1
|
Opoku-Ansah J, Boateng R, Amuah CLY, Adueming POW, Pappoe JA, Ntow J, Quagraine K, Yunus S, Anderson B, Eghan MJ. Identification of Spectral Fingerprints in Different Batches of Antimalarial Herbal Drugs Using Laser-Induced Autofluorescence and Chemometric Techniques. J Fluoresc 2025:10.1007/s10895-025-04192-3. [PMID: 40014202 DOI: 10.1007/s10895-025-04192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Variability in antimalarial herbal drugs (AMHDs) poses a challenge to quality control and efficacy, especially in low-resource regions where malaria is prevalent. This study employs a non-destructive laser-induced autofluorescence (LIAF) technique combined with chemometrics to assess spectral fingerprint consistency across six (6) AMHD batches. The LIAF spectra reveal distinct Gaussian fluorescence profiles of secondary metabolites with associated specific fluorescence peaks. Results indicate a significant level of uniformity in metabolite composition with 99.46% and 98.67% averaged cosine similarity for intra-batch and inter-batch consistency respectively. This study characterized the spectral signature of batch-to-batch AMHDs, which manufacturers can leverage to prevent inconsistencies in AMHD production. These inconsistencies could potentially lead to counterfeiting and pose direct and indirect threats to public health, clinical care, and socio-economic development.
Collapse
Affiliation(s)
- Jerry Opoku-Ansah
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Rabbi Boateng
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Charles Lloyd Yeboah Amuah
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Peter Osei-Wusu Adueming
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Allotey Pappoe
- Department of Space Environment, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Alexandria, Egypt
| | - Jonathan Ntow
- Department of Laboratory Technology, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwesi Quagraine
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Shemmira Yunus
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Integrated Science Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Kumasi, Ashanti Region, Ghana
| | - Benjamin Anderson
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Moses Jojo Eghan
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
2
|
Kayamba F, Karpoormath R, Obakachi VA, Mahlalela M, Banda D, van Zyl RL, Lala S, Zininga T, Shonhai A, Shaik BB, Pooe OJ. A promising class of antiprotozoal agents, design and synthesis of novel Pyrimidine-Cinnamoyl hybrids. Eur J Med Chem 2025; 281:116944. [PMID: 39549508 DOI: 10.1016/j.ejmech.2024.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 11/18/2024]
Abstract
Malaria, caused by parasitic protozoans of the Plasmodium genus, continues to be one of the greatest global health crises, especially in Africa. The emergence of antimalarial drug resistance continues to be a health problem necessitating an urgent need for alternative and cost-effective antimalarials. Using a molecular hybridization approach, we report the design and synthesis of an efficacious novel class of antiprotozoal agents; (E)-1-(4-(4,6-diphenylpyrimidin-2-yl)piperazin-1-yl)-3-phenyl prop-2-en-1-one derivatives (8a-r). The in vitro inhibitory activity of the synthesized compounds was evaluated against the NF54 chloroquine-sensitive strain of Plasmodium falciparum. From the antiprotozoal screening, three compounds displayed propitious activity with IC50 values (0.18-0.21 μM), using quinine and chloroquine as standard antimalarials. Compounds 8o and 8l emerged as the most potent candidates with IC50 values of 0.18 ± 0.02 μM and 0.21 ± 0.001 μM with an associated good safety index of 18.59 and 16.75 to human kidney epithelial (HEK293) cells, respectively. The synthesized analogues present a new chemical architecture structurally unrelated to the current regime of antimalarial drugs, representing a valid strategy to combat resistance in P. falciparum species to current commercial drugs. We further investigated the binding affinities of the compounds against recombinant forms of two P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z, both of which are essential and promising druggable candidates. Compound 8l exhibited the highest binding affinity for PfHsp70-1 and PfHsp70-z. Furthermore, molecular docking revealed that compounds 8k, 8l, 8m, and 8o exhibited better fitness to PfHsp70-1, with compounds 8l and 8o showing the highest binding affinity of -10.5 kcal/mol and -10.1 kcal/mol, respectively. Therefore, it can be speculated that PfHsp70-1 may be a possible target of some of the inhibitors tested in this study. The presence of electron-donating groups on the phenyl ring of 4,6-pyrimidine moiety and cinnamoyl group demonstrated a positive correlation between the observed computational data and the biological activity. Taken together, this paper demonstrates the importance of using the molecular hybridization approach in the development of newer cinnamoyl clubbed with 4,6-diphenyl pyrimidine hybrids as potential antiprotozoal agents.
