1
|
Fambirai T, Chimbari M, Mhindu T. Factors associated with contracting border malaria: A systematic and meta-analysis. PLoS One 2025; 20:e0310063. [PMID: 39752437 PMCID: PMC11698403 DOI: 10.1371/journal.pone.0310063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 01/06/2025] Open
Abstract
Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria. We conducted a systematic and meta-analysis review to characterise and establish pooled effect sizes of the factors associated with the occurrence of border malaria. An exhaustive search was done in EBSCOHost (Medline Full Text), Health Source, Google Scholar, Regional Office for Africa Library, African Index Medicus, and PubMed databases. A total of 847 articles were identified from the search and after screening for quality and eligibility, twelve (12) articles were included in the review. Pooled odds ratios, inverse variance statistic (I2), Luis Furuya-Kanamori (LFK) index, and forest plot were computed. Findings from this study suggest night outdoor activities (POR 2.87 95% CI, 1.17 7,01), engaging in forestry activities (POR 2.76 95% CI, 2.08 3.67), working in mines (POR 197 95% CI, 175 22171), access to poor housing structure (POR 3.42 95% CI, 2.14 5.46), and cross-border movement (POR 50.86 95% CI, 12.88 200.85) none use of insecticide-treated nets (POR 5.09 95% CI, 2.44 10.63) were all significantly associated with contracting malaria within border regions. The use of insecticide-treated nets (ITN) (POR 0.61 95% CI, 0.50 0.76) and indoor residual spraying (IRS) (POR 0.61 95% CI, 0.47 0.79) were protective. Risk factors for border malaria are comparable to non-border malaria. Effective border malaria control requires an integrated and targeted approach that addresses socio-economic, environmental, and behavioural drivers. Established vector control interventions remain protective and should be sustained to mitigate the border malaria burden effectively. Novel strategies should be developed to address the unique challenge of cross-border human population movement underpinned by robust regional, bilateral, and multi-sectoral collaborative initiatives.
Collapse
Affiliation(s)
- Tichaona Fambirai
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Chimbari
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Tafadzwa Mhindu
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Ferriss E, Mharakurwa S, Munyati S, Gwanzura L, Hast MA, Moulton LH, Wesolowski A, Moss WJ. Malaria Transmission at The Zimbabwe-Mozambique Border: An Observational Study of Parasitemia by Travel History and Household Location. Am J Trop Med Hyg 2024; 111:35-42. [PMID: 38772357 PMCID: PMC11229651 DOI: 10.4269/ajtmh.23-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/04/2024] [Indexed: 05/23/2024] Open
Abstract
Cross-border human population movement contributes to malaria transmission in border regions, impeding national elimination. However, its impact in low-to-moderate transmission settings is not well characterized. This community-based study in Mutasa District, Zimbabwe, estimated the association of parasite prevalence with self-reported overnight travel to Mozambique and household distance to the border from 2012-2020. A fully adjusted Poisson regression model with robust variance estimation was fit using active surveillance data. The population attributable fraction of parasite prevalence from overnight travel was also estimated. The relative risk of testing positive for malaria by rapid diagnostic test declined 14% (prevalence ratio [PR] = 0.86, 95% CI = 0.81-0.92) per kilometer from the border up to 12 km away. Travel to Mozambique was associated with a 157% increased risk (PR = 2.57, 95% CI = 1.38-4.78), although only 5.8% of cases were attributable to overnight travel (95% CI = -1.1% to 12.7%), reflecting infrequent overnight trips (1.3% of visits). This study suggests that transmission in eastern Zimbabwe is driven by increasingly conducive social or environmental conditions approaching the border and low levels of importation from overnight travel. Although day trips to Mozambique during peak biting hours were not assessed, the contribution of such trips to ongoing transmission may be significant. Future malaria control efforts should prioritize high coverage of existing interventions and continued support for community health workers and health facilities at the border, which provide free case management.
Collapse
Affiliation(s)
- Ellen Ferriss
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Biomedical Research and Training Institute, Harare, Zimbabwe
- University of Zimbabwe, Harare, Zimbabwe
| | - Marisa A. Hast
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - William J. Moss
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
3
|
Fakih BS, Holzschuh A, Ross A, Stuck L, Abdul R, Al-Mafazy AWH, Irema I, Mbena A, Thawer SG, Shija SJ, Aliy SM, Ali A, Fink G, Yukich J, Hetzel MW. Risk of imported malaria infections in Zanzibar: a cross-sectional study. Infect Dis Poverty 2023; 12:80. [PMID: 37641152 PMCID: PMC10464242 DOI: 10.1186/s40249-023-01129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Zanzibar has made substantial progress in malaria control with vector control, improved diagnosis, and artemisinin-based combination therapy. Parasite prevalence in the population has remained around 1% but imported infections from mainland Tanzania contribute to sustained local transmission. Understanding travel patterns between mainland Tanzania and Zanzibar, and the risk of malaria infection, may help to control malaria importation to Zanzibar. METHODS A rolling cross-sectional survey linked to routine reactive case detection of malaria was carried out in Zanzibar between May 2017 and October 2018. Households of patients diagnosed with malaria at health facilities were surveyed and household members were tested for malaria using rapid diagnostic tests and a sub-sample by quantitative PCR (qPCR). Interviews elicited a detailed travel history of all household members who had travelled within the past two months, including trips within and outside of Zanzibar. We estimated the association of malaria infection with travel destinations in pre-defined malaria endemicity categories, trip duration, and other co-variates using logistic regression. RESULTS Of 17,891 survey participants, 1177 (7%) reported a recent trip, of which 769 (65%) visited mainland Tanzania. Among travellers to mainland Tanzania with travel destination details and a qPCR result available, 241/378 (64%) reported traveling to districts with a 'high' malaria endemicity and for 12% the highest endemicity category was 'moderate'. Travelers to the mainland were more likely to be infected with malaria parasites (29%, 108/378) than those traveling within Zanzibar (8%, 16/206) or to other countries (6%, 2/17). Among travellers to mainland Tanzania, those visiting highly endemic districts had a higher odds of being qPCR-positive than those who travelled only to districts where malaria-endemicity was classified as low or very low (adjusted odd ratio = 7.0, 95% confidence interval: 1.9-25.5). Among travellers to the mainland, 110/378 (29%) never or only sometimes used a mosquito net during their travel. CONCLUSIONS Strategies to reduce malaria importation to Zanzibar may benefit from identifying population groups traveling to highly endemic areas in mainland Tanzania. Targeted interventions to prevent and clear infections in these groups may be more feasible than attempting to screen and treat all travellers upon arrival in Zanzibar.
