1
|
Nakazawa K, Mineo D, Harayama T, Yoshizawa S, Takaichi S, Sugiyama K. Product Speculation from Carotenogenic Gene Cluster of Nonlabens spongiae Genome, and Identification of Myxol and Functional Analysis of Each Gene. Genes (Basel) 2025; 16:202. [PMID: 40004531 PMCID: PMC11855829 DOI: 10.3390/genes16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Myxol, a monocyclic carotenoid with β- and ψ-end groups, has been identified in only a limited number of bacteria, such as flavobacteria and cyanobacteria. Despite its biological significance, the biosynthetic pathway of myxol is not well understood, and studies on its physiological functions and biological activities are limited because of its rarity. Methods: BLAST homology searches for carotenoid biosynthesis genes in the genome of Nonlabens were performed. The carotenogenesis-related genes in the genome of the marine flavobacteria Nonlabens spongiae were individually cloned and functionally characterized using a heterologous Escherichia coli expression system. Carotenoids from N. spongiae were identified using an LC-MS analysis. Results: We identified a gene cluster involved in carotenoid biosynthesis in the genome of N. spongiae. This cluster includes genes encoding phytoene synthase (CrtB), phytoene desaturase (CrtI), lycopene cyclase (CrtY), carotenoid 1,2-hydratase (CruF), carotenoid 3,4-desaturase (ψ-end group) (CrtD), carotenoid 2-hydroxylase (ψ-end group) (CrtA-OH), and carotene hydro-xylase (CrtZ). Based on the characteristics of these enzymes, the primary products were predicted to be myxol and/or zeaxanthin. A spectroscopic analysis confirmed that myxol was the primary carotenoid. Furthermore, a plasmid containing a reconstructed gene cluster and geranylgeranyl pyrophosphate synthase (CrtE) located outside the cluster was introduced into E. coli. This system predominantly accumulated myxol, indicating that the reconstructed gene cluster enabled efficient myxol production in E. coli. Conclusions: This study highlighted the potential biotechnological applications of the carotenoid biosynthesis gene clusters for myxol production.
Collapse
Affiliation(s)
- Keisuke Nakazawa
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| | - Daiki Mineo
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| | - Takuya Harayama
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| | - Susumu Yoshizawa
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan;
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya 156-8502, Tokyo, Japan;
| | - Kenjiro Sugiyama
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| |
Collapse
|
2
|
Mo XH, Sun YM, Bi YX, Zhao Y, Yu GH, Tan LL, Yang S. Characterization of C 30 carotenoid and identification of its biosynthetic gene cluster in Methylobacterium extorquens AM1. Synth Syst Biotechnol 2023; 8:527-535. [PMID: 37637201 PMCID: PMC10448405 DOI: 10.1016/j.synbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4'-diapolycopene-4,4'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Man Sun
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Xing Bi
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yan Zhao
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gui-Hong Yu
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ling-ling Tan
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
4
|
Filluelo O, Ferrando J, Picart P. Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C 30-carotenoids. AMB Express 2023; 13:38. [PMID: 37119332 PMCID: PMC10148934 DOI: 10.1186/s13568-023-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023] Open
Abstract
Commercial carotenoid production is dominated by chemical synthesis and plant extraction, both of which are unsustainable and can be detrimental to the environment. A promising alternative for the mass production of carotenoids from both an ecological and commercial perspective is microbial synthesis. To date, C30 carotenoid production in Bacillus subtilis has been achieved using plasmid systems for the overexpression of biosynthetic enzymes. In the present study, we employed a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system to develop an efficient, safe, and stable C30 carotenoid-producing B. subtilis strain, devoid of plasmids and antibiotic selection markers. To this end, the expression levels of crtM (dehydrosqualene synthase) and crtN (dehydrosqualene desaturase) genes from Staphylococcus aureus were upregulated by the insertion of three gene copies into the chromosome of B. subtilis. Subsequently, the supply of the C30 carotenoid precursor farnesyl diphosphate (FPP), which is the substrate for CrtMN enzymes, was enhanced by expressing chromosomally integrated Bacillus megaterium-derived farnesyl diphosphate synthase (FPPS), a key enzyme in the FPP pathway, and abolishing the expression of farnesyl diphosphate phosphatase (YisP), an enzyme responsible for the undesired conversion of FPP to farnesol. The consecutive combination of these features resulted in a stepwise increased production of C30 carotenoids. For the first time, a B. subtilis strain that can endogenously produce C30 carotenoids has been constructed, which we anticipate will serve as a chassis for further metabolic engineering and fermentation optimization aimed at developing a commercial scale bioproduction process.