Collapse
Affiliation(s)
- Francis Kayamba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Chemistry and Biology, School of Natural and Applied Sciences, Mulungushi University, PO Box, 80415, Kabwe, Zambia
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| | - Vincent A Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Danny Banda
- Department of Chemistry and Biology, School of Natural and Applied Sciences, Mulungushi University, PO Box, 80415, Kabwe, Zambia
| | - Robyn L van Zyl
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Sahil Lala
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Baji Baba Shaik
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ofentse J Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
3
|
Parvatkar PT, Diagne K, Zhao Y, Manetsch R. Indoloquinoline Alkaloids as Antimalarials: Advances, Challenges, and Opportunities. ChemMedChem 2024; 19:e202400254. [PMID: 38840271 DOI: 10.1002/cmdc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Malaria infections affect almost half of the world's population, with over 200 million cases reported annually. Cryptolepis sanguinolenta, a plant native to West Africa, has long been used across various regions of Africa for malaria treatment. Chemical analysis has revealed that the plant is abundant in indoloquinolines, which have been shown to possess antimalarial properties. Cryptolepine, neocryptolepine, and isocryptolepine are well-studied indoloquinoline alkaloids known for their potent antimalarial activity. However, their structural rigidity and associated cellular toxicity are major drawbacks for preclinical development. This review focuses on the potential of indoloquinoline alkaloids (cryptolepine, neocryptolepine, and isocryptolepine) as scaffolds in drug discovery. The article delves into their antimalarial effects in vitro and in vivo, as well as their proposed mechanisms of action and structure-activity relationship studies. Several studies aim to improve these leads by reducing cytotoxicity while preserving or enhancing antimalarial activity and gaining insights into their mechanisms of action. These investigations highlight the potential of indoloquinolines as a scaffold for developing new antimalarial drugs.
Collapse
Affiliation(s)
- Prakash T Parvatkar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Khaly Diagne
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yingzhao Zhao
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
5
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Boateng R, Opoku-Ansah J, Eghan MJ, Adueming POW, Amuah CLY. Identification of Commercial Antimalarial Herbal Drugs Using Laser-Induced Autofluorescence Technique and Multivariate Algorithms. J Fluoresc 2024; 34:855-864. [PMID: 37392364 DOI: 10.1007/s10895-023-03309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
In malaria-prone developing countries the integrity of Anti-Malarial Herbal Drugs (AMHDs) which are easily preferred for treatment can be compromised. Currently, existing techniques for identifying AMHDs are destructive. We report on the use of non-destructive and sensitive technique, Laser-Induced-Autofluorescence (LIAF) in combination with multivariate algorithms for identification of AMHDs. The LIAF spectra were recorded from commercially prepared decoction AMHDs purchased from accredited pharmacy shop in Ghana. Deconvolution of the LIAF spectra revealed secondary metabolites belonging to derivatives of alkaloids and classes of phenolic compounds of the AMHDs. Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were able to discriminate the AMHDs base on their physicochemical properties. Based on two principal components, the PCA- QDA (Quadratic Discriminant Analysis), PCA-LDA (Linear Discriminant Analysis), PCA-SVM (Support Vector Machine) and PCA-KNN (K-Nearest Neighbour) models were developed with an accuracy performance of 99.0, 99.7, 100.0, and 100%, respectively, in identifying AMHDs. PCA-SVM and PCA-KNN provided the best classification and stability performance. The LIAF technique in combination with multivariate techniques may offer a non-destructive and viable tool for AMHDs identification.
Collapse
Affiliation(s)
- Rabbi Boateng
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jerry Opoku-Ansah
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Moses Jojo Eghan
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Peter Osei-Wusu Adueming
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Charles Lloyd Yeboah Amuah
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
7
|
Zhou P, Wu S, Niu K, Song H, Liu Y, Zhang J, Wang Q. Intramolecular trapping of an iminium salt: rapid construction of quindoline derivatives. Chem Commun (Camb) 2024; 60:292-295. [PMID: 38059581 DOI: 10.1039/d3cc05143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Construction of the pyridine ring is a practical and streamline way to construct a variety of quindoline derivatives. We have developed a novel method for synthesis of quindoline derivatives by means of intramolecular ring-closure reactions of 3-N-methylphenylindoles via an iminium salt intermediate. This practical method has the advantages of a short reaction time, operational simplicity, and nearly quantitative yields; and it can be used for the rapid synthesis of a variety of valuable quindoline derivatives.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Senhui Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Jingjing Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
