1
|
Su H, Xi J, Miao M, Liang H, Chen Y, Wang Z, Zhou Y, Jin Y, Ji H, Yuan W. Bisphenol analogs exposure in 4-year-old children and their intelligence quotient at 6 years: A prospective cohort study. ENVIRONMENTAL RESEARCH 2025; 276:121528. [PMID: 40185270 DOI: 10.1016/j.envres.2025.121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Prenatal exposure to bisphenol A (BPA) has been shown to impact offspring cognition, behavior, and intelligence. However, whether co-exposure to bisphenol analogs (BPs) during childhood affects children's intelligence remains unclear. We included 465 mother-child pairs from the Shanghai Minhang Birth Cohort Study to examine the impact of children's exposure to BPs at 4 years of age on the intelligence quotient (IQ) measured at 6 years. BPs concentrations were measured in single-spot urine samples collected from 4-year-old children. The Wechsler Intelligence Scale for Children was used to evaluate IQ at 6 years. Multiple linear regression models were used to examine the associations between BPs and IQ. Bayesian Kernel Machine Regression (BKMR) models were used to evaluate the joint and single-exposure effects of BPs mixture. In girls, exposure to bisphenol F (BPF) was inversely associated with Full-Scale IQ (FSIQ) and Perceptual Reasoning Index (PRI) (βFSIQ = -5.46, 95 % confidence interval [CI]: -9.97, -0.94; βPRI = -5.14, 95 % CI: -9.95, -0.32). By BKMR, BPF contributed the most to the joint effect of BPs in girls. The association remained robust after adjusting for maternal IQ. In boys, exposure to tetrachlorobisphenol A seemed to be associated with an increase in FSIQ and PRI; however, the number of exposed boys was small. Our study suggests that BPs exposure at 4 years of age may be associated with a lower IQ at 6 years in girls. BPF may not be a safe substitute for BPA. Further epidemiological studies are required to confirm these findings.
Collapse
Affiliation(s)
- Huijia Su
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yinliu Jin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
2
|
Zuo X, Sun M, Bai H, Zhang S, Luan J, Yu Q, Fu Z, Zhao Q, Sun M, Zhao X, Feng X. The effects of 17β-trenbolone and bisphenol A on sexual behavior and social dominance via the hypothalamic-pituitary-gonadal axis in male mice. J Environ Sci (China) 2025; 151:54-67. [PMID: 39481959 DOI: 10.1016/j.jes.2024.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB. Three-week-old male Balb/c mice were exposed orally to 17-TB (100 µg/(kg·day)) and BPA (4 mg/(kg·day)) for 28 days. Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice, intensified both male and female sexual behavior, and attracted and accepted female mice. It also increased social dominance through tube tests in male mice and markedly activated the c-Fos+ immune response in the medial prefrontal cortex (mPFC) and basal amygdala (BLA). ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone (GnRH), growth hormone (GH), estradiol (E2), and luteinizing hormone (LH) levels, as well as testicular lesions and androgen receptor (ARβ) and estrogen receptor (ERα) synthesis. Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes. These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice, possibly through modulation of the hypothalamic-pituitary-gonadal axis. This study provides insights relevant to human reproductive health and neuro-social behavioral research, and the potential risk of environmental disturbances should not be overlooked.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Minghe Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Cantua R, Mulligan K. Developmental neurotoxicity of bisphenol F and bisphenol S in animal model systems: A literature review. Neurotoxicology 2025; 108:263-280. [PMID: 40280242 DOI: 10.1016/j.neuro.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neurodevelopmental disorders have complex etiologies, stemming both from genetic and environmental risk factors, including gestational exposure to bisphenol A (BPA). BPA is an endocrine-disrupting chemical widely used in the synthesis of plastics and epoxy-resins. In 2012, the Food and Drug Administration issued a ban on the use of BPA in certain baby and childhood products, which contributed to the proliferation of BPA-free products. To make products without BPA, plastic and epoxy manufacturers often use chemical analogs, including bisphenol F (BPF) and bisphenol S (BPS). However, the structural and biochemical similarities BPF and BPS share with BPA suggest they may have similar molecular and cellular impacts on the developing nervous system, despite consumers generally regarding BPA-free products as safer alternatives. In this review, we synthesized all available peer-reviewed primary literature to date reporting on the neurodevelopmental impacts of BPF and/or BPS in animal models. In total, 61 papers were identified as relevant to the topic, including evaluation of BPF- and BPS-associated neurodevelopmental phenotypes such as changes in neurodevelopmental gene expression, the proliferation and differentiation of neural stem cells, synaptogenesis, central nervous system morphology, neuronal cell death, and behavior. Though less extensively studied than BPA, the collective works described here indicate that BPF and BPS can act as developmental neurotoxicants in animal models, urging further mechanistic and epidemiological analyses of these bisphenol analogs, as well as a reconsideration by regulatory agencies of policies surrounding their usage.