Collapse
Affiliation(s)
- Oriana Filluelo
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jordi Ferrando
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Pere Picart
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain.
| |
Collapse
|
5
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
6
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
7
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
8
|
Computational Insight into Intraspecies Distinctions in Pseudoalteromonas distincta: Carotenoid-like Synthesis Traits and Genomic Heterogeneity. Int J Mol Sci 2023; 24:ijms24044158. [PMID: 36835570 PMCID: PMC9966250 DOI: 10.3390/ijms24044158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.
Collapse
|
9
|
Gou Z, Song X, Wang G, Xia Y, Ai L, Xiong Z. Heterologous expression of C 30 carotenoid biosynthetic gene crtNM from Lactiplantibacillus plantarum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:506-513. [PMID: 36468615 DOI: 10.1002/jsfa.12160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Probiotic lactic acid bacterium Lactiplantibacillus plantarum is widely used in the dairy and other fermented food industries. L. plantarum AR113 harbors a C30 carotenoid operon crtNM based on genomic analysis, but the yield of C30 carotenoid is only 8.1 μg g-1 DCW. RESULTS To improve the productivity of C30 carotenoid, crtNM from L. plantarum AR113 was cloned and reconstructed in Escherichia coli BL21(DE3). The proteins crtN and crtM were successfully expressed based on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the carotenoid was detected using high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In comparison with the constitutive promoter P44 , the use of the inducible T7 promoter significantly increased the carotenoid content in E. coli. The fermentation conditions were also optimized with induction by 0.5 mmol/L IPTG at 20 °C for 7 h. The yield of C30 carotenoid reached 154.5 μg g-1 DCW, which was 18-fold higher than that of L. plantarum AR113. The 2,2-diphenyl-1-picryl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6sulfonic acid (ABTS) radical scavenging capacity of C30 carotenoids synthesized by heterologous expression in E. coli was also higher than that of the antioxidant food additive butylated hydroxytoluene. CONCLUSIONS Our findings suggest that E. coli has strong potential as a basic chassis for the production of C30 carotenoids from Lactiplantibacillus with high antioxidant activity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongqin Gou
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Duan X, Xie C, Hill DRA, Barrow CJ, Dunshea FR, Martin GJO, Suleria HA. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyu Duan
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - David R. A. Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
11
|
Sayed A, Elbalasy I, Mohamed MS. Novel β-Carotene and Astaxanthin-Producing Marine Planococcus sp.: Insights into Carotenogenesis Regulation and Genetic Aspects. Appl Biochem Biotechnol 2023; 195:217-235. [PMID: 36070166 DOI: 10.1007/s12010-022-04148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Astaxanthin and β-carotene are the most prominent carotenoids extensively used in pharmaceutics. Here, we present a halotolerant bacterium from Lake Wadi El-Natrun capable of producing astaxanthin and β-carotene analyzed by HPLC, ESI-MS, and infrared spectroscopy. The phenotypic and phylogenetic analyses classified the isolate as a novel strain of the genus Planococcus, for which the name Planococcus sp. Eg-Natrun is proposed. Carotenoid biosynthesis can exceptionally occur in a light-inducible or constitutive manner. The maximum carotenoid yields were 610 ± 13 µg/g (~ 38% β-carotene and ~ 21% astaxanthin) in a minimal medium with acetate and 1024 ± 53 µg/g dry cells in a rich marine medium. The carotenogenesis incentives (e.g., acetate) and disincentives (e.g., methomyl) were discussed. Moreover, we successfully isolated the CrtE gene, one of the astaxanthin biosynthesis genes, from the unknown genome using a consensus-based degenerate PCR approach. To our knowledge, this is the first report elucidating astaxanthin and β-carotene in the genus Planococcus.