8
|
Muema JM, Mutunga JM, Obonyo MA, Getahun MN, Mwakubambanya RS, Akala HM, Cheruiyot AC, Yeda RA, Juma DW, Andagalu B, Johnson JL, Roth AL, Bargul JL. Isoliensinine from Cissampelos pariera rhizomes exhibits potential gametocytocidal and anti-malarial activities against Plasmodium falciparum clinical isolates. Malar J 2023; 22:161. [PMID: 37208735 DOI: 10.1186/s12936-023-04590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The unmet demand for effective malaria transmission-blocking agents targeting the transmissible stages of Plasmodium necessitates intensive discovery efforts. In this study, a bioactive bisbenzylisoquinoline (BBIQ), isoliensinine, from Cissampelos pariera (Menispermaceae) rhizomes was identified and characterized for its anti-malarial activity. METHODS Malaria SYBR Green I fluorescence assay was performed to evaluate the in vitro antimalarial activity against D6, Dd2, and F32-ART5 clones, and immediate ex vivo (IEV) susceptibility for 10 freshly collected P. falciparum isolates. To determine the speed- and stage-of-action of isoliensinine, an IC50 speed assay and morphological analyses were performed using synchronized Dd2 asexuals. Gametocytocidal activity against two culture-adapted gametocyte-producing clinical isolates was determined using microscopy readouts, with possible molecular targets and their binding affinities deduced in silico. RESULTS Isoliensinine displayed a potent in vitro gametocytocidal activity at mean IC50gam values ranging between 0.41 and 0.69 µM for Plasmodium falciparum clinical isolates. The BBIQ compound also inhibited asexual replication at mean IC50Asexual of 2.17 µM, 2.22 µM, and 2.39 µM for D6, Dd2 and F32-ART5 respectively, targeting the late-trophozoite to schizont transition. Further characterization demonstrated a considerable immediate ex vivo potency against human clinical isolates at a geometric mean IC50IEV = 1.433 µM (95% CI 0.917-2.242). In silico analyses postulated a probable anti-malarial mechanism of action by high binding affinities for four mitotic division protein kinases; Pfnek1, Pfmap2, Pfclk1, and Pfclk4. Additionally, isoliensinine was predicted to possess an optimal pharmacokinetics profile and drug-likeness properties. CONCLUSION These findings highlight considerable grounds for further exploration of isoliensinine as an amenable scaffold for malaria transmission-blocking chemistry and target validation.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya.
| | - James M Mutunga
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
- Department of Biological Sciences, School of Pure and Applied Sciences, Mount Kenya University, Thika, Kenya
- School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
| | | | - Hoseah M Akala
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Agnes C Cheruiyot
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Redemptah A Yeda
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Dennis W Juma
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Ben Andagalu
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Jaree L Johnson
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Amanda L Roth
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya.
| |
Collapse
|
9
|
Unravelling the pharmacological properties of cryptolepine and its derivatives: a mini-review insight. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:229-238. [PMID: 36251044 PMCID: PMC9574835 DOI: 10.1007/s00210-022-02302-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/02/2022] [Indexed: 01/29/2023]
Abstract
Cryptolepine (1,5-methyl-10H-indolo[3,2-b]quinoline), an indoloquinoline alkaloid, found in the roots of Cryptolepis sanguinolenta (Lindl.) Schltr (family: Periplocaceae), is associated with the suppression of cancer and protozoal infections. Cryptolepine also exhibits anti-bacterial, anti-fungal, anti-hyperglycemic, antidiabetic, anti-inflammatory, anti-hypotensive, antipyretic, and antimuscarinic properties. This review of the latest research data can be exploited to create a basis for the discovery of new cryptolepine-based drugs and their analogues in the near future. PubMed, Scopus, and Google Scholar databases were searched to select and collect data from the existing literature on cryptolepine and their pharmacological properties. Several in vitro studies have demonstrated the potential of cryptolepine A as an anticancer and antimalarial molecule, which is achieved through inhibiting DNA synthesis and topoisomerase II. This review summarizes the recent developments of cryptolepine pharmacological properties and functional mechanisms, providing information for future research on this natural product.