Collapse
Affiliation(s)
- Ricardo Cantua
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| |
Collapse
|
4
|
Denys ME, Kozlova EV, Liu R, Bishay AE, Do EA, Piamthai V, Korde YV, Luna CN, Lam AA, Hsiao A, Currás-Collazo M. Maternal probiotic supplementation protects against PBDE-induced developmental, behavior and metabolic reprogramming in a sexually dimorphic manner: Role of gut microbiome. Arch Toxicol 2025; 99:423-446. [PMID: 39520540 PMCID: PMC11748483 DOI: 10.1007/s00204-024-03882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting persistent organic pollutants (POPs) used as flame retardants in a wide range of commercial applications. We have previously reported neurobehavioral and metabolic reprogramming produced by developmental PBDEs. PBDEs perturb the microbiome, an influencer of life-long health, while probiotic supplementation with Limosilactobacillus reuteri (LR) can avert neurobehavioral and endocrine disruption. We, therefore, tested the hypothesis that perinatal maternal LR supplementation would protect gut microbiome richness and diversity, developmental milestones, adult neurobehavior and metabolic homeostasis in PBDE-exposed offspring. C57BL/6N dams were orally exposed to a commercial penta-mixture of PBDEs, DE-71, at 0.1 mg/kg/day, or corn oil vehicle (VEH/CON) during gestation and lactation. Mice offspring received DE-71 or VEH/CON with or without co-administration of LR (ATCC-PTA-6475) indirectly via their mother from gestational day (GD) 0 until postnatal day (P)21 (Cohort 1), or continued to receive LR directly from P22 through adulthood (Cohort 2). Results of fecal 16S rRNA sequencing indicated age- and sex-dependent effects of DE-71 on gut microbial communities. Maternal LR treatment protected against DE-71-induced reduction in α-diversity in P22 females and against β-diversity alterations in P30 males. In females, DE-71 changed the relative abundance of specific bacterial taxa, such as Tenericutes and Cyanobacteria (elevated) and Deferribacterota (reduced). In males, several Firmicutes taxa were elevated, while Proteobacteria, Chlamydiae, and several Bacteroidota taxa were reduced. The number of disrupted taxa normalized by maternal LR supplementation was as follows: 100% in P22 females and 33% in males at P22 and 25% at P30. Maternal LR treatment protected against DE-71-induced delay of postnatal body weight gain in males and ameliorated the abnormal timing of incisor eruption in both sexes. Further, DE-71 produced exaggerated digging in both sexes as well as locomotor hyperactivity in females, effects that were mitigated by maternal LR only in females. Other benefits of LR therapy included normalization of glucose tolerance, insulin-to-glucose ratio and plasma leptin in adult DE-71 females (Cohort 2). This study provides evidence that probiotic supplementation can mitigate POP-induced reprogramming of neurodevelopment, adult neurobehavior, and glucose metabolism in association with modified gut microbial community structure in a sex-dependent manner.
Collapse
Affiliation(s)
- Maximillian E Denys
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Elena V Kozlova
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Anthony E Bishay
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Elyza A Do
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Varadh Piamthai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Yash V Korde
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Crystal N Luna
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Artha A Lam
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Margarita Currás-Collazo
- Department of Molecular Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Mogus JP, Marin M, Arowolo O, Salemme V, Suvorov A. Developmental exposures to common environmental pollutants result in long-term Reprogramming of hypothalamic-pituitary axis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124890. [PMID: 39236844 DOI: 10.1016/j.envpol.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Olatunbosun Arowolo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA; Currently at Department of Pharmacology, Molecular, Cellular and Integrative Physiology Group, University of California - Davis, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
6
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024; 54:696-753. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Song S, Li Y, Lv L, Dong M, Qin Z. Tetrabromobisphenol A exerts thyroid disrupting effects but has little overt impact on postnatal brain development and neurobehaviors in mice. J Environ Sci (China) 2024; 142:1-10. [PMID: 38527875 DOI: 10.1016/j.jes.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. There is evidence showing that TBBPA can exert thyroid disrupting effects in mammals, but different results were also reported, along with inconsistent reports regarding its neurotoxicity. Here, we investigated thyroid disrupting effects and neurotoxicity of TBBPA (5, 50, 500 µg/(kg·day)) to male mice following maternal and direct exposure through drinking water, with the anti-thyroid drug propylthiouracil (PTU) as the positive control. On postnatal day (PND) 15, we expectedly observed severe thyroid compensatory hyperplasia and cerebellar developmental retardation in PTU-treated pups. The highest dose of TBBPA also caused thyroid histological alteration but had no effects on cerebellar development in terms of Purkinje cell morphology and the thickness of the internal granular layer and the molecular layer of the cerebellum. During puberty and adulthood, the thyroid morphological alterations became more pronounced in the TBBPA-treated animals, accompanied by decreased serum thyroid hormone levels. Furthermore, the 50 and 500 µg/(kg·day) TBBPA groups showed a significant decrease in the serum level of serotonin, a neurotransmitter associated with anxiety behaviors. Correspondingly, the highest dose group displayed anxiety-like behaviors in the elevated plus-maze test on PND 35, but this neurobehavioral alteration disappeared on PND 56. Moreover, no changes in neurobehavioral parameters tested were found in TBBPA-treated animals at puberty and adulthood. Altogether, all observations show that TBBPA can exert thyroid disrupting effects but has little overt impact on brain development and neurobehaviors in mice, suggesting that thyroid disruption does not necessarily cause overtly adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Shilin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chouchene L, Boughammoura S, Ben Rhouma M, Mlouka R, Banni M, Messaoudi I, Kessabi K. Effect of thyroid disruption on ovarian development following maternal exposure to Bisphenol S. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52596-52614. [PMID: 39153066 DOI: 10.1007/s11356-024-34666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Thyroid hormones play a crucial role in numerous physiological processes, including reproduction. Bisphenol S (BPS) is a structural analog of Bisphenol A known for its toxic effects. Interference of this substitute with normal thyroid function has been described. To investigate the effect of thyroid disruption on ovarian development following maternal exposure to BPS, female rats were exposed, daily, to either AT 1-850 (a thyroid hormone receptor antagonist) (10 nmol/rat) or BPS (0.2 mg/kg) during gestation and lactation. The effects on reproductive outcome, offspring development, histological structures, hormone levels, oxidative status, cytoskeleton proteins expression, and oocyte development gene expression were examined. Our results are in favor of offspring ovarian development disruption due to thyroid disturbance in adult pregnant females. During both fetal and postnatal stages, BPS considerably altered the histological structure of the thyroid tissue as well as oocyte and follicular development, which led to premature ovarian failure and stimulation of oocyte atresia, being accompanied with oxidative stress, hypothalamic-pituitary-ovarian axis disorders, and cytoskeletal dynamic disturbance. Crucially, our study underscores that BPS may induce reproductive toxicity by blocking nuclear thyroid hormone receptors, evidenced by the parallelism and the perfect meshing between the data obtained following exposure to AT 1-850 and those after the treatment by this substitute.
Collapse
Affiliation(s)
- Lina Chouchene
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sana Boughammoura
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Mariem Ben Rhouma
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Kaouthar Kessabi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
9
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
10
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
11
|
Bonaldo B, Casile A, Ostuni MT, Bettarelli M, Nasini S, Marraudino M, Panzica G, Gotti S. Perinatal exposure to bisphenol A or S: Effects on anxiety-related behaviors and serotonergic system. CHEMOSPHERE 2024; 349:140827. [PMID: 38042429 DOI: 10.1016/j.chemosphere.2023.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 μg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Marialaura Teresa Ostuni
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131, Padua, PD, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
12
|
Mohan S, Jacob J, Malini NA, Prabhakar R, Kayalakkakathu RG. Biochemical responses and antioxidant defense mechanisms in Channa Striatus exposed to Bisphenol S. J Biochem Mol Toxicol 2024; 38:e23651. [PMID: 38348707 DOI: 10.1002/jbt.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol S (BPS), a BPA analog and a safer alternative, is utilized in a diverse range of industrial applications, such as making polycarbonate plastics, epoxy resins, thermal receipt papers, and currency bills. Recently, the increased use of BPS in containers and packages for daily life has been interrogated due to its identical chemical structure and probable endocrine-disrupting actions as BPA has. The present study aimed to evaluate the alterations in biochemical indices and antioxidant enzymes as certain indicators of the endocrine-disrupting effect of BPS in Channa striatus, a freshwater fish. BPS-exposed fish species were subjected to three sub-lethal concentrations of BPS (1, 4, and 12 ppm) and observed after an interval of 7 and 21 days. Exposure to BPS caused a reduction in the level of protein in muscle, gonads and the liver due to an impairment of protein synthesis. Levels of cholesterol in the muscle, gonads, and liver of BPS-exposed fish were found to be decreased after treatment, indicating either an inhibition of cholesterol biosynthesis in the liver or reduced absorption of dietary cholesterol. The levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase showed remarkable increases, while the activity of glutathione S-transferase decreased considerably, indicating the antioxidant defense mechanism to counteract the oxidative stress induced by BPS. Moreover, a significant increase was noted in the level of lipid peroxidation products, like malondialdehyde and conjugate diene, which represent biomarkers of oxidative stress. The histoarchitecture changes were also observed in the liver, muscle and gonads of BPS-treated fish species. The present study showed that sub-lethal exposure to BPS significantly influenced the activities of these enzymes and peroxidation byproducts. From this study, it is concluded that BPS-caused toxic effects in fish species lead to an imbalance in the antioxidant defense system. It is clearly indicated that BPS toxicity could lead to susceptible oxidative stress in various tissues and could damage vital organs.