Collapse
Affiliation(s)
- Bakar S Fakih
- Ifakara Health Institute, Dar es Salaam, Tanzania.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Aurel Holzschuh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Logan Stuck
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Ramadhan Abdul
- Ifakara Health Institute, Dar es Salaam, Tanzania
- Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | | | - Imani Irema
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Shija J Shija
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Safia M Aliy
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Günther Fink
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Aidoo EK, Aboagye FT, Botchway FA, Osei-Adjei G, Appiah M, Duku-Takyi R, Sakyi SA, Amoah L, Badu K, Asmah RH, Lawson BW, Krogfelt KA. Reactive Case Detection Strategy for Malaria Control and Elimination: A 12 Year Systematic Review and Meta-Analysis from 25 Malaria-Endemic Countries. Trop Med Infect Dis 2023; 8:180. [PMID: 36977181 PMCID: PMC10058581 DOI: 10.3390/tropicalmed8030180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Reactive case detection (RACD) is the screening of household members and neighbors of index cases reported in passive surveillance. This strategy seeks asymptomatic infections and provides treatment to break transmission without testing or treating the entire population. This review discusses and highlights RACD as a recommended strategy for the detection and elimination of asymptomatic malaria as it pertains in different countries. Relevant studies published between January 2010 and September 2022 were identified mainly through PubMed and Google Scholar. Search terms included "malaria and reactive case detection", "contact tracing", "focal screening", "case investigation", "focal screen and treat". MedCalc Software was used for data analysis, and the findings from the pooled studies were analyzed using a fixed-effect model. Summary outcomes were then presented using forest plots and tables. Fifty-four (54) studies were systematically reviewed. Of these studies, 7 met the eligibility criteria based on risk of malaria infection in individuals living with an index case < 5 years old, 13 met the eligibility criteria based on risk of malaria infection in an index case household member compared with a neighbor of an index case, and 29 met the eligibility criteria based on risk of malaria infection in individuals living with index cases, and were included in the meta-analysis. Individuals living in index case households with an average risk of 2.576 (2.540-2.612) were more at risk of malaria infection and showed pooled results of high variation heterogeneity chi-square = 235.600, (p < 0.0001) I2 = 98.88 [97.87-99.89]. The pooled results showed that neighbors of index cases were 0.352 [0.301-0.412] times more likely to have a malaria infection relative to index case household members, and this result was statistically significant (p < 0.001). The identification and treatment of infectious reservoirs is critical to successful malaria elimination. Evidence to support the clustering of infections in neighborhoods, which necessitates the inclusion of neighboring households as part of the RACD strategy, was presented in this review.
Collapse
Affiliation(s)
- Ebenezer Krampah Aidoo
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Frank Twum Aboagye
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra AH 38, Ghana;
| | - Felix Abekah Botchway
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - George Osei-Adjei
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Michael Appiah
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Ruth Duku-Takyi
- Department of Medical Laboratory Technology, Accra Technical University, Accra GP 561, Ghana; (F.A.B.); (G.O.-A.); (M.A.); (R.D.-T.)
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, Kwame Nkrumah University of Science & Technology, University Post Office, Kumasi AK 039, Ghana;
| | - Linda Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra LG 581, Ghana;
| | - Kingsley Badu
- Department of Theoretical & Applied Biology, Kwame Nkrumah University of Science & Technology, University Post Office, Kumasi AK 039, Ghana; (K.B.); (B.W.L.)
| | - Richard Harry Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Science, University of Health & Allied Sciences, Ho PMB 31, Ghana;
| | - Bernard Walter Lawson
- Department of Theoretical & Applied Biology, Kwame Nkrumah University of Science & Technology, University Post Office, Kumasi AK 039, Ghana; (K.B.); (B.W.L.)
| | - Karen Angeliki Krogfelt
- Department of Science and Environment, Unit of Molecular and Medical Biology, The PandemiX Center, Roskilde University, 4000 Roskilde, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark
| |
Collapse
|
5
|
Abdalal SA, Yukich J, Andrinoplous K, Harakeh S, Altwaim SA, Gattan H, Carter B, Shammaky M, Niyazi HA, Alruhaili MH, Keating J. An insight to better understanding cross border malaria in Saudi Arabia. Malar J 2023; 22:37. [PMID: 36732819 PMCID: PMC9893606 DOI: 10.1186/s12936-023-04467-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Border malaria is a major obstacle for the malaria elimination in Saudi Arabia. Today, the southern border of Saudi Arabia is a region where malaria cases are resurging, and malaria control is dwindling mainly due to the humanitarian crisis and the conflict in Yemen. This study analyses the current border malaria epidemiology along the southern border of Saudi Arabia from 2015 to 2018. METHODS All reported cases maintained by the malaria elimination centres in Aledabi and Baish, Jazan Province, Saudi Arabia, from 2015 to 2018 were analysed to examine the epidemiological changes over time. Pearson's Chi-Square test of differences was utilized to assess differences between the characteristics of imported and local causes and between border cases. A logistic regression model was used to predict imported status was related to living along side of the border area. RESULTS A total of 3210 malaria cases were reported in Baish and Aledabi malaria centres between 2015 and 2018, of which 170 were classified as local cases and 3040 were classified as imported cases. Reported malaria cases were mainly among males, within the imported cases 61.5% (1868/3039) were residents of the border areas. CONCLUSIONS Given the complexity of cross-border malaria, creating a malaria buffer zone that covers a certain margin from both sides of the border would allow for a joint force, cross-border malaria elimination programme. To initiate a malaria elimination activity and cases reported as belonging to this zone, rather than being pushed from one country to the other, would allow malaria elimination staff to work collaboratively with local borderland residents and other stakeholders to come up with innovative solutions to combat malaria and reach malaria-free borders.
Collapse
Affiliation(s)
- Shaymaa A. Abdalal
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Joshua Yukich
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Katherine Andrinoplous
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Steve Harakeh
- Saudi Arabia Ministry of Health, Jazan, Saudi Arabia
| | - Sarah A. Altwaim
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Hattan Gattan
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Brendan Carter
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | | | - Hatoon A. Niyazi
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Joseph Keating
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| |
Collapse
|
6
|
Baird JK, Warsame M, Recht J. Survey and Analysis of Chemoprophylaxis Policies for Domestic Travel in Malaria-Endemic Countries. Trop Med Infect Dis 2022; 7:121. [PMID: 35878133 PMCID: PMC9325288 DOI: 10.3390/tropicalmed7070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
The prevention of malaria in travelers with the use of antimalarials often occurs in connection with international travel to areas of significant risk of infection. Although these travelers sometimes cause outbreaks in their malaria-free home countries, the cardinal objective of prescribed chemoprophylaxis is to protect the traveler from patent malaria during travel. Here we consider the chemoprophylaxis of domestic travelers from malaria-free but -receptive areas within malaria-endemic countries. The main objective in this setting is the protection of those areas from reintroduced malaria transmission. In order to better understand policy and practices in this regard, we surveyed malaria prevention and treatment guidelines of 36 malaria-endemic countries and 2 that have recently eliminated malaria (Sri Lanka, China) for recommendations regarding malaria chemoprophylaxis for domestic travel. Among them, just 8 provided specific and positive recommendations, 1 recommended without specific guidance, and 4 advised against the practice. Most nations (25/38; 66%) did not mention chemoprophylaxis for domestic travel, though many of those did offer guidance for international travel. The few positive recommendations for domestic travel were dominated by the suppressive prophylaxis options of daily doxycycline or atovaquone-proguanil or weekly mefloquine. The incomplete protection afforded by these strategies, along with impractical dosing in connection with the typically brief domestic travel, may in part explain the broad lack of policies and practices across malaria-endemic nations regarding chemoprophylaxis.
