhodococcus ruber Chol-4 can be metabolically engineered and can be used for the production of steroid intermediates.
Collapse
Affiliation(s)
- Govinda Guevara
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Yamileth Olortegui Flores
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Fernández de las Heras
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Julián Perera
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Zhang R, Xu X, Cao H, Yuan C, Yuminaga Y, Zhao S, Shi J, Zhang B. Purification, characterization, and application of a high activity 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum DSM 1381. Appl Microbiol Biotechnol 2019; 103:6605-6616. [DOI: 10.1007/s00253-019-09988-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023]
|
20
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
21
|
Guevara G, Castillo Lopez M, Alonso S, Perera J, Navarro-Llorens JM. New insights into the genome of Rhodococcus ruber strain Chol-4. BMC Genomics 2019; 20:332. [PMID: 31046661 PMCID: PMC6498646 DOI: 10.1186/s12864-019-5677-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
Background Rhodococcus ruber strain Chol-4, a strain isolated from a sewage sludge sample, is able to grow in minimal medium supplemented with several compounds, showing a broad catabolic capacity. We have previously determined its genome sequence but a more comprehensive study of their metabolic capacities was necessary to fully unravel its potential for biotechnological applications. Results In this work, the genome of R. ruber strain Chol-4 has been re-sequenced, revised, annotated and compared to other bacterial genomes in order to investigate the metabolic capabilities of this microorganism. The analysis of the data suggests that R. ruber Chol-4 contains several putative metabolic clusters of biotechnological interest, particularly those involved on steroid and aromatic compounds catabolism. To demonstrate some of its putative metabolic abilities, R. ruber has been cultured in minimal media containing compounds belonging to several of the predicted metabolic pathways. Moreover, mutants were built to test the naphtalen and protocatechuate predicted catabolic gene clusters. Conclusions The genomic analysis and experimental data presented in this work confirm the metabolic potential of R. ruber strain Chol-4. This strain is an interesting model bacterium due to its biodegradation capabilities. The results obtained in this work will facilitate the application of this strain as a biotechnological tool. Electronic supplementary material The online version of this article (10.1186/s12864-019-5677-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Govinda Guevara
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| | - Maria Castillo Lopez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Carretera de Can Ruti S/N 08916 Badalona, Barcelona, Spain
| | - Julián Perera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana María Navarro-Llorens
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Yang R, Zhang G, Li S, Moazeni F, Li Y, Wu Y, Zhang W, Chen T, Liu G, Zhang B, Wu X. Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1834-1847. [PMID: 30456621 DOI: 10.1007/s11356-018-3718-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the biodegradation of crude oil by a mixed culture of bacteria isolated from the Qinghai-Tibet plateau using gas chromatography-mass spectrometer (GC-MS) and the gravimetric method. The results showed that a mixed culture has a stronger ability to degrade hydrocarbon than pure cultures. Once both Nocardia soli Y48 and Rhodococcus erythropolis YF28-1 (8) were present in a culture, the culture demonstrated the highest crude oil removal efficiency of almost 100% after 10 days of incubation at 20 °C. Moreover, further analysis of the degradation mechanisms used by the above strains, which revealed utilization of different n-alkane substrates, indicated the diversity of evolution and variations in different strains, as well as the importance of multiple metabolic mechanisms for alkane degradation. Therefore, it is concluded that a mixed culture of Y48 and YF28-1 (8) strains can provide a more effective method for bioremediation of hydrocarbon-contaminated soil in permafrost regions.