Collapse
|
10
|
Muema JM, Bargul JL, Obonyo MA, Njeru SN, Matoke-Muhia D, Mutunga JM. Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions. Parasit Vectors 2022; 15:298. [PMID: 36002857 PMCID: PMC9404607 DOI: 10.1186/s13071-022-05367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
An integrated approach to innovatively counter the transmission of various arthropod-borne diseases to humans would benefit from strategies that sustainably limit onward passage of infective life cycle stages of pathogens and parasites to the insect vectors and vice versa. Aiming to accelerate the impetus towards a disease-free world amid the challenges posed by climate change, discovery, mindful exploitation and integration of active natural products in design of pathogen transmission-blocking interventions is of high priority. Herein, we provide a review of natural compounds endowed with blockade potential against transmissible forms of human pathogens reported in the last 2 decades from 2000 to 2021. Finally, we propose various translational strategies that can exploit these pathogen transmission-blocking natural products into design of novel and sustainable disease control interventions. In summary, tapping these compounds will potentially aid in integrated combat mission to reduce disease transmission trends.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.,International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - James M Mutunga
- Department of Biological Sciences, Mount Kenya University (MKU), P.O. Box 54, Thika, 01000, Kenya.,School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
11
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
12
|
An In Silico Study of the Interactions of Alkaloids from Cryptolepis sanguinolenta with Plasmodium falciparum Dihydrofolate Reductase and Dihydroorotate Dehydrogenase. J CHEM-NY 2022. [DOI: 10.1155/2022/5314179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Plasmodium falciparum dihydrofolate reductase (PfDHFR) and dihydroorotate dehydrogenase (PfDHODH) are essential for Plasmodium falciparum growth and development, and have been validated as targets for the development of new antimalarial agents. Several alkaloids isolated from Cryptolepis sanguinolenta have been reported to have antiplasmodial activity, but their protein targets are unknown. Therefore, molecular docking and molecular dynamics simulations were used to investigate the interactions and stability of the alkaloids with PfDHFR and PfDHODH. Based on physicochemical characteristics, alkaloids were grouped as sterically bulky (sb) or planar (pg). Docking results revealed strong binding affinities (−6.0 to −13.4 kcal/mol) of the alkaloids against PfDHODH and various strains of PfDHFR while interacting with key residues such as Asp54 and Phe58 in PfDHFR. The pg alkaloids had high binding affinity and preference for the inhibitor binding domain over the flavin mononucleotide (FMN) binding domain in PfDHODH due to size considerations. From the molecular dynamics trajectories, protein-alkaloid complexes were stable throughout the simulation, with supporting evidence from root mean square deviations, root mean square fluctuations, radius of gyration, free binding energies, and other parameters. We report herein that biscryptolepine and cryptomisrine (sb class), as well as cryptolepinone, cryptoheptine, cryptolepine, and neocryptolepine (pg class), are capable of inhibiting PfDHFR effectively in pyrimethamine sensitive and resistant cells. Also, our results show that alkaloids of the pg class can inhibit PfDHODH as FMN decoys, as well as direct enzyme inhibitors, thereby halting crucial protein function.
Collapse
|
13
|
Abacha YZ, Forkuo AD, Gbedema SY, Mittal N, Ottilie S, Rocamora F, Winzeler EA, van Schalkwyk DA, Kelly JM, Taylor MC, Reader J, Birkholtz LM, Lisgarten DR, Cockcroft JK, Lisgarten JN, Palmer RA, Talbert RC, Shnyder SD, Wright CW. Semi-Synthetic Analogues of Cryptolepine as a Potential Source of Sustainable Drugs for the Treatment of Malaria, Human African Trypanosomiasis, and Cancer. Front Pharmacol 2022; 13:875647. [PMID: 35600849 PMCID: PMC9119314 DOI: 10.3389/fphar.2022.875647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual, sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub Cryptolepis sanguinolenta is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (1), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine (2) is of interest as a lead toward new antimalarial agents. Cryptolepine (1) was isolated using a two-step Soxhlet extraction of C. sanguinolenta roots, followed by crystallization (yield 0.8% calculated as a base with respect to the dried roots). Semi-synthetic 7-bromo- (3), 7, 9-dibromo- (4), 7-iodo- (5), and 7, 9-dibromocryptolepine (6) were obtained in excellent yields by reaction of 1 with N-bromo- or N-iodosuccinimide in trifluoroacetic acid as a solvent. All compounds were active against Plasmodia in vitro, but 6 showed the most selective profile with respect to Hep G2 cells: P. falciparum (chloroquine-resistant strain K1), IC50 = 0.25 µM, SI = 113; late stage, gametocytes, IC50 = 2.2 µM, SI = 13; liver stage, P. berghei sporozoites IC50 = 6.13 µM, SI = 4.6. Compounds 3-6 were also active against the emerging zoonotic species P. knowlesi with 5 being the most potent (IC50 = 0.11 µM). In addition, 3-6 potently inhibited T. brucei in vitro at nM concentrations and good selectivity with 6 again being the most selective (IC50 = 59 nM, SI = 478). These compounds were also cytotoxic to wild-type ovarian cancer cells as well as adriamycin-resistant and, except for 5, cisplatin-resistant ovarian cancer cells. In an acute oral toxicity test in mice, 3-6 did not exhibit toxic effects at doses of up to 100 mg/kg/dose × 3 consecutive days. This study demonstrates that C. sanguinolenta may be utilized as a sustainable source of novel compounds that may lead to the development of novel agents for the treatment of malaria, African trypanosomiasis, and cancer.