Collapse
Affiliation(s)
- John Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia
- The Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Marian Warsame
- School of Public Health and Social Medicine, Institute of Medicine, Gothenburg University, 41390 Gothenburg, Sweden;
| | - Judith Recht
- Independent Researcher, North Bethesda, MD 20852, USA;
| |
Collapse
|
7
|
A Systematic Review and Meta-Analysis of Malaria Test Positivity Outcomes and Programme Interventions in Low Transmission Settings in Southern Africa, 2000-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116776. [PMID: 35682356 PMCID: PMC9180605 DOI: 10.3390/ijerph19116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023]
Abstract
Malaria is one of the most significant causes of mortality and morbidity globally, especially in sub-Saharan Africa (SSA) countries. It harmfully disturbs the public’s health and the economic growth of many developing countries. Despite the massive effect of malaria transmission, the overall pooled proportion of malaria positivity rate in Southern Africa is still elusive. Therefore, the objective of this systematic review and meta-analysis is to pool estimates of the incidence of the malaria positivity rate, which is the first of its kind in South African countries. A literature search is performed to identify all published articles reporting the incidence of malaria positivity in Southern Africa. Out of the 3359 articles identified, 17 studies meet the inclusion for systematic review and meta-analysis. In addition, because substantial heterogeneity is expected due to the studies being extracted from the universal population, random-effects meta-analyses are carried out to pool the incidence of the malaria positivity rate from diverse diagnostic methods. The result reveals that between-study variability is high (τ2 = 0.003; heterogeneity I2 = 99.91% with heterogeneity chi-square χ2 = 18,143.95, degree of freedom = 16 and a p-value < 0.0001) with the overall random pooled incidence of 10% (95%CI: 8−13%, I2 = 99.91%) in the malaria positivity rate. According to the diagnostic method called pooled incidence estimate, the rapid diagnostic test (RDT) is the leading diagnostic method (17%, 95%CI: 11−24%, I2 = 99.95%), followed by RDT and qPCR and RDT and loop mediated isothermal amplification (LAMP), respectively, found to be (3%, 95%CI: 2−3%, I2 = 0%) and (2%, 95%CI: 1−3%, I2 = 97.94%).Findings of the present study suggest high malaria positive incidence in the region. This implies that malaria control and elimination programmes towards malaria elimination could be negatively impacted and cause delays in actualising malaria elimination set dates. Further studies consisting of larger samples and continuous evaluation of malaria control programmes are recommended.
Collapse
|
8
|
Citron DT, Guerra CA, García GA, Wu SL, Battle KE, Gibson HS, Smith DL. Quantifying malaria acquired during travel and its role in malaria elimination on Bioko Island. Malar J 2021; 20:359. [PMID: 34461902 PMCID: PMC8404405 DOI: 10.1186/s12936-021-03893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination. METHODS Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates. RESULTS The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates. CONCLUSIONS The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.
Collapse
Affiliation(s)
- Daniel T Citron
- Institute for Health Metrics and Evaluation, University of Washington, Population Health Building/Hans Rosling Center, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Carlos A Guerra
- Medical Care Development International, 8401 Colesville Road Suite 425, Silver Spring, MD, 20910, USA
| | - Guillermo A García
- Medical Care Development International, 8401 Colesville Road Suite 425, Silver Spring, MD, 20910, USA
| | - Sean L Wu
- Division of Epidemiology and Biostatistics, University of California, 2121 Berkeley Way, Berkeley, CA, 94720, USA
| | - Katherine E Battle
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, WA, 6009, Nedlands, Australia
- Institute for Disease Modeling, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Harry S Gibson
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, WA, 6009, Nedlands, Australia
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Population Health Building/Hans Rosling Center, 3980 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Clustering of subpatent infections in households with asymptomatic rapid diagnostic test-positive cases in Bioko Island, Equatorial Guinea independent of travel to regions of higher malaria endemicity: a cross-sectional study. Malar J 2021; 20:313. [PMID: 34247643 PMCID: PMC8274032 DOI: 10.1186/s12936-021-03844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022] Open
Abstract
Background Prevalence of falciparum malaria on Bioko Island remains high despite sustained, intensive control. Progress may be hindered by high proportions of subpatent infections that are not detected by rapid diagnostic tests (RDT) but contribute to onward transmission, and by imported infections. Better understanding of the relationship between subpatent infections and RDT-detected infections, and whether this relationship is different from imported versus locally acquired infections, is imperative to better understand the sources of infection and mechanisms of transmission to tailor more effective interventions. Methods Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed on a sub-set of samples from the 2015 Malaria Indicator Survey to identify subpatent infections. Households with RDT(+) individuals were matched 1:4 with households with no RDT(+) individuals. The association between living in a household with an RDT(+) individual and having a subpatent infection was evaluated using multivariate hierarchical logistic regression models with inverse probability weights for selection. To evaluate possible modification of the association by potential importation of the RDT(+) case, the analysis was repeated among strata of matched sets based on the reported eight-week travel history of the RDT(+) individual(s). Results There were 142 subpatent infections detected in 1,400 individuals (10.0%). The prevalence of subpatent infections was higher in households with versus without an RDT(+) individual (15.0 vs 9.1%). The adjusted prevalence odds of subpatent infection were 2.59-fold greater (95% CI: 1.31, 5.09) for those in a household with an RDT(+) individual compared to individuals in a household without RDT(+) individuals. When stratifying by travel history of the RDT(+) individual, the association between subpatent infections and RDT(+) infections was stronger in the strata in which the RDT(+) individual(s) had not recently travelled (adjusted prevalence odds ratio (aPOR) 2.95; 95% CI:1.17, 7.41), and attenuated in the strata in which recent travel was reported (aPOR 1.76; 95% CI: 0.54, 5.67). Conclusions There is clustering of subpatent infections around RDT(+) individual(s) when both imported and local infection are suspected. Future control strategies that aim to treat whole households in which an RDT(+) individual is found may target a substantial portion of infections that would otherwise not be detected. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03844-6.
Collapse
|
10
|
Smith JL, Mumbengegwi D, Haindongo E, Cueto C, Roberts KW, Gosling R, Uusiku P, Kleinschmidt I, Bennett A, Sturrock HJ. Malaria risk factors in northern Namibia: The importance of occupation, age and mobility in characterizing high-risk populations. PLoS One 2021; 16:e0252690. [PMID: 34170917 PMCID: PMC8232432 DOI: 10.1371/journal.pone.0252690] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
In areas of low and unstable transmission, malaria cases occur in populations with lower access to malaria services and interventions, and in groups with specific malaria risk exposures often away from the household. In support of the Namibian National Vector Borne Disease Program's drive to better target interventions based upon risk, we implemented a health facility-based case control study aimed to identify risk factors for symptomatic malaria in Zambezi Region, northern Namibia. A total of 770 febrile individuals reporting to 6 health facilities and testing positive by rapid diagnostic test (RDT) between February 2015 and April 2016 were recruited as cases; 641 febrile individuals testing negative by RDT at the same health facilities through June 2016 were recruited as controls. Data on socio-demographics, housing construction, overnight travel, use of malaria prevention and outdoor behaviors at night were collected through interview and recorded on a tablet-based questionnaire. Remotely-sensed environmental data were extracted for geo-located village residence locations. Multivariable logistic regression was conducted to identify risk factors and latent class analyses (LCA) used to identify and characterize high-risk subgroups. The majority of participants (87% of cases and 69% of controls) were recruited during the 2016 transmission season, an outbreak year in Southern Africa. After adjustment, cases were more likely to be cattle herders (Adjusted Odds Ratio (aOR): 4.46 95%CI 1.05-18.96), members of the police or other security personnel (aOR: 4.60 95%CI: 1.16-18.16), and pensioners/unemployed persons (aOR: 2.25 95%CI 1.24-4.08), compared to agricultural workers (most common category). Children (aOR 2.28 95%CI 1.13-4.59) and self-identified students were at higher risk of malaria (aOR: 4.32 95%CI 2.31-8.10). Other actionable risk factors for malaria included housing and behavioral characteristics, including traditional home construction and sleeping in an open structure (versus modern structure: aOR: 2.01 95%CI 1.45-2.79 and aOR: 4.76 95%CI: 2.14-10.57); cross border travel in the prior 30 days (aOR: 10.55 95%CI 2.94-37.84); and outdoor agricultural work at night (aOR: 2.09 95%CI 1.12-3.87). Malaria preventive activities were all protective and included personal use of an insecticide treated net (ITN) (aOR: 0.61 95%CI 0.42-0.87), adequate household ITN coverage (aOR: 0.63 95%CI 0.42-0.94), and household indoor residual spraying (IRS) in the past year (versus never sprayed: (aOR: 0.63 95%CI 0.44-0.90). A number of environmental factors were associated with increased risk of malaria, including lower temperatures, higher rainfall and increased vegetation for the 30 days prior to diagnosis and residing more than 5 minutes from a health facility. LCA identified six classes of cases, with class membership strongly correlated with occupation, age and select behavioral risk factors. Use of ITNs and IRS coverage was similarly low across classes. For malaria elimination these high-risk groups will need targeted and tailored intervention strategies, for example, by implementing alternative delivery methods of interventions through schools and worksites, as well as the use of specific interventions that address outdoor transmission.