Collapse
Affiliation(s)
- Sini Mohan
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Jubi Jacob
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Nair Achuthan Malini
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Reshma Prabhakar
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | | |
Collapse
|
13
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
14
|
Moon HJ, Shin HS, Lee SH, Hong EJ, Ahn C, Yoo YM, Jeung EB, Lee GS, An BS, Jung EM. Effects of prenatal bisphenol S and bisphenol F exposure on behavior of offspring mice. Anim Cells Syst (Seoul) 2023; 27:260-271. [PMID: 37842186 PMCID: PMC10572065 DOI: 10.1080/19768354.2023.2264905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Bisphenol A (BPA) is a representative endocrine-disrupting chemical that exhibits hormonal disturbance reactions. Various alternatives, such as Bisphenol S (BPS) and Bisphenol F (BPF), are being developed. BPS and BPF (which are representative alternatives to BPA) are used in consumer products such as polycarbonate plastics and epoxy resins. They have structures similar to those of BPA and have also been proven to be exogenous endocrine disruptors. However, although there are many studies on BPA, there are few studies on the neurodevelopmental effects of BPS and BPF. Therefore, in this study, we analyzed neurobehavioral changes in offspring mice exposed to BPS and BPF during brain development by administering BPS and BPF to pregnant mice. We found that prenatal exposure to BPS and BPF did not affect anxiety-and depression-like behaviors, locomotion, sociability, memory, or cognition functions in offspring mice. However, exposure to BPS and BPF decreased the preference for social novelty in the offspring mice. Taken together, these findings suggest that perinatal exposure to BPS and BPF affects changes in social behaviors, but not other behavioral changes such as emotion, memory, or cognition in the offspring mice.
Collapse
Affiliation(s)
- Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Eui-Ju Hong
- Department of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yeong-Min Yoo
- East Coast Life Sciences Institute, College of Life Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Geun-Shik Lee
- Department of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
15
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
16
|
King'uyu DN, Edgar EL, Figueroa C, Kirkland JM, Kopec AM. Morphine exposure during adolescence induces enduring social changes dependent on adolescent stage of exposure, sex, and social test. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537856. [PMID: 37131669 PMCID: PMC10153224 DOI: 10.1101/2023.04.21.537856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drug exposure during adolescence, when the 'reward' circuitry of the brain is developing, can permanently impact reward-related behavior. Epidemiological studies show that opioid treatment during adolescence, such as pain management for a dental procedure or surgery, increases the incidence of psychiatric illness including substance use disorders. Moreover, the opioid epidemic currently in the United States is affecting younger individuals raising the impetus to understand the pathogenesis of the negative effects of opioids. One reward-related behavior that develops during adolescence is social behavior. We previously demonstrated that social development occurs in rats during sex-specific adolescent periods: early to mid-adolescence in males (postnatal day (P)30-40) and pre-early adolescence in females (P20-30). We thus hypothesized that morphine exposure during the female critical period would result in adult sociability deficits in females, but not males, and morphine administered during the male critical period would result in adult sociability deficits in males, but not females. We found that morphine exposure during the female critical period primarily resulted in deficits in sociability in females, while morphine exposure during the male critical period primarily resulted in deficits in sociability primarily in males. However, depending on the test performed and the social parameter measured, social alterations could be found in both sexes that received morphine exposure at either adolescent stage. These data indicate that when drug exposure occurs during adolescence, and how the endpoint data are measured, will play a large role in determining the effects of drug exposures on social development.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Christopher Figueroa
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - J M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
17
|
Abe N, Sasaki M, Nakajima A. Tetrabromobisphenol A and hexabromocyclododecane, brominated flame retardants, trigger endoplasmic reticulum stress and activate necroptosis signaling in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104056. [PMID: 36592678 DOI: 10.1016/j.etap.2022.104056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are brominated flame retardants commonly used in a variety of industrial and consumer products. In this study, we performed RNA sequencing analysis of PC12 cells to clarify the mechanisms by which TBBPA and HBCD induce neurotoxicity. Differential expression analysis demonstrated that 636 and 271 genes were differentially expressed after TBBPA and HBCD treatment, respectively. Gene Ontology (GO) enrichment analysis revealed that genes annotated with the GO term "endoplasmic reticulum unfolded protein response" were upregulated in both TBBPA- and HBCD-treated groups. Furthermore, protein expression of endoplasmic reticulum stress markers, such as HSPA5 and DDIT3, as well as cleaved caspase-3, an apoptosis marker, were induced by TBBPA and HBCD. We also found that the cytotoxicity induced by TBBPA and HBCD was blocked by necrostatin-1, a necroptosis inhibitor, indicating the contribution of necroptosis. Our findings provide new insight into the mechanisms of toxicity induced by these chemicals.
