1
|
Zhang Z, Lyu M, Han X, Bandara S, Cui M, Istvan ES, Geng X, Tringides ML, Gregor WD, Miyagi M, Oberstaller J, Adams JH, Zhang Y, Nieman MT, von Lintig J, Goldberg DE, Yu EW. The Plasmodium falciparum NCR1 transporter is an antimalarial target that exports cholesterol from the parasite's plasma membrane. SCIENCE ADVANCES 2024; 10:eadq6651. [PMID: 39693420 PMCID: PMC11654669 DOI: 10.1126/sciadv.adq6651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, Plasmodium falciparum, has developed resistance to nearly all currently available antimalarial drugs. The P. falciparum Niemann-Pick type C1-related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available. Here, we present three structures of PfNCR1 with and without the functional inhibitor MMV009108 at resolutions between 2.98 and 3.81 Å using single-particle cryo-electron microscopy (cryo-EM), suggesting that PfNCR1 binds cholesterol and forms a cholesterol transport tunnel to modulate the composition of the parasite plasma membrane. Cholesterol efflux assays show that PfNCR1 is an exporter capable of extruding cholesterol from the membrane. Additionally, the inhibition mechanism of MMV009108 appears to be due to a direct blockage of PfNCR1, preventing this transporter from shuttling cholesterol.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xu Han
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sepalika Bandara
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA 02115, USA
| | - Eva S. Istvan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xinran Geng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marios L. Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, 3720 Spectrum Boulevard, Suite 404, Tampa, FL 33612, USA
| | - John H. Adams
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, 3720 Spectrum Boulevard, Suite 404, Tampa, FL 33612, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Sulaiman EH, Mohammad LJ, Thanoon AH, Karimi I. Immuno-Informatics Insight into the Relationship Between Cholesterol and Cytokines in Cutaneous Leishmaniasis: From clinics to computation. Sultan Qaboos Univ Med J 2024; 24:507-514. [PMID: 39634810 PMCID: PMC11614011 DOI: 10.18295/squmj.7.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives The role of serum cholesterol and its interactions with cytokines in human cutaneous leishmaniasis (CL) pathophysiology is unknown. This study aimed to evaluate the correlation among serum total cholesterol (TC), very-low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and cytokines (including interleukin [IL] 10), IL-12 and tumour necrosis factor-alpha [TNF-α]) in CL. The cholesterol-cytokine network was analysed to illuminate the pathogenesis of CL. Methods This case-control study was conducted from December 2022 to March 2023 in hospitals within Baghdad and Wasit provinces, Iraq, and included CL and CL-free subjects ranging between 20-30 years of age. The serum samples were analysed via commercial kits to detect TC, IL-10, IL-12, TNF-α, VLDL-C, LDL-C, HDL-C and TG levels. Computational efforts to dissect cholesterol-protein interaction networks were employed using STITCH. Results A total of 50 CL and 25 control subjects were included. The TC, HDL-C and LDL-C levels in CL patients were markedly lower (P = 0.0001) than in control subjects, whereas the IL-10, IL-12, TNF-α, VLDL-C and TG levels were higher in CL patients. Serum cholesterol showed no correlation with cytokines; however, a significant correlation (r = 0.57; P = 0.026) was observed between IL-12 and TNF-α. Within the cholesterol-protein network, cholesterol potentially interacted with IL-10, connecting cholesterol to modules with immunological significance, including TRAF1, TRAF2 and TNF receptor superfamily member 1B, as well as IL-10, IL-10RA and IL-12RB1. Conclusion This study showed the alteration of lipid and lipoprotein in CL and introduced 2 immunological modules in CL, highlighting the importance of the altered cholesterol-cytokine interaction network in CL.