Collapse
Affiliation(s)
- Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Davis Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Erastus Haindongo
- School of Medicine, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Carmen Cueto
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Kathryn W. Roberts
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Petrina Uusiku
- National Ministry of Health and Social Services, Windhoek, Namibia
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Hugh J. Sturrock
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| |
Collapse
|
11
|
Comparing metapopulation dynamics of infectious diseases under different models of human movement. Proc Natl Acad Sci U S A 2021; 118:2007488118. [PMID: 33926962 PMCID: PMC8106338 DOI: 10.1073/pnas.2007488118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newly available datasets present exciting opportunities to investigate how human population movement contributes to the spread of infectious diseases across large geographical distances. It is now possible to construct realistic models of infectious disease dynamics for the purposes of understanding global-scale epidemics. Nevertheless, a remaining unanswered question is how best to leverage the new data to parameterize models of movement, and whether one's choice of movement model impacts modeled disease outcomes. We adapt three well-studied models of infectious disease dynamics, the susceptible-infected-recovered model, the susceptible-infected-susceptible model, and the Ross-Macdonald model, to incorporate either of two candidate movement models. We describe the effect that the choice of movement model has on each disease model's results, finding that in all cases, there are parameter regimes where choosing one movement model instead of another has a profound impact on epidemiological outcomes. We further demonstrate the importance of choosing an appropriate movement model using the applied case of malaria transmission and importation on Bioko Island, Equatorial Guinea, finding that one model produces intelligible predictions of R 0, whereas the other produces nonsensical results.
Collapse
|
12
|
Unwin HJT, Routledge I, Flaxman S, Rizoiu MA, Lai S, Cohen J, Weiss DJ, Mishra S, Bhatt S. Using Hawkes Processes to model imported and local malaria cases in near-elimination settings. PLoS Comput Biol 2021; 17:e1008830. [PMID: 33793564 PMCID: PMC8043404 DOI: 10.1371/journal.pcbi.1008830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/13/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023] Open
Abstract
Developing new methods for modelling infectious diseases outbreaks is important for monitoring transmission and developing policy. In this paper we propose using semi-mechanistic Hawkes Processes for modelling malaria transmission in near-elimination settings. Hawkes Processes are well founded mathematical methods that enable us to combine the benefits of both statistical and mechanistic models to recreate and forecast disease transmission beyond just malaria outbreak scenarios. These methods have been successfully used in numerous applications such as social media and earthquake modelling, but are not yet widespread in epidemiology. By using domain-specific knowledge, we can both recreate transmission curves for malaria in China and Eswatini and disentangle the proportion of cases which are imported from those that are community based.
Collapse
Affiliation(s)
- H. Juliette T. Unwin
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College, London, United Kingdom
| | - Isobel Routledge
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College, London, United Kingdom
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Seth Flaxman
- Department of Mathematics, Imperial College, London, United Kingdom
| | | | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Justin Cohen
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| | - Daniel J. Weiss
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- Curtin University, Bentley, Western Australia, Australia
| | - Swapnil Mishra
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College, London, United Kingdom
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College, London, United Kingdom
| |
Collapse
|
13
|
Chipoya MN, Shimaponda-Mataa NM. Prevalence, characteristics and risk factors of imported and local malaria cases in North-Western Province, Zambia: a cross-sectional study. Malar J 2020; 19:430. [PMID: 33228684 PMCID: PMC7686676 DOI: 10.1186/s12936-020-03504-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Imported malaria is a major challenge for countries that are in malaria elimination stage such as Zambia. Legitimate cross-border activities add to the risk of transmission, necessitating determination of prevalence, characteristics and risk factors of imported and local malaria. METHODS This cross-sectional study was conducted in 103 consented child and adult patients with clinical malaria symptoms, from selected health facilities in north-western Zambia. Patient demographic data and blood samples for malaria microscopy and full blood count were obtained. Chi-square and penalized logistic regression were performed to describe the characteristics and assess the risk factors of imported and local malaria in North-Western Province. RESULTS Overall, malaria prevalence was 78.6% with 93.8% Plasmodium falciparum and 6.2% other species. The local cases were 72 (88.9%) while the imported were 9 (11.1%) out of the 81 positive participants. About 98.6% of the local cases were P. falciparum compared to 55.6% (χ2 = 52.4; p < 0.01) P. falciparum among the imported cases. Among the imported cases, 44% were species other than P. falciparum (χ2 = 48; p < 0.01) while among the local cases only 1.4% were. Gametocytes were present in 44% of the imported malaria cases and only in 2.8% of the local cases (χ2 = 48; p < 0.01). About 48.6% of local participants had severe anaemia compared to 33.3% of participants from the two neighbouring countries who had (χ2 = 4.9; p = 0.03). In the final model, only country of residence related positively to presence of species other than P. falciparum (OR = 39.0, CI [5.9, 445.9]; p < 0.01) and presence of gametocytes (OR = 23.1, CI [4.2, 161.6]; p < 0.01). CONCLUSION Malaria prevalence in North-Western Province is high, with P. falciparum as the predominant species although importation of Plasmodium ovale and Plasmodium malariae is happening as well. Country of residence of patients is a major risk factor for malaria species and gametocyte presence. The need for enhanced malaria control with specific focus on border controls to detect and treat, for specific diagnosis and treatment according to species obtaining, for further research in the role of species and gametocytaemia in imported malaria, cannot be overemphasized.
Collapse
Affiliation(s)
- Maureen N Chipoya
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, Lusaka, Zambia
| | - Nzooma M Shimaponda-Mataa
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, Lusaka, Zambia.
| |
Collapse
|
14
|
Ahmed S, Reithinger R, Kaptoge SK, Ngondi JM. Travel Is a Key Risk Factor for Malaria Transmission in Pre-Elimination Settings in Sub-Saharan Africa: A Review of the Literature and Meta-Analysis. Am J Trop Med Hyg 2020; 103:1380-1387. [PMID: 32815497 PMCID: PMC7543864 DOI: 10.4269/ajtmh.18-0456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
By sustaining transmission or causing malaria outbreaks, imported malaria undermines malaria elimination efforts. Few studies have examined the impact of travel on malaria epidemiology. We conducted a literature review and meta-analysis of studies investigating travel as a risk factor for malaria infection in sub-Saharan Africa using PubMed. We identified 22 studies and calculated a random-effects meta-analysis pooled odds ratio (OR) of 3.77 (95% CI: 2.49–5.70), indicating that travel is a significant risk factor for malaria infection. Odds ratios were particularly high in urban locations when travel was to rural areas, to more endemic/high transmission areas, and in young children. Although there was substantial heterogeneity in the magnitude of association across the studies, the pooled estimate and directional consistency support travel as an important risk factor for malaria infection.