Collapse
Affiliation(s)
- Nanami Abe
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Mao Sasaki
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan; Department of Industry Development Sciences, Hirosaki University Graduate School of Sustainable Community Studies, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
18
|
Geiger SD, Musaad S, Hill J, Aguiar A, Schantz S. Sex-specific associations between urinary bisphenols concentrations during pregnancy and problematic child behaviors at age 2 years. Neurotoxicol Teratol 2023; 96:107152. [PMID: 36642394 PMCID: PMC10170945 DOI: 10.1016/j.ntt.2023.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Effects of prenatal bisphenol A (BPA) exposure on child behavior are mixed with some reports suggesting increased problematic behaviors in girls (e.g., aggression and emotional reactivity) and in boys (i.e., externalizing behaviors), while other reports suggest decreased problematic behaviors in girls. Little is known about the potential impact of pregnancy bisphenol S (BPS) exposure on child behavior. In a prospective cohort study (n = 68), five maternal spot urine samples collected across pregnancy were pooled and analyzed for BPA and BPS. Child behavior at 2 years was assessed using the Child Behavior Checklist (CBCL). Linear regression models were used to assess associations between bisphenols concentrations and both composite and syndrome CBCL scales. Exposure x child sex interactions were included in addition to their main effects and sex-stratified analyses were conducted. Models were adjusted for maternal age, number of siblings, and child age at CBCL intake. Mean maternal age was 29.7 years. Most women were White (88%), had an annual household income ≥$50,000 (66%), and at least a college degree (81%). Median concentrations were 1.3 ng/mL (range 0.4-7.2) for BPA and 0.3 ng/mL (range 0.1-3.5) for BPS. Sex modified the relationship between BPA and scores on several syndrome scales-anxious-depressed, aggressive, and sleep problems-where the association was consistently inverse in males in lower BPA concentrations, and positive (more reported behavior problems) among girls in the higher BPA group. Higher BPS was associated with more problematic internalizing behaviors among girls but not boys, and sex modified the relationship between BPS and emotionally reactive behaviors (Pinteraction = 0.128), with sex-specific estimates revealing more emotionally reactive behaviors among girls (expβ = 3.92 95% CI 1.16, 13.27; P = 0.028) but not boys. Findings were mixed overall, but one notable finding was that BPS, a replacement for BPA, was associated with increased problematic behaviors. There is a need for replication of findings due to our small sample size.
Collapse
Affiliation(s)
- Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| | - Salma Musaad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Jennifer Hill
- Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Andréa Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States of America
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States of America
| |
Collapse
|
19
|
Developmental and Reproductive Impacts of Four Bisphenols in Daphnia magna. Int J Mol Sci 2022; 23:ijms232314561. [PMID: 36498889 PMCID: PMC9738221 DOI: 10.3390/ijms232314561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Bisphenol A (BPA) is a typical endocrine-disrupting chemical (EDC) used worldwide. Considering its adverse effects, BPA has been banned or strictly restricted in some nations, and many analogs have been introduced to the market. In this study, we selected three representative substitutes, BPS, BPF, and BPAF, along with BPA, to assess the developmental and reproductive effects on Daphnia magna. The F0 generation was exposed to bisphenols (BPs) at an environmentally relevant concentration (100 μg/L) for 21 d; then the embryo spawn at day 21 was collected. Behavior traits, the activity of antioxidant enzymes, and gene transcription were evaluated at three developmental stages (days 7, 14, and 21). Notably, body length, heart rate, and thoracic limb beating were significantly decreased, and D. magna behaved more sluggishly in the exposed group. Moreover, exposure to BPs significantly increased the antioxidant enzymatic activities, which indicated that BPs activated the antioxidant defense system. Additionally, gene expression indicated intergenerational effects in larvae, particularly in the BPAF group. In conclusion, BPA analogs such as BPF and BPAF showed similar or stronger reproductive and developmental toxicity than BPA in D. magna. These findings collectively deepen our understanding of the toxicity of BPA analogs and provide empirical evidence for screening safe alternatives to BPA.
Collapse
|
20
|
Morimoto S, Solís‐Lemus E, Jiménez‐Vivanco J, Castellanos‐Ruiz D, Díaz‐Díaz E, Mendoza‐Rodríguez CA. Maternal perinatal exposure to bisphenol S induces an estrogenic like effect in glucose homeostasis in male offspring. ENVIRONMENTAL TOXICOLOGY 2022; 37:2189-2200. [PMID: 35596937 PMCID: PMC9543293 DOI: 10.1002/tox.23585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS) has been introduced into the industry as a safer alternative to bisphenol A (BPA). However, the recent studies have reported a possible association between BPS and disturbed glucose homeostasis, indicating that it may be a risk factor for type 1 and type 2 diabetes mellitus, obesity, and gestational diabetes mellitus. Nevertheless, the role of BPS in glucose metabolism remains controversial. In this study, we investigated the glucose metabolism of male Wistar rats born from dams that were BPS-exposed (groups: BPS-L (0.05 mg/kg/day), BPS-H (20 mg/kg/day)) during pregnancy and lactation. We observed that both BPS treated groups of animals presented a significant decrease in anogenital distance/weight1/3 , as compared to control animals, although no alterations in testosterone levels were observed. Furthermore, the BPS-L group presented a significant decrease in body weight from postnatal day (PND) 21 to adult stage. In addition, a significant increase in glucose tolerance, pancreatic β-cell proliferation, the frequency of small islets, and the average β-cell size at PND 36 was observed in this group. However, no changes in insulin serum levels and percentage of β-cells were recorded. Furthermore, these changes were not preserved at the adult stage (PND 120). The results suggest that the administration of low doses of BPS during the perinatal period induced an estrogenic like effect, with males apparently becoming more female-like in their responses to a glucose challenge.