Collapse
Affiliation(s)
- Evan H. Sulaiman
- Departments of Experimental Therapy
- Department of Applied Pathological Analysis, Al-Nahrain University, Baghdad,
Iraq
| | - Layth J. Mohammad
- Microbiology Department, Faculty of Medicine, Babylon University, Hilla City,
Iraq
| | - Allaa H. Thanoon
- Medical Genetics, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad,
Iraq
| | - Isaac Karimi
- Laboratory for Computational Physiology, Biology Department, Faculty of Science, Razi University, Kermanshah,
Iran
| |
Collapse
|
3
|
Miura K, Diouf A, Fay MP, Barrett JR, Payne RO, Olotu AI, Minassian AM, Silk SE, Draper SJ, Long CA. Assessment of precision in growth inhibition assay (GIA) using human anti-PfRH5 antibodies. Malar J 2023; 22:159. [PMID: 37208733 PMCID: PMC10196285 DOI: 10.1186/s12936-023-04591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ruth O Payne
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
4
|
Beri D, Singh M, Rodriguez M, Goyal N, Rasquinha G, Liu Y, An X, Yazdanbakhsh K, Lobo CA. Global Metabolomic Profiling of Host Red Blood Cells Infected with Babesia divergens Reveals Novel Antiparasitic Target Pathways. Microbiol Spectr 2023; 11:e0468822. [PMID: 36786651 PMCID: PMC10100774 DOI: 10.1128/spectrum.04688-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Babesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC. Our results reveal an extensive parasite-mediated modulation of RBC metabolite levels of all classes, including lipids, amino acids, carbohydrates, and nucleotides, with numerous metabolic species varying in proportion to the level of infection. Many of these molecules are scavenged from the host RBCs. This is in accord with the needs of a rapidly proliferating parasite with limited biosynthetic capabilities. Probing these pathways in depth, we used growth inhibition assays to quantitate parasite susceptibility to drugs targeting these pathways and stimulated emission depletion (STED) microscopy to obtain high-resolution images of drug-treated parasites to correlate changes in morphology with specific metabolic blocks in order to validate the data generated by the untargeted metabolomics platform. Thus, interruption of cholesterol scavenging from the host cell led to premature parasite egress, while chemical targeting of the hydrolysis of acyl glycerides led to the buildup of malformed parasites that could not successfully egress. This is the first report detailing the global metabolomic profile of the B. divergens-infected RBC. Besides deciphering diverse aspects of the host-parasite relationship, our results can be exploited by others to uncover further drug targets in the host-parasite biochemical network. IMPORTANCE Human babesiosis is caused by apicomplexan parasites of the Babesia genus and is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations. Through its continuous cycles of invasion, proliferation, and egress, B. divergens radically changes the metabolic environment of the host red blood cell, allowing us opportunities to study potential chemical vulnerabilities that can be targeted by drugs. This is the first global metabolomic profiling of Babesia-infected human red blood cells, and our analysis revealed perturbation in all biomolecular classes at levels proportional to the level of infection. In particular, lipids and energy flux pathways in the host cell were altered by infection. We validated the changes in key metabolic pathways by performing inhibition assays accompanied by high-resolution microscopy. Overall, this global metabolomics analysis of Babesia-infected red blood cells has helped to uncover novel aspects of parasite biology and identified potential biochemical pathways that can be targeted for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Divya Beri
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Manpreet Singh
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Naman Goyal
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | | - Yunfeng Liu
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Xiuli An
- Department of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Karina Yazdanbakhsh
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| |
Collapse
|
5
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
6
|
Groomes PV, Kanjee U, Duraisingh MT. RBC membrane biomechanics and Plasmodium falciparum invasion: probing beyond ligand-receptor interactions. Trends Parasitol 2022; 38:302-315. [PMID: 34991983 PMCID: PMC8917059 DOI: 10.1016/j.pt.2021.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.
Collapse
Affiliation(s)
- Patrice V Groomes
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Ahiya AI, Bhatnagar S, Morrisey JM, Beck JR, Vaidya AB. Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum. Microbiol Spectr 2022; 10:e0015822. [PMID: 35196803 PMCID: PMC8865471 DOI: 10.1128/spectrum.00158-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Cholesterol is the most abundant lipid in the erythrocyte. During its blood-stage development, the malaria parasite establishes an active cholesterol gradient across the various membrane systems within the infected erythrocyte. Interestingly, some antimalarial compounds have recently been shown to disrupt cholesterol homeostasis in the intraerythrocytic stages of Plasmodium falciparum. These studies point to the importance of cholesterol for parasite growth. Previously, reduction of cholesterol from the erythrocyte membrane by treatment with methyl-β-cyclodextrin (MβCD) was shown to inhibit parasite invasion and growth. In addition, MβCD treatment of trophozoite-stage P. falciparum was shown to result in parasite expulsion from the host cell. We have revisited these phenomena by using live video microscopy, ultrastructural analysis, and response to antimalarial compounds. By using time-lapse video microscopy of fluorescently tagged parasites, we show that MβCD treatment for just 30 min causes dramatic expulsion of the trophozoite-stage parasites. This forceful expulsion occurs within 10 s. Remarkably, the plasma membrane of the host cell from which the parasite has been expelled does not appear to be compromised. The parasitophorous vacuolar membrane (PVM) continued to surround the extruded parasite, but the PVM appeared damaged. Treatment with antimalarial compounds targeting PfATP4 or PfNCR1 prevented MβCD-mediated extrusion of the parasites, pointing to a potential role of cholesterol dynamics underlying the expulsion phenomena. We also confirmed the essential role of erythrocyte plasma membrane cholesterol for invasion and growth of P. falciparum. This defect can be partially complemented by cholesterol and desmosterol but not with epicholesterol, revealing stereospecificity underlying cholesterol function. Overall, our studies advance previous observations and reveal unusual cell biological features underlying cholesterol depletion of the infected erythrocyte plasma membrane. IMPORTANCE Malaria remains a major challenge in much of the world. Symptoms of malaria are caused by the growth of parasites belonging to Plasmodium spp. inside the red blood cells (RBCs), leading to their destruction. The parasite depends upon its host for much of its nutritional needs. Cholesterol is a major lipid in the RBC plasma membrane, which is the only source of this lipid for malaria parasites. We have previously shown that certain new antimalarial compounds disrupt cholesterol homeostasis in P. falciparum. Here, we use live time-lapse video microscopy to show dramatic expulsion of the parasite from the host RBC when the cholesterol content of the RBC is reduced. Remarkably, this expulsion is inhibited by the antimalarials that disrupt lipid homeostasis. We also show stereospecificity of cholesterol in supporting parasite growth inside RBC. Overall, these results point to a critical role of cholesterol in the physiology of malaria parasites.