Collapse
Affiliation(s)
- Yabalu Z. Abacha
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom,Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Nigeria
| | - Arnold Donkor Forkuo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Y. Gbedema
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Nimisha Mittal
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sabine Ottilie
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frances Rocamora
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elizabeth A. Winzeler
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Donelly A. van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - David R. Lisgarten
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Jeremy K. Cockcroft
- Department of Chemistry, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | | | - Rex A. Palmer
- Department of Crystallography, Biochemical Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Rosemary C. Talbert
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Steven D. Shnyder
- School of Pharmacy and Medical Sciences, Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Colin W. Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom,*Correspondence: Colin W. Wright,
| |
Collapse
|
14
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
15
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
16
|
He W, Du Y, Li C, Wang J, Wang Y, Dogovski C, Hu R, Tao Z, Yao C, Li X. Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate. Int J Pharm 2021; 609:121138. [PMID: 34592395 DOI: 10.1016/j.ijpharm.2021.121138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Artesunate (ARS) is the only artemisinin-based intravenous drug approved for treatment of malaria in the clinic. ARS is rapidly metabolized in vivo to short lived (∼30-45 min) but fast acting, dihydroartemisinin (DHA). The short half-life of DHA necessitates multiple dose administration to circumvent the risk of recrudescence and development of artemisinin resistance. In this work, we report a stable, safe and potent alternative artemisinin-based injectable nanocomplex consisting of dimeric artesunate-choline conjugate (dACC) micelles coated with hyaluronic acid (HA). Firstly, dACC was synthesized by one-step esterification of two artesunate molecules with 3-(dimethylamino)-1,2-propanediol followed by quaternization. After that, dACC was self-assembled into cationic nanomicelles and further coated with anionic small molecular weight HA. The HA-coated dACC nanocomplex (dACC/HA nanocomplex) has a narrow size distribution of about 30 nm. Hemolytic toxicity and cytotoxicity studies revealed a favorable bio-safety profile. Finally, in vitro and in vivo studies showed the dACC/HA nanocomplex possess superior safety and antimalarial efficacy compared to ARS. Taken together, the dACC/HA nanocomplex is a promising injectable alternative to the traditional clinically used artesunate.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chuncao Li
- Department of Microbiology and Parasitology, Anhui Provincial Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu 233030, China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rui Hu
- Department of Microbiology and Parasitology, Anhui Provincial Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu 233030, China
| | - Zhiyong Tao
- Department of Microbiology and Parasitology, Anhui Provincial Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu 233030, China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
17
|
Domfeh S, Narkwa P, Quaye O, Kusi K, Rivera O, Danaah M, Musah B, Awandare G, Mensah K, Mutocheluh M. Cryptolepine and Nibima inhibit hepatitis B virus replication. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
18
|
Luczywo A, González LG, Aguiar ACC, Oliveira de Souza J, Souza GE, Oliva G, Aguilar LF, Casal JJ, Guido RVC, Asís SE, Mellado M. 3-aryl-indolinones derivatives as antiplasmodial agents: synthesis, biological activity and computational analysis. Nat Prod Res 2021; 36:3887-3893. [PMID: 33703954 DOI: 10.1080/14786419.2021.1895149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Malaria is an infectious illness, affecting vulnerable populations in Third World countries. Inspired by natural products, indole alkaloids have been used as a nucleus to design new antimalarial drugs. So, eighteen oxindole derivatives, aza analogues were obtained with moderate to excellent yields. Also, the saturated derivatives of oxindole and aza derivatives via H2/Pd/C reduction were obtained in good yields, leading to racemic mixtures of each compound. Next, the inhibitory activity against P. falciparum of 18 compounds were tested, founding six compounds with IC50 < 20 µM. The most active of these compounds was 8c; however, their unsaturated derivative 7c was inactive. Then, a structure-activity relationship analysis was done, founding that focused LUMO lobe on the specific molecular zone is related to inhibitory activity against P. falciparum. Finally, we found a potential inhibition of lactate dehydrogenase by oxindole derivatives, using molecular docking virtual screening.