Collapse
Affiliation(s)
- Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
| | - Edgar Solís‐Lemus
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jesica Jiménez‐Vivanco
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Dafne Castellanos‐Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eulises Díaz‐Díaz
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
| | | |
Collapse
|
21
|
Chen Y, Wang Z, Fang G, Miao M, Liang H, Chen Y, Luan M, Liu X, Wen S, Chen A, Yuan W. Association of prenatal exposure to polybrominated diphenyl ethers at low levels with adiposity measures in children up to 6 years. CHEMOSPHERE 2022; 303:134867. [PMID: 35595104 DOI: 10.1016/j.chemosphere.2022.134867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The effects of prenatal PBDEs exposure, especially at low levels, on childhood obesity are scarce. No previous studies have investigated the effect modification by breastfeeding on the associations of PBDEs exposure with childhood obesity. We aimed to investigate the associations of prenatal PBDEs exposure with adiposity measures in children up to 6 years, and the effect modification by breastfeeding. Participants were mother-child pairs from the Shanghai-Minhang Birth Cohort study. Nine PBDE congeners were assessed in cord blood plasma. We obtained information about child weight (0-6 years), height (0.5-6 years), arm circumference (0-6 years), and waist circumference (0-6 years) at each follow-up visit. Breastfeeding duration was collected when children were aged 1 year and was categorized as short (≤6 months) and adequate (>6 months). Multiple linear regression models were used to examine the associations of PBDE concentrations with adiposity measures of the children at each age. Generalized estimating equation (GEE) models were used to estimate the overall associations of PBDEs exposure with adiposity measures. We examined the effect modification by breastfeeding using stratified analyses and by including interaction terms into GEE models. For boys, there was a general profile of positive associations of several PBDE congeners exposure with adiposity measures. Especially, boys with higher BDE-153 concentration had higher adiposity measures at each time point. For girls, we also found positive associations of BDE-100 and -153 exposure with adiposity measures. The GEE models showed consistent patterns for BDE-153 in boys and for BDE-100 and -153 in girls. In breastfeeding-stratified analyses, stronger associations of PBDEs exposure with adiposity measures were generally found in children who were shortly breastfed. Our findings suggest that prenatal exposure to PBDEs at low levels may influence childhood adiposity measures, and the potential effects of PBDEs were attenuated by adequate breastfeeding.
Collapse
Affiliation(s)
- Yafei Chen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Ziliang Wang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Guanghong Fang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Yao Chen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Min Luan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Xiaofang Liu
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China.
| |
Collapse
|
22
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
23
|
Beausoleil C, Le Magueresse-Battistoni B, Viguié C, Babajko S, Canivenc-Lavier MC, Chevalier N, Emond C, Habert R, Picard-Hagen N, Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. ENVIRONMENTAL RESEARCH 2022; 204:112233. [PMID: 34688643 DOI: 10.1016/j.envres.2021.112233] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 μg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Nicolas Chevalier
- Université Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, INSERM U1065, C3M, Nice, France
| | - Claude Emond
- University of Montreal, School of Public Health, DSEST, Montreal, Quebec, Canada
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut National de la Santé et de la Recherche Médicale (Inserm) U 967 - CEA, Fontenay-aux-Roses, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| |
Collapse
|
24
|
Fulenwider HD, Caruso MA, Ryabinin AE. Manifestations of domination: Assessments of social dominance in rodents. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12731. [PMID: 33769667 PMCID: PMC8464621 DOI: 10.1111/gbb.12731] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Social hierarchies are ubiquitous features of virtually all animal groups. The varying social ranks of members within these groups have profound effects on both physical and emotional health, with lower-ranked individuals typically being the most adversely affected by their respective ranks. Thus, reliable measures of social dominance in preclinical rodent models are necessary to better understand the effects of an individual's social rank on other behaviors and physiological processes. In this review, we outline the primary methodologies used to assess social dominance in various rodent species: those that are based on analyses of agonistic behaviors, and those that are based on resource competition. In synthesizing this review, we conclude that assays based on resource competition may be better suited to characterize social dominance in a wider variety of rodent species and strains, and in both males and females. Lastly, albeit expectedly, we demonstrate that similarly to many other areas of preclinical research, studies incorporating female subjects are lacking in comparison to those using males. These findings emphasize the need for an increased number of studies assessing social dominance in females to form a more comprehensive understanding of this behavioral phenomenon.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Maya A. Caruso
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Andrey E. Ryabinin
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
25
|
Hao Y, Meng L, Zhang Y, Chen A, Zhao Y, Lian K, Guo X, Wang X, Du Y, Wang X, Li X, Song L, Shi Y, Yin X, Gong M, Shi H. Effects of chronic triclosan exposure on social behaviors in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127562. [PMID: 34736200 DOI: 10.1016/j.jhazmat.2021.127562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), a newly identified environmental endocrine disruptor (EED) in household products, has been reported to have toxic effects on animals and humans. The effects of TCS exposure on individual social behaviors and the potential underlying mechanisms are still unknown. This study investigated the behavioral effects of 42-day exposure to TCS (0, 50, 100 mg/kg) in drinking water using the open field test (OFT), social dominance test (SDT), social interaction test (SIT), and novel object recognition task (NOR). Using 16S rRNA sequencing analysis and transmission electron microscopy (TEM), we observed the effects of TCS exposure on the gut microbiota and ultrastructure of hippocampal neurons and synapses. Behavioral results showed that chronic TCS exposure reduced the social dominance of male and female mice. TCS exposure also reduced social interaction in male mice and impaired memory formation in female mice. Analysis of the gut microbiota showed that TCS exposure increased the relative abundance of the Proteobacteria and Actinobacteria phyla in female mice. Ultrastructural analysis revealed that TCS exposure induced ultrastructural damage to hippocampal neurons and synapses. These findings suggest that TCS exposure may affect social behaviors, which may be caused by altered gut microbiota and impaired plasticity of hippocampal neurons and synapses.