Collapse
Affiliation(s)
- Avantika I. Ahiya
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Suyash Bhatnagar
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Protective Effects of Gymnema inodorum Leaf Extract on Plasmodium berghei-Induced Hypoglycemia, Dyslipidemia, Liver Damage, and Acute Kidney Injury in Experimental Mice. J Parasitol Res 2021; 2021:1896997. [PMID: 34552764 PMCID: PMC8452429 DOI: 10.1155/2021/1896997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Malaria complications are the most frequent cause of mortality from parasite infection. This study is aimed at investigating the protective effect of Gymnema inodorum leaf extract (GIE) on hypoglycemia, dyslipidemia, liver damage, and acute kidney injury induced by Plasmodium berghei infection in mice. Groups of ICR mice were inoculated with 1 × 107 parasitized erythrocytes of P. berghei ANKA and administered orally by gavage with 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated controls were given distilled water, while the positive control was treated with 10 mg/kg of chloroquine. The results showed that malaria-associated hypoglycemia, dyslipidemia, liver damage, and acute kidney injury were found in the untreated mice as indicated by the significant alteration of biological markers. On the contrary, in 250 and 500 mg/kg of GIE-treated mice, the biological markers were normal compared to healthy controls. The highest protective effect was found at 500 mg/kg similar to the CQ-treated group. However, GIE at a dose of 100 mg/kg did not show protection during malaria infection. This study demonstrated that GIE presented potential therapeutic effects on PbANKA-induced hypoglycemia, dyslipidemia, liver damage, and acute kidney injury. The results obtained confirm the prospect of G. inodorum as an essential source of new antimalarial compounds and justify folkloric use as an alternative malarial treatment.
Collapse
|
9
|
Zinöcker MK, Svendsen K, Dankel SN. The homeoviscous adaptation to dietary lipids (HADL) model explains controversies over saturated fat, cholesterol, and cardiovascular disease risk. Am J Clin Nutr 2021; 113:277-289. [PMID: 33471045 DOI: 10.1093/ajcn/nqaa322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
SFAs play the leading role in 1 of the greatest controversies in nutrition science. Relative to PUFAs, SFAs generally increase circulating concentrations of LDL cholesterol, a risk factor for atherosclerotic cardiovascular disease (ASCVD). However, the purpose of regulatory mechanisms that control the diet-induced lipoprotein cholesterol dynamics is rarely discussed in the context of human adaptive biology. We argue that better mechanistic explanations can help resolve lingering controversies, with the potential to redefine aspects of research, clinical practice, dietary advice, public health management, and food policy. In this paper we propose a novel model, the homeoviscous adaptation to dietary lipids (HADL) model, which explains changes in lipoprotein cholesterol as adaptive homeostatic adjustments that serve to maintain cell membrane fluidity and hence optimal cell function. Due to the highly variable intake of fatty acids in humans and other omnivore species, we propose that circulating lipoproteins serve as a buffer to enable the rapid redistribution of cholesterol molecules between specific cells and tissues that is necessary with changes in dietary fatty acid supply. Hence, circulating levels of LDL cholesterol may change for nonpathological reasons. Accordingly, an SFA-induced raise in LDL cholesterol in healthy individuals could represent a normal rather than a pathologic response. These regulatory mechanisms may become disrupted secondarily to pathogenic processes in association with insulin resistance and the presence of other ASCVD risk factors, as supported by evidence showing diverging lipoprotein responses in healthy individuals as opposed to those with metabolic disorders such as insulin resistance and obesity. Corresponding with the model, we suggest alternative contributing factors to the association between elevated LDL cholesterol concentrations and ASCVD, involving dietary factors beyond SFAs, such as an increased endotoxin load from diet-gut microbiome interactions and subsequent chronic low-grade inflammation that interferes with fine-tuned signaling pathways.
Collapse
Affiliation(s)
| | - Karianne Svendsen
- Department of Nutrition, University of Oslo, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|