Collapse
Affiliation(s)
- Ahmed Sayed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Iman Elbalasy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Mervat S Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
12
|
Kim M, Jung DH, Hwang CY, Siziya IN, Park YS, Seo MJ. 4,4'-Diaponeurosporene Production as C 30 Carotenoid with Antioxidant Activity in Recombinant Escherichia coli. Appl Biochem Biotechnol 2023; 195:135-151. [PMID: 36066805 DOI: 10.1007/s12010-022-04147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Carotenoids, a group of isoprenoid pigments, are naturally synthesized by various microorganisms and plants, and are industrially used as ingredients in food, cosmetic, and pharmaceutical product formulations. Although several types of carotenoids and diverse microbial carotenoid producers have been reported, studies on lactic acid bacteria (LAB)-derived carotenoids are relatively insufficient. There is a notable lack of research focusing on C30 carotenoids, the functional characterizations of their biosynthetic genes and their mass production by genetically engineered microorganisms. In this study, the biosynthesis of 4,4'-diaponeurosporene in Escherichia coli harboring the core biosynthetic genes, dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN), from Lactiplantibacillus plantarum subsp. plantarum KCCP11226 was constructed to evaluate and enhance 4,4'-diaponeurosporene production and antioxidant activity. The production of 4,4'-diapophytoene, a substrate of 4,4'-diaponeurosporene, was confirmed in E. coli expressing only the crtM gene. In addition, recombinant E. coli carrying both C30 carotenoid biosynthesis genes (crtM and crtN) was confirmed to biosynthesize 4,4'-diaponeurosporene and exhibited a 6.1-fold increase in carotenoid production compared to the wild type and had a significantly higher antioxidant activity compared to synthetic antioxidant, butylated hydroxytoluene. This study presents the discovery of an important novel E. coli platform in consideration of the industrial applicability of carotenoids.
Collapse
Affiliation(s)
- Mibang Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, Korea.,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
13
|
Siziya IN, Hwang CY, Seo MJ. Antioxidant Potential and Capacity of Microorganism-Sourced C 30 Carotenoids-A Review. Antioxidants (Basel) 2022; 11:antiox11101963. [PMID: 36290686 PMCID: PMC9598406 DOI: 10.3390/antiox11101963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids are lipophilic tetraterpenoid pigments produced by plants, algae, arthropods, and certain bacteria and fungi. These biologically active compounds are used in the food, feed, and nutraceutical industries for their coloring and the physiological benefits imparted by their antioxidant properties. The current global carotenoid market is dominated by synthetic carotenoids; however, the rising consumer demand for natural products has led to increasing research and development in the mass production of carotenoids from alternative natural sources, including microbial synthesis and plant extraction, which holds a significant market share. To date, microbial research has focused on C40 carotenoids, but studies have shown that C30 carotenoids contain similar—and in some microbial strains, greater—antioxidant activity in both the physical and chemical quenching of reactive oxygen species. The discovery of carotenoid biosynthetic pathways in different microorganisms and advances in metabolic engineering are driving the discovery of novel C30 carotenoid compounds. This review highlights the C30 carotenoids from microbial sources, showcasing their antioxidant properties and the technologies emerging for their enhanced production. Industrial applications and tactics, as well as biotechnological strategies for their optimized synthesis, are also discussed.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8267
| |
Collapse
|
14
|
Siziya IN, Yoon DJ, Kim M, Seo MJ. Enhanced Production of C 30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226 T. J Microbiol Biotechnol 2022; 32:892-901. [PMID: 35637169 PMCID: PMC9628921 DOI: 10.4014/jmb.2204.04035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25°C incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Mibang Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Corresponding author Phone: +82-32-835-8267 Fax: +82-32-835-0804 E-mail:
| |
Collapse
|
15
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
16
|