Collapse
Affiliation(s)
- Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Aixin Chen
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Kaoqi Lian
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xuzi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China.
| |
Collapse
|
26
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
27
|
Multidimensional nature of dominant behavior: Insights from behavioral neuroscience. Neurosci Biobehav Rev 2021; 132:603-620. [PMID: 34902440 DOI: 10.1016/j.neubiorev.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Social interactions for many species of animals are critical for survival, wellbeing, and reproduction. Optimal navigation of a social system increases chances for survival and reproduction, therefore there is strong incentive to fit into social structures. Social animals rely heavily on dominant-submissive behaviors in establishment of stable social hierarchies. There is a link between extreme manifestation of dominance/submissiveness and behavioral deviations. To understand neural substrates affiliated with a specific hierarchical rank, there is a real need for reliable animal behavioral models. Different paradigms have been consolidated over time to study the neurobiology of social rank behavior in a standardized manner using rodent models to unravel the neural pathways and substrates involved in normal and abnormal intraspecific social interactions. This review summarizes and discusses the commonly used behavioral tests and new directions for the assessment of dominance in rodents. We discuss the hierarchy inheritable nature and other critical issues regarding hierarchical rank manifestation which may help in designing social-rank-related studies that serve as promising pre-clinical tools in behavioral psychiatry.
Collapse
|
28
|
Dong M, Li Y, Zhu M, Qin Z. Tetrabromobisphenol A: a neurotoxicant or not? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54466-54476. [PMID: 34420170 DOI: 10.1007/s11356-021-15166-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Although some regulatory agencies have claimed that consumer exposures to tetrabromobisphenol A (TBBPA) are not likely to cause adverse health effects in humans or the environment, the safety of tetrabromobisphenol A (TBBPA) has been questioned. Here, we summarize the literature concerning in vivo and in vitro neurotoxicity of TBBPA over the past decades. Most laboratory rodent studies reported that gavage administration of TBBPA at doses below 1000 mg/kg/day generally exerted no or limited effects on neuropathology and locomotor behaviors, but increased anxiety and auditory impairments were observed in several studies. In fish and amphibians, waterborne exposure to TBBPA was generally reported to disrupt neurodevelopment and lead to neurobehavioral alterations. Moreover, in vitro studies support the observations that TBBPA could exert neurotoxic effects in vertebrates. Thus, we suggest that TBBPA could have adverse effects on the nervous system in vertebrates. Given rapid excretion and low availability of TBBPA in laboratory rodents following single gavage administration, we speculate that single-daily gavage could result in an underestimation of the neurotoxic effects of TBBPA in rodents. Thus, we propose to employ multiple-daily administration routes (such as dermal, inhalation, and drinking water), to further assess the neurotoxic effects of TBBPA in mammals.