Collapse
Affiliation(s)
- Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Shiweng Li
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Faegheh Moazeni
- School of Science Engineering and Technology, Penn State Harrisburg University, Middletown, PA, 17057, USA
| | - Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yongna Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
| | - Binglin Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
23
|
Zhang R, Liu X, Wang Y, Han Y, Sun J, Shi J, Zhang B. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Microb Cell Fact 2018; 17:77. [PMID: 29776364 PMCID: PMC5960168 DOI: 10.1186/s12934-018-0916-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background 3-Ketosteroid-Δ1-dehydrogenase (KstD) is a key enzyme in the metabolic pathway for chemical modifications of steroid hormones. Only a few KstDs have thus far been characterized biochemically and applied for the production of steroidal pharmaceutical intermediates. Three KstDs, KstD1, KstD2, and KstD3, were identified in Mycobacterium neoaurum DSM 1381, and they shared up to 99, 85 and 97% amino acid identity with previously reported KstDs, respectively. In this paper, KstDs from M. neoaurum DSM 1381 were investigated and exemplified their potential application for industrial steroid transformation. Results The recombinant KstD2 from Bacillus subtilis exhibited higher enzymatic activity when 4-androstene-3,17-dione (AD) and 22-hydroxy-23, 24-bisnorchol-4-ene-3-one (4HP) were used as the substrates, and resulted in specific activities of 22.40 and 19.19 U mg−1, respectively. However, the specific activities of recombinant KstD2 from Escherichia coli, recombinant KstD1 from B. subtilis and E. coli, and recombinant KstD3, also fed with AD and 4HP, had significantly lower specific activities. We achieved up to 99% bioconversion rate of 1,4-androstadiene-3,17-dione (ADD) from 8 g L−1 AD after 15 h of fermentation using E. coli transformant BL21-kstD2. And in vivo transcriptional analysis revealed that the expression of kstD1 in M. neoaurum DSM 1381 increased by 60.5-fold with phytosterols as the substrate, while the mRNA levels of kstD2 and kstD3 were bearly affected by the phytosterols. Therefore, we attempted to create a 4HP producing strain without kstD1, which could covert 20 g L−1 phytosterols to 14.18 g L−1 4HP. Conclusions In vitro assay employing the recombinant enzymes revealed that KstD2 was the most promising candidate for biocatalysis in biotransformation of AD. However, in vivo analysis showed that the cellular regulation of kstD1 was much more active than those of the other kstDs in response to the presence of phytosterols. Based on the findings above, we successfully constructed E. coli transformant BL21-kstD2 for ADD production from AD and M. neoaurum DSM 1381 ΔkstD1 strain for 4HP production using phytosterols as the substrate. Electronic supplementary material The online version of this article (10.1186/s12934-018-0916-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruijie Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Yushi Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Yuchang Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.
| |
Collapse
|
24
|
Fernández-Cabezón L, Galán B, García JL. New Insights on Steroid Biotechnology. Front Microbiol 2018; 9:958. [PMID: 29867863 PMCID: PMC5962712 DOI: 10.3389/fmicb.2018.00958] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currently performed by a combination of microbiological and chemical processes. Several mycobacterial strains capable of naturally metabolizing sterols (e.g., cholesterol, phytosterols) are used as biocatalysts to transform phytosterols into steroidal intermediates (synthons), which are subsequently used as key precursors to produce steroidal APIs in chemical processes. These synthons can also be modified by other microbial strains capable of introducing regio- and/or stereospecific modifications (functionalization) into steroidal molecules. Most of the industrial microbial strains currently available have been improved through traditional technologies based on physicochemical mutagenesis and selection processes. Surprisingly, Synthetic Biology and Systems Biology approaches have hardly been applied for this purpose. This review attempts to highlight the most relevant research on Steroid Biotechnology carried out in last decades, focusing specially on those works based on recombinant DNA technologies, as well as outlining trends and future perspectives. In addition, the need to construct new microbial cell factories (MCF) to design more robust and bio-sustainable bioprocesses with the ultimate aim of producing steroids à la carte is discussed.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
25
|
Olivera ER, Torre MDL, Barrientos Á, Luengo JM. Steroid catabolism in bacteria: Genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21. CANADIAN JOURNAL OF BIOTECHNOLOGY 2018. [DOI: 10.24870/cjb.2018-000119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|