Collapse
Affiliation(s)
- Ayelen Luczywo
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía G González
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anna C C Aguiar
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil
| | | | - Guilherme E Souza
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil
| | - Glaucius Oliva
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil
| | - Luis F Aguilar
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan J Casal
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, Laboratorio de Biomembranas, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Rafael V C Guido
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil
| | - Silvia E Asís
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marco Mellado
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
19
|
Zhang Y, Alvarez-Manzo H, Leone J, Schweig S, Zhang Y. Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani. Front Cell Infect Microbiol 2021; 11:624745. [PMID: 33763384 PMCID: PMC7982592 DOI: 10.3389/fcimb.2021.624745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Human babesiosis is a CDC reportable disease in the United States and is recognized as an emerging health risk in multiple parts of the world. The current treatment for human babesiosis is suboptimal due to treatment failures and unwanted side effects. Although Babesia duncani was first described almost 30 years ago, further research is needed to elucidate its pathogenesis and clarify optimal treatment regimens. Here, we screened a panel of herbal medicines and identified Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Alchornea cordifolia, and Polygonum cuspidatum to have good in vitro inhibitory activity against B. duncani in the hamster erythrocyte model. Furthermore, we found their potential bioactive compounds, cryptolepine, artemisinin, artesunate, artemether, and baicalein, to have good activity against B. duncani, with IC50 values of 3.4 μM, 14 μM, 7.4 μM, 7.8 μM, and 12 μM, respectively, which are comparable or lower than that of the currently used drugs quinine (10 μM) and clindamycin (37 μM). B. duncani treated with cryptolepine and quinine at their respective 1×, 2×, 4× and 8× IC50 values, and by artemether at 8× IC50 for three days could not regrow in subculture. Additionally, Cryptolepis sanguinolenta 90% ethanol extract also exhibited no regrowth after 6 days of subculture at doses of 2×, 4×, and 8× IC50 values. Our results indicate that some botanical medicines and their active constituents have potent activity against B. duncani in vitro and may be further explored for more effective treatment of babesiosis.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Hector Alvarez-Manzo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jacob Leone
- FOCUS Health Group, Naturopathic, Novato, CA, United States
| | - Sunjya Schweig
- California Center for Functional Medicine, Kensington, CA, United States
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Kayamba F, Malimabe T, Ademola IK, Pooe OJ, Kushwaha ND, Mahlalela M, van Zyl RL, Gordon M, Mudau PT, Zininga T, Shonhai A, Nyamori VO, Karpoormath R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur J Med Chem 2021; 217:113330. [PMID: 33744688 DOI: 10.1016/j.ejmech.2021.113330] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
Presently, artemisinin-based combination therapy (ACT) is the first-line therapy of Plasmodium falciparum malaria. With the emergence of malaria parasites that are resistant to ACT, alternative antimalarial therapies are urgently needed. In line with this, we designed and synthesised a series of novel N-(7-chloroquinolin-4-yl)-N'-(4,6-diphenylpyrimidin-2-yl)alkanediamine hybrids (6a-7c) and evaluated their inhibitory activity against the NF54 chloroquine-susceptible strain as a promising class of antimalarial compounds. The antiplasmodial screening revealed that seven analogues showed promising to good activity with half-maximal inhibitory concentration (IC50) = 0.32 μM-4.30 μM. Compound 7a with 1,4-diamine butyl linker and 4-hydroxyl phenyl on fourth and sixth position of pyrimidine core showed the most prominent activity with an IC50 value of 0.32 ± 0.06 μM, with a favourable safety profile of 9.79 to human kidney epithelial (HEK293) cells. The remaining six analogues showed moderate activity with IC50 values ranging from 7.50 μM to 83.01 μM. We further investigated the binding affinities of the molecules to two essential cytosolic P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z. Compound 7a exhibited the highest binding affinity for both PfHsp70s with KD in a lower nanomolar range (4.4-11.4 nM). Furthermore, molecular docking revealed that compounds 6, 6k, 7b and 7a exhibited better fitness in PfHsp70-1 with compound 7a showing the highest and lowest binding scores of -9.8 kcal/mol. Therefore, we speculate that PfHsp70-1 is one of the targets of these inhibitors. The bioisoteric replacement of the groups at phenyl ring at the fourth and sixth position of the pyrimidine core had a constructive association with antiplasmodial activity. The promising antiplasmodial activity of the synthesised analogues illustrates how crucial molecular hybridisation is as a strategy in the development of quinoline-pyrimidine hybrids as prospective antiprotozoal agents.
Collapse
Affiliation(s)
- Francis Kayamba
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Teboho Malimabe
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Idowu Kehinde Ademola
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Ofentse Jacob Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Michelle Gordon
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Pertunia T Mudau
- Department of Biochemistry University of Venda, School of Mathematical and Natural Sciences, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry University of Venda, School of Mathematical and Natural Sciences, Thohoyandou, 0950, South Africa; Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| |
Collapse
|
21
|
Ferrarini MG, Nisimura LM, Girard RMBM, Alencar MB, Fragoso MSI, Araújo-Silva CA, Veiga ADA, Abud APR, Nardelli SC, Vommaro RC, Silber AM, France-Sagot M, Ávila AR. Dichloroacetate and Pyruvate Metabolism: Pyruvate Dehydrogenase Kinases as Targets Worth Investigating for Effective Therapy of Toxoplasmosis. mSphere 2021; 6:e01002-20. [PMID: 33408226 PMCID: PMC7845590 DOI: 10.1128/msphere.01002-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Villeurbanne, France
| | - Lindice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| | - Richard Marcel Bruno Moreira Girard
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayke Bezerra Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carlla Assis Araújo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan de Almeida Veiga
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| | | | | | - Rossiane C Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marie France-Sagot
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Villeurbanne, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| |
Collapse
|
22
|
Shnyder SD, Wright CW. Recent Advances in the Chemistry and Pharmacology of Cryptolepine. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:177-203. [PMID: 33797643 DOI: 10.1007/978-3-030-64853-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cryptolepine, the principal constituent of the West African climbing shrub Cryptolepis sanguinolenta, continues to be of interest as a lead to new therapeutic agents, especially for the treatment of protozoal infections and cancer. This contribution reviews the research published in the last decade, highlighting new synthesis routes to cryptolepine and to analogs of this alkaloid, as well as their pharmacology. Studies relating to the use of C. sanguinolenta as an herbal medicine for the treatment of malaria are discussed, as well as the development of analogs of cryptolepine as leads to new agents for the treatment of malaria, trypanosomiasis, and cancer with an emphasis on the pharmacological mechanisms involved. Other potential therapeutic applications include antimicrobial, antidiabetic, and anti-inflammatory activities; the pharmacokinetics and toxicity of cryptolepine are also reviewed.