Collapse
Affiliation(s)
- Sundus Ahmed
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | | | - Stephen K Kaptoge
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Massad E, Laporta GZ, Conn JE, Chaves LS, Bergo ES, Figueira EAG, Bezerra Coutinho FA, Lopez LF, Struchiner C, Sallum MAM. The risk of malaria infection for travelers visiting the Brazilian Amazonian region: A mathematical modeling approach. Travel Med Infect Dis 2020; 37:101792. [PMID: 32771653 DOI: 10.1016/j.tmaid.2020.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human mobility between malaria endemic and malaria-free areas can hinder control and elimination efforts in the Amazon basin, maintaining Plasmodium circulation and introduction to new areas. METHODS The analysis begins by estimating the incidence of malaria in areas of interest. Then, the risk of infection as a function of the duration of stay after t0 was calculated as the number of infected travelers over the number of arrived travelers. Differential equations were employed to estimate the risk of nonimmune travelers acquiring malaria in Amazonian municipalities. Risk was calculated as a result of the force of the infection in terms of local dynamics per time of arrival and duration of visit. RESULTS Maximum risk occurred at the peak or at the end of the rainy season and it was nonlinearly (exponentially) correlated with the fraction of infected mosquitoes. Relationship between the risk of malaria and duration of visit was linear and positively correlated. Relationship between the risk of malaria and the time of arrival in the municipality was dependent on local effects of seasonality. CONCLUSIONS The risk of nonimmune travelers acquiring malaria is not negligible and can maintain regional circulation of parasites, propagating introductions in areas where malaria has been eliminated.
Collapse
Affiliation(s)
- Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - Gabriel Zorello Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação do ABC, Santo André, SP, Brazil
| | - Jan Evelyn Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Leonardo Suveges Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Sterlino Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | | | | | | | - Claudio Struchiner
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Daniels RF, Schaffner SF, Dieye Y, Dieng G, Hainsworth M, Fall FB, Diouf CN, Ndiop M, Cisse M, Gueye AB, Sarr O, Guinot P, Deme AB, Bei AK, Sy M, Thwing J, MacInnis B, Earle D, Guinovart C, Sene D, Hartl DL, Ndiaye D, Steketee RW, Wirth DF, Volkman SK. Genetic evidence for imported malaria and local transmission in Richard Toll, Senegal. Malar J 2020; 19:276. [PMID: 32746830 PMCID: PMC7397603 DOI: 10.1186/s12936-020-03346-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/25/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Malaria elimination efforts can be undermined by imported malaria infections. Imported infections are classified based on travel history. METHODS A genetic strategy was applied to better understand the contribution of imported infections and to test for local transmission in the very low prevalence region of Richard Toll, Senegal. RESULTS Genetic relatedness analysis, based upon molecular barcode genotyping data derived from diagnostic material, provided evidence for both imported infections and ongoing local transmission in Richard Toll. Evidence for imported malaria included finding that a large proportion of Richard Toll parasites were genetically related to parasites from Thiès, Senegal, a region of moderate transmission with extensive available genotyping data. Evidence for ongoing local transmission included finding parasites of identical genotype that persisted across multiple transmission seasons as well as enrichment of highly related infections within the households of non-travellers compared to travellers. CONCLUSIONS These data indicate that, while a large number of infections may have been imported, there remains ongoing local malaria transmission in Richard Toll. These proof-of-concept findings underscore the value of genetic data to identify parasite relatedness and patterns of transmission to inform optimal intervention selection and placement.
Collapse
Affiliation(s)
- Rachel F. Daniels
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute, Cambridge, MA USA
| | | | | | | | | | - Fatou B. Fall
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | - Medoune Ndiop
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | | | - Oumar Sarr
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | - Awa B. Deme
- Dantec Teaching and Research Hospital, Dakar, Senegal
| | - Amy K. Bei
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA
| | - Mouhamad Sy
- Dantec Teaching and Research Hospital, Dakar, Senegal
| | - Julie Thwing
- grid.416738.f0000 0001 2163 0069Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | | | | | - Doudou Sene
- Senegal National Malaria Control Programme, Dakar, Senegal
| | - Daniel L. Hartl
- grid.38142.3c000000041936754XHarvard University, Cambridge, MA USA
| | - Daouda Ndiaye
- grid.8191.10000 0001 2186 9619Cheikh Anta Diop University, Dakar, Senegal
| | | | - Dyann F. Wirth
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute, Cambridge, MA USA
| | - Sarah K. Volkman
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute, Cambridge, MA USA ,grid.28203.3b0000 0004 0378 6053Simmons University, Boston, MA USA
| |
Collapse
|
17
|
Roh ME, Tessema SK, Murphy M, Nhlabathi N, Mkhonta N, Vilakati S, Ntshalintshali N, Saini M, Maphalala G, Chen A, Wilheim J, Prach L, Gosling R, Kunene S, S Hsiang M, Greenhouse B. High Genetic Diversity of Plasmodium falciparum in the Low-Transmission Setting of the Kingdom of Eswatini. J Infect Dis 2020; 220:1346-1354. [PMID: 31190073 PMCID: PMC6743842 DOI: 10.1093/infdis/jiz305] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To better understand transmission dynamics, we characterized Plasmodium falciparum genetic diversity in Eswatini, where transmission is low and sustained by importation. METHODS Twenty-six P. falciparum microsatellites were genotyped in 66% of confirmed cases (2014-2016; N = 582). Population and within-host diversity were used to characterize differences between imported and locally acquired infections. Logistic regression was used to assess the added value of diversity metrics to classify imported and local infections beyond epidemiology data alone. RESULTS Parasite population in Eswatini was highly diverse (expected heterozygosity [HE] = 0.75) and complex: 67% polyclonal infections, mean multiplicity of infection (MOI) 2.2, and mean within-host infection fixation index (FWS) 0.84. Imported cases had comparable diversity to local cases but exhibited higher MOI (2.4 vs 2.0; P = .004) and lower mean FWS (0.82 vs 0.85; P = .03). Addition of MOI and FWS to multivariate analyses did not increase discrimination between imported and local infections. CONCLUSIONS In contrast to the common perception that P. falciparum diversity declines with decreasing transmission intensity, Eswatini isolates exhibited high parasite diversity consistent with high rates of malaria importation and limited local transmission. Estimates of malaria transmission intensity from genetic data need to consider the effect of importation, especially as countries near elimination.