Moyo AC, Dufossé L, Giuffrida D, van Zyl LJ, Trindade M. Structure and biosynthesis of carotenoids produced by a novel Planococcus sp. isolated from South Africa. Microb Cell Fact 2022; 21:43. [PMID: 35305628 PMCID: PMC8933910 DOI: 10.1186/s12934-022-01752-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The genus Planococcus is comprised of halophilic bacteria generally reported for the production of carotenoid pigments and biosurfactants. In previous work, we showed that the culturing of the orange-pigmented Planococcus sp. CP5-4 isolate increased the evaporation rate of industrial wastewater brine effluent, which we attributed to the orange pigment. This demonstrated the potential application of this bacterium for industrial brine effluent management in evaporation ponds for inland desalination plants. Here we identified a C30-carotenoid biosynthetic gene cluster responsible for pigment biosynthesis in Planococcus sp. CP5-4 through isolation of mutants and genome sequencing. We further compare the core genes of the carotenoid biosynthetic gene clusters identified from different Planococcus species' genomes which grouped into gene cluster families containing BGCs linked to different carotenoid product chemotypes. Lastly, LC-MS analysis of saponified and unsaponified pigment extracts obtained from cultures of Planococcus sp. CP5-4, revealed the structure of the main (predominant) glucosylated C30-carotenoid fatty acid ester produced by Planococcus sp. CP5-4. RESULTS Genome sequence comparisons of isolated mutant strains of Planococcus sp. CP5-4 showed deletions of 146 Kb and 3 Kb for the non-pigmented and "yellow" mutants respectively. Eight candidate genes, likely responsible for C30-carotenoid biosynthesis, were identified on the wild-type genome region corresponding to the deleted segment in the non-pigmented mutant. Six of the eight candidate genes formed a biosynthetic gene cluster. A truncation of crtP was responsible for the "yellow" mutant phenotype. Genome annotation revealed that the genes encoded 4,4'-diapolycopene oxygenase (CrtNb), 4,4'- diapolycopen-4-al dehydrogenase (CrtNc), 4,4'-diapophytoene desaturase (CrtN), 4,4'- diaponeurosporene oxygenase (CrtP), glycerol acyltransferase (Agpat), family 2 glucosyl transferase 2 (Gtf2), phytoene/squalene synthase (CrtM), and cytochrome P450 hydroxylase enzymes. Carotenoid analysis showed that a glucosylated C30-carotenoid fatty acid ester, methyl 5-(6-C17:3)-glucosyl-5, 6'-dihydro-apo-4, 4'-lycopenoate was the main carotenoid compound produced by Planococcus sp. CP5-4. CONCLUSION We identified and characterized the carotenoid biosynthetic gene cluster and the C30-carotenoid compound produced by Planococcus sp. CP5-4. Mass-spectrometry guided analysis of the saponified and unsaponified pigment extracts showed that methyl 5-glucosyl-5, 6-dihydro-apo-4, 4'-lycopenoate esterified to heptadecatrienoic acid (C17:3). Furthermore, through phylogenetic analysis of the core carotenoid BGCs of Planococcus species we show that various C30-carotenoid product chemotypes, apart from methyl 5-glucosyl-5, 6-dihydro-apo-4, 4'-lycopenoate and 5-glucosyl-4, 4-diaponeurosporen-4'-ol-4-oic acid, may be produced that could offer opportunities for a variety of applications.
Collapse
Affiliation(s)
- Anesu Conrad Moyo
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
- BioCiTi Laboratory, 4th Floor Block B, Bandwidth Barn, Woodstock Exchange Building, 66-68 Albert Road, Woodstock, Cape Town, 7925, South Africa
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744, Saint-Denis, France
| | - Daniele Giuffrida
- Università Degli Studi Di Messina, Dip. B.I.O.M.O.R.F, Polo Annunziata, 98168, Messina, ME, Italy
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
17
|
Otani Y, Maoka T, Kawai-Noma S, Saito K, Umeno D. A novel carotenoid biosynthetic route via oxidosqualene. Biochem Biophys Res Commun 2022; 599:75-80. [PMID: 35176628 DOI: 10.1016/j.bbrc.2022.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
Over 800 known carotenoids are synthesized from phytoene or 4,4'-diapophytoene (dehydrosqualene) characterized by three conjugated double bonds. In this paper, we report that carotenoid desaturase CrtN from Staphylococcus aureus and Methylomonas can accept oxidosqualene, which is the precursor for plant- or animal-type triterpenoids, yielding the yellow carotenoid pigments with 8, 9, or 10 conjugated double bonds. The resulting pathway is the second nonnatural route for carotenoid pigments and the first pathway for carotenoid pigments not biosynthesized via (diapo)phytoene.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Kyoto, Japan
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, Japan
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University, Chiba, Japan; Department of Applied Chemistry, Waseda University, Tokyo, Japan.
| |
Collapse
|
18
|
Misawa N, Maoka T, Takemura M. Carotenoids: Carotenoid and apocarotenoid analysis—Use of E. coli to produce carotenoid standards. Methods Enzymol 2022; 670:87-137. [DOI: 10.1016/bs.mie.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|