Collapse
Affiliation(s)
- Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
23
|
Ezzat SM, Salem MA, Zayed A. Plants against malarial and typhoid fever. PHYTOCHEMISTRY, THE MILITARY AND HEALTH 2021:285-312. [DOI: 10.1016/b978-0-12-821556-2.00024-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Surur AS, Huluka SA, Mitku ML, Asres K. Indole: The After Next Scaffold of Antiplasmodial Agents? Drug Des Devel Ther 2020; 14:4855-4867. [PMID: 33204071 PMCID: PMC7666986 DOI: 10.2147/dddt.s278588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Malaria remains a global public health problem due to the uphill fight against the causative Plasmodium parasites that are relentless in developing resistance. Indole-based antiplasmodial compounds are endowed with multiple modes of action, of which inhibition of hemozoin formation is the major mechanism of action reported for compounds such as cryptolepine, flinderoles, and isosungucine. Indole-based compounds exert their potent activity against chloroquine-resistant Plasmodium strains by inhibiting hemozoin formation in a mode of action different from that of chloroquine or through a novel mechanism of action. For example, dysregulating the sodium and osmotic homeostasis of Plasmodium through inhibition of PfATP4 is the novel mechanism of cipargamin. The potential of developing multi-targeted compounds through molecular hybridization ensures the existence of indole-based compounds in the antimalarial pipeline.
Collapse
Affiliation(s)
| | - Solomon Assefa Huluka
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Feng J, Leone J, Schweig S, Zhang Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front Med (Lausanne) 2020; 7:6. [PMID: 32154254 PMCID: PMC7050641 DOI: 10.3389/fmed.2020.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Lyme disease is the most common vector-borne disease in the US and Europe. Although the current recommended Lyme antibiotic treatment is effective for the majority of Lyme disease patients, about 10-20% of patients continue to suffer from persisting symptoms. There have been various anecdotal reports on the use of herbal extracts for treating patients with persisting symptoms with varying degree of improvements. However, it is unclear whether the effect of the herb products is due to their direct antimicrobial activity or their effect on host immune system. In the present study, we investigated the antimicrobial effects of 12 commonly used botanical medicines and three other natural antimicrobial agents for potential anti-Borrelia burgdorferi activity in vitro. Among them, 7 natural product extracts at 1% were found to have good activity against the stationary phase B. burgdorferi culture compared to the control antibiotics doxycycline and cefuroxime. These active botanicals include Cryptolepis sanguinolenta, Juglans nigra (Black walnut), Polygonum cuspidatum (Japanese knotweed), Artemisia annua (Sweet wormwood), Uncaria tomentosa (Cat's claw), Cistus incanus, and Scutellaria baicalensis (Chinese skullcap). In contrast, Stevia rebaudiana, Andrographis paniculata, Grapefruit seed extract, colloidal silver, monolaurin, and antimicrobial peptide LL37 had little or no activity against stationary phase B. burgdorferi. The minimum inhibitory concentration (MIC) values of Artemisia annua, Juglans nigra, and Uncaria tomentosa were quite high for growing B. burgdorferi, despite their strong activity against the non-growing stationary phase B. burgdorferi. On the other hand, the top two active herbs, Cryptolepis sanguinolenta and Polygonum cuspidatum, showed strong activity against both growing B. burgdorferi (MIC = 0.03-0.06% and 0.25-0.5%, respectively) and non-growing stationary phase B. burgdorferi. In subculture studies, only 1% Cryptolepis sanguinolenta extract caused complete eradication, while doxycycline and cefuroxime and other active herbs could not eradicate B. burgdorferi stationary phase cells as many spirochetes were visible after 21-day subculture. Further studies are needed to identify the active constituents of the effective botanicals and evaluate their combinations for more effective eradication of B. burgdorferi in vitro and in vivo. The implications of these findings for improving treatment of persistent Lyme disease are discussed.