Collapse
Affiliation(s)
- Michelle E Roh
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Sofonias K Tessema
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Maxwell Murphy
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | | | - Manik Saini
- Clinton Health Access Initiative, Mbabane, Eswatini
| | | | - Anna Chen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Jordan Wilheim
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Lisa Prach
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco
| | - Roly Gosling
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | | | - Michelle S Hsiang
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Pediatrics, University of California, San Francisco.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco.,Chan Zuckerberg Biohub, San Francisco, California
| |
Collapse
|
18
|
Sinha I, Sayeed AA, Uddin D, Wesolowski A, Zaman SI, Faiz MA, Ghose A, Rahman MR, Islam A, Karim MJ, Saha A, Rezwan MK, Shamsuzzaman AKM, Jhora ST, Aktaruzzaman MM, Chang HH, Miotto O, Kwiatkowski D, Dondorp AM, Day NPJ, Hossain MA, Buckee C, Maude RJ. Mapping the travel patterns of people with malaria in Bangladesh. BMC Med 2020; 18:45. [PMID: 32127002 PMCID: PMC7055101 DOI: 10.1186/s12916-020-1512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Spread of malaria and antimalarial resistance through human movement present major threats to current goals to eliminate the disease. Bordering the Greater Mekong Subregion, southeast Bangladesh is a potentially important route of spread to India and beyond, but information on travel patterns in this area are lacking. METHODS Using a standardised short survey tool, 2090 patients with malaria were interviewed at 57 study sites in 2015-2016 about their demographics and travel patterns in the preceding 2 months. RESULTS Most travel was in the south of the study region between Cox's Bazar district (coastal region) to forested areas in Bandarban (31% by days and 45% by nights), forming a source-sink route. Less than 1% of travel reported was between the north and south forested areas of the study area. Farmers (21%) and students (19%) were the top two occupations recorded, with 67 and 47% reporting travel to the forest respectively. Males aged 25-49 years accounted for 43% of cases visiting forests but only 24% of the study population. Children did not travel. Women, forest dwellers and farmers did not travel beyond union boundaries. Military personnel travelled the furthest especially to remote forested areas. CONCLUSIONS The approach demonstrated here provides a framework for identifying key traveller groups and their origins and destinations of travel in combination with knowledge of local epidemiology to inform malaria control and elimination efforts. Working with the NMEP, the findings were used to derive a set of policy recommendations to guide targeting of interventions for elimination.
Collapse
Affiliation(s)
- Ipsita Sinha
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | - Didar Uddin
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Amy Wesolowski
- John Hopkins Bloomberg School of Public Health, Baltimore, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Sazid Ibna Zaman
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- BRAC (Building Resources Across Communities), BRAC Centre, Mohakhali, Dhaka, Bangladesh
| | - M Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Dev Care Foundation, Dhaka, Bangladesh
| | - Aniruddha Ghose
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | | | - Akramul Islam
- BRAC (Building Resources Across Communities), BRAC Centre, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Jahirul Karim
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
- Filariasis Elimination, STH Control, Dhaka, Bangladesh
| | - Anjan Saha
- National Malaria Elimination Programme, Dhaka, Bangladesh
| | - M Kamar Rezwan
- Vector-Borne Disease Control, World Health Organization, Dhaka, Bangladesh
| | | | - Sanya Tahmina Jhora
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
| | - M M Aktaruzzaman
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
- National Malaria Elimination Programme, Dhaka, Bangladesh
| | - Hsiao-Han Chang
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Big Data Institute, University of Oxford, Oxford, UK
| | - Dominic Kwiatkowski
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Amir Hossain
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | - Caroline Buckee
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
19
|
Guerra CA, Citron DT, García GA, Smith DL. Characterising malaria connectivity using malaria indicator survey data. Malar J 2019; 18:440. [PMID: 31870353 PMCID: PMC6929427 DOI: 10.1186/s12936-019-3078-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
Malaria connectivity describes the flow of parasites among transmission sources and sinks within a given landscape. Because of the spatial and temporal scales at which parasites are transported by their hosts, malaria sub-populations are largely defined by mosquito movement and malaria connectivity among them is largely driven by human movement. Characterising malaria connectivity thus requires characterising human travel between areas with differing levels of exposure to malaria. Whilst understanding malaria connectivity is fundamental for optimising interventions, particularly in areas seeking or sustaining elimination, there is a dearth of human movement data required to achieve this goal. Malaria indicator surveys (MIS) are a generally under utilised but potentially rich source of travel data that provide a unique opportunity to study simple associations between malaria infection and human travel in large population samples. This paper shares the experience working with MIS data from Bioko Island that revealed programmatically useful information regarding malaria importation through human travel. Simple additions to MIS questionnaires greatly augmented the level of detail of the travel data, which can be used to characterise human travel patterns and malaria connectivity to assist targeting interventions. It is argued that MIS potentially represent very important and timely sources of travel data that need to be further exploited.
Collapse
Affiliation(s)
- Carlos A Guerra
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA.
| | - Daniel T Citron
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Avenue, Seattle, 98121, USA
| | - Guillermo A García
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Avenue, Seattle, 98121, USA
| |
Collapse
|
20
|
Boyce MR, Katz R, Standley CJ. Risk Factors for Infectious Diseases in Urban Environments of Sub-Saharan Africa: A Systematic Review and Critical Appraisal of Evidence. Trop Med Infect Dis 2019; 4:E123. [PMID: 31569517 PMCID: PMC6958454 DOI: 10.3390/tropicalmed4040123] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Our world is rapidly urbanizing. According to the United Nations, between 1990 and 2015, the percent of the world's population living in urban areas grew from 43% to 54%. Estimates suggest that this trend will continue and that over 68% of the world's population will call cities home by 2050, with the majority of urbanization occurring in African countries. This urbanization is already having a profound effect on global health and could significantly impact the epidemiology of infectious diseases. A better understanding of infectious disease risk factors specific to urban settings is needed to plan for and mitigate against future urban outbreaks. We conducted a systematic literature review of the Web of Science and PubMed databases to assess the risk factors for infectious diseases in the urban environments of sub-Saharan Africa. A search combining keywords associated with cities, migration, African countries, infectious disease, and risk were used to identify relevant studies. Original research and meta-analyses published between 2004 and 2019 investigating geographical and behavioral risk factors, changing disease distributions, or control programs were included in the study. The search yielded 3610 papers, and 106 met the criteria for inclusion in the analysis. Papers were categorized according to risk factors, geographic area, and study type. The papers covered 31 countries in sub-Saharan Africa with East Africa being the most represented sub-region. Malaria and HIV were the most frequent disease focuses of the studies. The results of this work can inform public health policy as it relates to capacity building and health systems strengthening in rapidly urbanizing areas, as well as highlight knowledge gaps that warrant additional research.
Collapse
Affiliation(s)
- Matthew R Boyce
- Center for Global Health Science & Security, Georgetown University, Washington, DC 20057, USA.
| | - Rebecca Katz
- Center for Global Health Science & Security, Georgetown University, Washington, DC 20057, USA.
| | - Claire J Standley
- Center for Global Health Science & Security, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
21
|
Tessema SK, Raman J, Duffy CW, Ishengoma DS, Amambua-Ngwa A, Greenhouse B. Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa. Malar J 2019; 18:268. [PMID: 31477139 PMCID: PMC6720407 DOI: 10.1186/s12936-019-2880-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023] Open
Abstract
Next-generation sequencing (NGS) technologies are increasingly being used to address a diverse range of biological and epidemiological questions. The current understanding of malaria transmission dynamics and parasite movement mainly relies on the analyses of epidemiologic data, e.g. case counts and self-reported travel history data. However, travel history data are often not routinely collected or are incomplete, lacking the necessary level of accuracy. Although genetic data from routinely collected field samples provides an unprecedented opportunity to track the spread of malaria parasites, it remains an underutilized resource for surveillance due to lack of local awareness and capacity, limited access to sensitive laboratory methods and associated computational tools and difficulty in interpreting genetic epidemiology data. In this review, the potential roles of NGS in better understanding of transmission patterns, accurately tracking parasite movement and addressing the emerging challenges of imported malaria in low transmission settings of sub-Saharan Africa are discussed. Furthermore, this review highlights the insights gained from malaria genomic research and challenges associated with integrating malaria genomics into existing surveillance tools to inform control and elimination strategies.
Collapse
Affiliation(s)
- Sofonias K Tessema
- EPPIcenter Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease, Sandringham, Gauteng, South Africa
| | - Craig W Duffy
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Deus S Ishengoma
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Bryan Greenhouse
- EPPIcenter Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
22
|
Guerra CA, Kang SY, Citron DT, Hergott DEB, Perry M, Smith J, Phiri WP, Osá Nfumu JO, Mba Eyono JN, Battle KE, Gibson HS, García GA, Smith DL. Human mobility patterns and malaria importation on Bioko Island. Nat Commun 2019; 10:2332. [PMID: 31133635 PMCID: PMC6536527 DOI: 10.1038/s41467-019-10339-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
Malaria burden on Bioko Island has decreased significantly over the past 15 years. The impact of interventions on malaria prevalence, however, has recently stalled. Here, we use data from island-wide, annual malaria indicator surveys to investigate human movement patterns and their relationship to Plasmodium falciparum prevalence. Using geostatistical and mathematical modelling, we find that off-island travel is more prevalent in and around the capital, Malabo. The odds of malaria infection among off-island travelers are significantly higher than the rest of the population. We estimate that malaria importation rates are high enough to explain malaria prevalence in much of Malabo and its surroundings, and that local transmission is highest along the West Coast of the island. Despite uncertainty, these estimates of residual transmission and importation serve as a basis for evaluating progress towards elimination and for efficiently allocating resources as Bioko makes the transition from control to elimination.
Collapse
Affiliation(s)
- Carlos A Guerra
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA.
| | - Su Yun Kang
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Daniel T Citron
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Ave., Suite 600, Seattle, WA, 98121, USA
| | - Dianna E B Hergott
- University of Washington, Department of Epidemiology, 1959 NE Pacific Street, Health Sciences Bldg, F-262, Box 357236, Seattle, WA, 98195, USA
| | - Megan Perry
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA
| | - Jordan Smith
- Medical Care Development International, Avenida Parques de Africa S/N, Malabo, Equatorial Guinea
| | - Wonder P Phiri
- Medical Care Development International, Avenida Parques de Africa S/N, Malabo, Equatorial Guinea
| | - José O Osá Nfumu
- Medical Care Development International, Avenida Parques de Africa S/N, Malabo, Equatorial Guinea
| | - Jeremías N Mba Eyono
- Medical Care Development International, Avenida Parques de Africa S/N, Malabo, Equatorial Guinea
| | - Katherine E Battle
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Harry S Gibson
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Guillermo A García
- Medical Care Development International, 8401 Colesville Road, Suite 425, Silver Spring, MD, 20910, USA
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Ave., Suite 600, Seattle, WA, 98121, USA
| |
Collapse
|
23
|
Tessema S, Wesolowski A, Chen A, Murphy M, Wilheim J, Mupiri AR, Ruktanonchai NW, Alegana VA, Tatem AJ, Tambo M, Didier B, Cohen JM, Bennett A, Sturrock HJW, Gosling R, Hsiang MS, Smith DL, Mumbengegwi DR, Smith JL, Greenhouse B. Using parasite genetic and human mobility data to infer local and cross-border malaria connectivity in Southern Africa. eLife 2019; 8:e43510. [PMID: 30938286 PMCID: PMC6478435 DOI: 10.7554/elife.43510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/06/2019] [Indexed: 02/04/2023] Open
Abstract
Local and cross-border importation remain major challenges to malaria elimination and are difficult to measure using traditional surveillance data. To address this challenge, we systematically collected parasite genetic data and travel history from thousands of malaria cases across northeastern Namibia and estimated human mobility from mobile phone data. We observed strong fine-scale spatial structure in local parasite populations, providing positive evidence that the majority of cases were due to local transmission. This result was largely consistent with estimates from mobile phone and travel history data. However, genetic data identified more detailed and extensive evidence of parasite connectivity over hundreds of kilometers than the other data, within Namibia and across the Angolan and Zambian borders. Our results provide a framework for incorporating genetic data into malaria surveillance and provide evidence that both strengthening of local interventions and regional coordination are likely necessary to eliminate malaria in this region of Southern Africa.
Collapse
Affiliation(s)
- Sofonias Tessema
- EPPIcenter program, Division of HIV, Infectious Diseases and Global Medicine, Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
| | - Amy Wesolowski
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Anna Chen
- EPPIcenter program, Division of HIV, Infectious Diseases and Global Medicine, Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
| | - Maxwell Murphy
- EPPIcenter program, Division of HIV, Infectious Diseases and Global Medicine, Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
| | - Jordan Wilheim
- EPPIcenter program, Division of HIV, Infectious Diseases and Global Medicine, Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
| | - Anna-Rosa Mupiri
- Multidisciplinary Research CenterUniversity of NamibiaWindhoekNamibia
| | - Nick W Ruktanonchai
- WorldPop Project, Geography and EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Victor A Alegana
- Multidisciplinary Research CenterUniversity of NamibiaWindhoekNamibia
- WorldPop Project, Geography and EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Andrew J Tatem
- WorldPop Project, Geography and EnvironmentUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Munyaradzi Tambo
- Multidisciplinary Research CenterUniversity of NamibiaWindhoekNamibia
| | | | | | - Adam Bennett
- Malaria Elimination Initiative, Institute of Global Health SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Hugh JW Sturrock
- Malaria Elimination Initiative, Institute of Global Health SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Roland Gosling
- Multidisciplinary Research CenterUniversity of NamibiaWindhoekNamibia
- Malaria Elimination Initiative, Institute of Global Health SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Michelle S Hsiang
- Malaria Elimination Initiative, Institute of Global Health SciencesUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of PediatricsUCSF Benioff Children's HospitalSan FranciscoUnited States
| | - David L Smith
- Institute for Health Metrics and EvaluationUniversity of WashingtonSeattleUnited States
| | | | - Jennifer L Smith
- Malaria Elimination Initiative, Institute of Global Health SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Bryan Greenhouse
- EPPIcenter program, Division of HIV, Infectious Diseases and Global Medicine, Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
24
|
DePina AJ, Andrade AJB, Dia AK, Moreira AL, Furtado UD, Baptista H, Faye O, Seck I, Niang EHA. Spatiotemporal characterisation and risk factor analysis of malaria outbreak in Cabo Verde in 2017. Trop Med Health 2019; 47:3. [PMID: 30636920 PMCID: PMC6323763 DOI: 10.1186/s41182-018-0127-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Cabo Verde is a country that has been in the pre-elimination stage of malaria since the year 2000. The country is still reporting cases, particularly in the capital of Praia, where more than 50% of the national population live. This study aims to examine the spatial and temporal epidemiological profile of malaria across the country during the 2017 outbreak and to analyse the risk factors, which may have influenced the trend in malaria cases. Methods Longitudinal data collected from all malaria cases in Cabo Verde for the year 2017 were used in this study. The epidemiological characteristics of the cases were analysed. Local and spatial clusters of malaria from Praia were detected by applying the Cluster and Outlier Analysis (Anselin Local Moran's I) to determine the spatial clustering pattern. We then used the Pearson correlation coefficient to analyse the relationship between malaria cases and meteorological variables to identify underlying drivers. Results In 2017, 446 cases of malaria were reported in Cabo Verde with the peak of cases in October. These cases were primarily Plasmodium falciparum infections. Of these cases, 423 were indigenous infections recorded in Praia, while 23 were imported malaria cases from different African countries. One case of P. vivax infection was imported from Brazil. Spatial autocorrelation analysis revealed a cluster of high-high malaria cases in the centre of the city. Malaria case occurrence has a very weak correlation (r = 0.16) with breeding site location. Most of the cases (69.9%, R 2 = 0.699) were explained by the local environmental condition, with temperature being the primary risk factor followed by relative humidity. A moderately positive relationship was noted with the total pluviometry, while wind speed had a strong negative influence on malaria infections. Conclusions In Cabo Verde, malaria remains a serious public health issue, especially in Praia. The high number of cases recorded in 2017 demonstrates the fragility of the situation and the challenges to eliminating indigenous malaria cases and preventing imported cases. Mosquito breeding sites have been the main risk factor, while temperature and precipitation were positively associated with malaria infection. In light of this study, there is an urgent need to reinforce control strategies to achieve the elimination goal in the country.