Collapse
Affiliation(s)
- Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jacob Leone
- FOCUS Health Group, Naturopathic, Novato, CA, United States
| | - Sunjya Schweig
- California Center for Functional Medicine, Kensington, CA, United States
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
26
|
Cryptolepine, the Main Alkaloid of the Antimalarial Cryptolepis sanguinolenta (Lindl.) Schlechter, Induces Malformations in Zebrafish Embryos. Biochem Res Int 2019; 2019:7076986. [PMID: 31360547 PMCID: PMC6644280 DOI: 10.1155/2019/7076986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies on cryptolepine, the antimalarial and cytotoxic alkaloid of Cryptolepis sanguinolenta, showed that it preferentially accumulates in rapidly proliferating cells and melanin-containing tissues. Subsequently, we demonstrated that cryptolepine was toxic to murine embryos in vivo but no signs of teratogenicity. in vivo developmental studies can be confounded by maternal effects. Here, we hypothesized that cryptolepine-induced embryo toxicity occurs at least partly through direct inhibition of embryogenesis rather than indirectly through the induction of maternal toxicity. Aim To determine the effects of cryptolepine on developing zebrafish embryos ex vivo. Methods Healthy synchronized zebrafish eggs were treated with cryptolepine (10-1 - 5 × 102 μM), benzyl penicillin (6 - 6 × 102 μM), or mercury chloride (3.7 × 10-1 - 3.7 × 101 nM) from 6 to 72 hours postfertilization. Developing embryos were assessed at 24, 48, 72, and 96 hours under microscope for lethality, hatching rate, and malformation. Results LC50 for cryptolepine in the study was found to be 260 ± 0.174 μM. Cryptolepine induced dose- and time-dependent mortality from the 24 to 96 hours postfertilization. Lower cryptolepine concentration (<100 μM) caused mortality, approximately 15-18%, only after the 48 hours postfertilization. The most sensitive period of embryo lethality corresponded well with the pharyngula (24 to 48 hours) and hatching (48 to 72 hours) stages of embryonic development. Cryptolepine (10-1 - 5 × 102 μM) dose dependently inhibited the hatching rate. At doses above 500 μM, hatching was completely inhibited. Mercury chloride (3.7 × 10-1 - 3.7 × 101 nM), used as positive control, induced a consistent pattern of embryo lethality at all stages of development, whereas benzyl penicillin (6 - 6 × 102 μM), used as negative control, did not induce any significant embryo lethality. Morphological examination of (postfertilization day 5) of eleutheroembryos treated during embryonic development with cryptolepine showed decreased body length (growth inhibition), decreased eye diameter and bulginess, enlarged pericardia, and enlarged yolk sac and muscle malformations. Conclusion Cryptolepine induces malformations, growth retardation, and mortalities in rapidly dividing zebrafish embryos ex vivo.
Collapse
|
27
|
Moyo P, Kunyane P, Selepe MA, Eloff JN, Niemand J, Louw AI, Maharaj VJ, Birkholtz LM. Bioassay-guided isolation and identification of gametocytocidal compounds from Artemisia afra (Asteraceae). Malar J 2019; 18:65. [PMID: 30849984 PMCID: PMC6408838 DOI: 10.1186/s12936-019-2694-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Optimal adoption of the malaria transmission-blocking strategy is currently limited by lack of safe and efficacious drugs. This has sparked the exploration of different sources of drugs in search of transmission-blocking agents. While plant species have been extensively investigated in search of malaria chemotherapeutic agents, comparatively less effort has been channelled towards exploring them in search of transmission-blocking drugs. Artemisia afra (Asteraceae), a prominent feature of South African folk medicine, is used for the treatment of a number of diseases, including malaria. In search of transmission-blocking compounds aimed against Plasmodium parasites, the current study endeavoured to isolate and identify gametocytocidal compounds from A. afra. METHODS A bioassay-guided isolation approach was adopted wherein a combination of solvent-solvent partitioning and gravity column chromatography was used. Collected fractions were continuously screened in vitro for their ability to inhibit the viability of primarily late-stage gametocytes of Plasmodium falciparum (NF54 strain), using a parasite lactate dehydrogenase assay. Chemical structures of isolated compounds were elucidated using UPLC-MS/MS and NMR data analysis. RESULTS Two guaianolide sesquiterpene lactones, 1α,4α-dihydroxybishopsolicepolide and yomogiartemin, were isolated and shown to be active (IC50 < 10 μg/ml; ~ 10 μM) against both gametocytes and intra-erythrocytic asexual P. falciparum parasites. Interestingly, 1α,4α-dihydroxybishopsolicepolide was significantly more potent against late-stage gametocytes than to early-stage gametocytes and intra-erythrocytic asexual P. falciparum parasites. Additionally, both isolated compounds were not overly cytotoxic against HepG2 cells in vitro. CONCLUSION This study provides the first instance of isolated compounds from A. afra against P. falciparum gametocytes as a starting point for further investigations on more plant species in search of transmission-blocking compounds.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Phaladi Kunyane
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mamoalosi A Selepe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort, Pretoria, 0110, South Africa
| | - Jandeli Niemand
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Abraham I Louw
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|