Collapse
Affiliation(s)
- Adilson José DePina
- 1Ecole Doctorale des Sciences de la Vie, de la Santé et de l'Environnement (ED-SEV), Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal.,Programa de Pré-Eliminação do Paludismo, CCS-SIDA, Ministério da Saúde e da Segurança Social, Praia, Cape Verde
| | | | - Abdoulaye Kane Dia
- 1Ecole Doctorale des Sciences de la Vie, de la Santé et de l'Environnement (ED-SEV), Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal.,4Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal
| | - António Lima Moreira
- Programa Nacional de Luta contra o Paludismo, Ministério da Saúde e da Segurança Social, Praia, Cape Verde
| | | | | | - Ousmane Faye
- 4Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal
| | - Ibrahima Seck
- 7Institut de Santé et Développement, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal
| | - El Hadji Amadou Niang
- 4Laboratoire d'Ecologie Vectorielle et Parasitaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal.,Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
25
|
Ihantamalala FA, Herbreteau V, Rakotoarimanana FMJ, Rakotondramanga JM, Cauchemez S, Rahoilijaona B, Pennober G, Buckee CO, Rogier C, Metcalf CJE, Wesolowski A. Estimating sources and sinks of malaria parasites in Madagascar. Nat Commun 2018; 9:3897. [PMID: 30254280 PMCID: PMC6156502 DOI: 10.1038/s41467-018-06290-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/21/2018] [Indexed: 02/03/2023] Open
Abstract
In areas where malaria epidemiology is spatially and temporally heterogeneous, human-mediated parasite importation can result in non-locally acquired clinical cases and outbreaks in low-transmission areas. Using mobility estimates derived from the mobile phone data and spatial malaria prevalence data, we identify travel routes relevant to malaria transmission in Madagascar. We find that the primary hubs of parasite importation are in a spatially connected area of the central highlands. Surprisingly, sources of these imported infections are not spatially clustered. We then related these source locations directly to clinical cases in the low-transmission area of the capital. We find that in the capital, a major sink, the primary sources of infection are along the more populated coastal areas, although these sources are seasonally variable. Our results have implications for targeting interventions at source locations to achieve local or national malaria control goals.
Collapse
Affiliation(s)
- Felana Angella Ihantamalala
- Institut Pasteur de Madagascar, 101 Antanarivo, Madagascar.,UMR 228 ESPACE-DEV (IRD, UM2, UR, UAG), Station SEAS-Ol, Saint-Pierre, Reunion, France
| | - Vincent Herbreteau
- UMR 228 ESPACE-DEV (IRD, UM2, UR, UAG), Station SEAS-Ol, Saint-Pierre, Reunion, France
| | | | | | - Simon Cauchemez
- Mathematical Modeling of Infectious Diseases Unit, Institut Pasteur, Paris, 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris, 75015, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, 75015, France
| | | | - Gwenaëlle Pennober
- UMR 228 ESPACE-DEV (IRD, UM2, UR, UAG), Station SEAS-Ol, Saint-Pierre, Reunion, France
| | - Caroline O Buckee
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA.,Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Christophe Rogier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), Paris, France.,Institute of Biomedical Research of the French Armed Forces (IRBA), Brétigny-Sur-Orge, France
| | - C J E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA.,Woodrow Wilson School of Public Affairs, Princeton University, Princeton, NJ, 08540, USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA.
| |
Collapse
|
26
|
Strano E, Viana MP, Sorichetta A, Tatem AJ. Mapping road network communities for guiding disease surveillance and control strategies. Sci Rep 2018; 8:4744. [PMID: 29549364 PMCID: PMC5856805 DOI: 10.1038/s41598-018-22969-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 01/19/2023] Open
Abstract
Human mobility is increasing in its volume, speed and reach, leading to the movement and introduction of pathogens through infected travelers. An understanding of how areas are connected, the strength of these connections and how this translates into disease spread is valuable for planning surveillance and designing control and elimination strategies. While analyses have been undertaken to identify and map connectivity in global air, shipping and migration networks, such analyses have yet to be undertaken on the road networks that carry the vast majority of travellers in low and middle income settings. Here we present methods for identifying road connectivity communities, as well as mapping bridge areas between communities and key linkage routes. We apply these to Africa, and show how many highly-connected communities straddle national borders and when integrating malaria prevalence and population data as an example, the communities change, highlighting regions most strongly connected to areas of high burden. The approaches and results presented provide a flexible tool for supporting the design of disease surveillance and control strategies through mapping areas of high connectivity that form coherent units of intervention and key link routes between communities for targeting surveillance.
Collapse
Affiliation(s)
- Emanuele Strano
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, D-82234, Wessling, Germany.
| | | | - Alessandro Sorichetta
- WorldPop, Department of Geography and Environment, University of Southampton, Highfield, Southampton, UK
- Flowminder Foundation, Stockholm, Sweden
| | - Andrew J Tatem
- WorldPop, Department of Geography and Environment, University of Southampton, Highfield, Southampton, UK.
- Flowminder Foundation, Stockholm, Sweden.
| |
Collapse
|
27
|
Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, Moonen B, Schapira A, Smith DL. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J 2017; 16:459. [PMID: 29132357 PMCID: PMC5683539 DOI: 10.1186/s12936-017-2106-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
There is a long history of considering the constituent components of malaria risk and the malaria transmission cycle via the use of mathematical models, yet strategic planning in endemic countries tends not to take full advantage of available disease intelligence to tailor interventions. National malaria programmes typically make operational decisions about where to implement vector control and surveillance activities based upon simple categorizations of annual parasite incidence. With technological advances, an enormous opportunity exists to better target specific malaria interventions to the places where they will have greatest impact by mapping and evaluating metrics related to a variety of risk components, each of which describes a different facet of the transmission cycle. Here, these components and their implications for operational decision-making are reviewed. For each component, related mappable malaria metrics are also described which may be measured and evaluated by malaria programmes seeking to better understand the determinants of malaria risk. Implementing tailored programmes based on knowledge of the heterogeneous distribution of the drivers of malaria transmission rather than only consideration of traditional metrics such as case incidence has the potential to result in substantial improvements in decision-making. As programmes improve their ability to prioritize their available tools to the places where evidence suggests they will be most effective, elimination aspirations may become increasingly feasible.
Collapse
Affiliation(s)
- Justin M Cohen
- Clinton Health Access Initiative, 383 Dorchester Ave., Suite 400, Boston, MA, 02127, USA.
| | - Arnaud Le Menach
- Clinton Health Access Initiative, 383 Dorchester Ave., Suite 400, Boston, MA, 02127, USA
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St (2300), New Orleans, LA, 70112, USA
| | - Peter W Gething
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK
| | - Philip A Eckhoff
- Institute for Disease Modeling, Building IV, 3150 139th Ave SE, Bellevue, WA, 98005, USA
| | - Bruno Moonen
- Bill & Melinda Gates Foundation, PO Box 23350, Seattle, WA, 98102, USA
| | | | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Ave., Suite 600, Seattle, WA, 98121, USA
| |
Collapse
|