Collapse
Affiliation(s)
- Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Dos Santos Guilherme M, Tsoutsouli T, Todorov H, Teifel S, Nguyen VTT, Gerber S, Endres K. N 6 -Methyladenosine Modification in Chronic Stress Response Due to Social Hierarchy Positioning of Mice. Front Cell Dev Biol 2021; 9:705986. [PMID: 34490254 PMCID: PMC8417747 DOI: 10.3389/fcell.2021.705986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Appropriately responding to stressful events is essential for maintaining health and well-being of any organism. Concerning social stress, the response is not always as straightforward as reacting to physical stressors, e.g., extreme heat, and thus has to be balanced subtly. Particularly, regulatory mechanisms contributing to gaining resilience in the face of mild social stress are not fully deciphered yet. We employed an intrinsic social hierarchy stress paradigm in mice of both sexes to identify critical factors for potential coping strategies. While global transcriptomic changes could not be observed in male mice, several genes previously reported to be involved in synaptic plasticity, learning, and anxiety-like behavior were differentially regulated in female mice. Moreover, changes in N6-methyladenosine (m6A)-modification of mRNA occurred associated with corticosterone level in both sexes with, e.g., increased global amount in submissive female mice. In accordance with this, METTL14 and WTAP, subunits of the methyltransferase complex, showed elevated levels in submissive female mice. N6-adenosyl-methylation is the most prominent type of mRNA methylation and plays a crucial role in processes such as metabolism, but also response to physical stress. Our findings underpin its essential role by also providing a link to social stress evoked by hierarchy building within same-sex groups. As recently, search for small molecule modifiers for the respective class of RNA modifying enzymes has started, this might even lead to new therapeutic approaches against stress disorders.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Theodora Tsoutsouli
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sina Teifel
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Baralla E, Pasciu V, Varoni MV, Nieddu M, Demuro R, Demontis MP. Bisphenols' occurrence in bivalves as sentinel of environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147263. [PMID: 33930805 DOI: 10.1016/j.scitotenv.2021.147263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenols are massively used in several manufacture processes such that bisphenol A (BPA) is ubiquitous in environment worldwide. After the implementation of regulations about BPA use, manufacturers have moved their production toward alternative substances structurally similar to it. Unfortunately, BPA analogues, given their structural similarity, exert also similar adverse effects. This review aims to investigate the occurrence of bisphenols (BPs) in bivalve molluscs. In this way, valuable information on the amount of BPs released into the environment in different areas are given. The current research indicates that BPA presence in bivalve molluscs has been investigated in Asia (Indian Ocean and Pacific Ocean), Europe (Mediterranean Sea, Baltic Sea and Atlantic Ocean) and America (Lake Mead, Nevada) with the highest amount of studies reported in bivalves harvested in Asian Coasts. BPA analogues are frequently detected in several matrices and their levels will continuously increase in the environment. Nevertheless, there is a current lack of studies analysing BPs other than BPA in bivalves. Further investigations should be conducted in this direction, in order to assess environmental distribution and the hazard for animals and human health given that seafood consumption could be an important pathway of bisphenols intake.
Collapse
Affiliation(s)
- Elena Baralla
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy.
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23, Sassari, Italy
| | - Roberto Demuro
- Revenue Agency, Provincial Division of Sassari, Territory Office, piazzale Falcone 5e, Sassari, Italy
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| |
Collapse
|
31
|
Gomez MV, Dutta M, Suvorov A, Shi X, Gu H, Mani S, Yue Cui J. Early Life Exposure to Environmental Contaminants (BDE-47, TBBPA, and BPS) Produced Persistent Alterations in Fecal Microbiome in Adult Male Mice. Toxicol Sci 2021; 179:14-30. [PMID: 33078840 DOI: 10.1093/toxsci/kfaa161] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome is a pivotal player in toxicological responses. We investigated the effects of maternal exposure to 3 human health-relevant toxicants (BDE-47, tetrabromobisphenol [TBBPA], and bisphenol S [BPS]) on the composition and metabolite levels (bile acids [BAs] and short-chain fatty acids [SCFAs]) of the gut microbiome in adult pups. CD-1 mouse dams were orally exposed to vehicle (corn oil, 10 ml/kg), BDE-47 (0.2 mg/kg), TBBPA (0.2 mg/kg), or BPS (0.2 mg/kg) once daily from gestational day 8 to the end of lactation (postnatal day 21). 16S rRNA sequencing and targeted metabolomics were performed in feces of 20-week-old adult male pups (n = 14 - 23/group). Host gene expression and BA levels were quantified in liver. BPS had the most prominent effect on the beta-diversity of the fecal microbiome compared with TBPPA and BDE-47 (QIIME). Seventy-three taxa were persistently altered by at least 1 chemical, and 12 taxa were commonly regulated by all chemicals (most of which were from the Clostridia class and were decreased). The most distinct microbial biomarkers were S24-7 for BDE-47, Rikenellaceae for TBBPA, and Lactobacillus for BPS (LefSe). The community-wide contributions to the shift in microbial pathways were predicted using FishTaco. Consistent with FishTaco predictions, BDE-47 persistently increased fecal and hepatic BAs within the 12α hydroxylation pathway, corresponding to an up-regulation with the hepatic BA-synthetic enzyme Cyp7a1. Fecal BAs were also persistently up-regulated by TBBPA and BPS (liquid chromatography-mass spectrometry). TBBPA increased propionic acid and succinate, whereas BPS decreased acetic acid (gas chromatography-mass spectrometry). There was a general trend in the hepatic down-regulation of proinflammatory cytokines and the oxidative stress sensor target gene (Nqo1), and a decrease in G6Pdx (the deficiency of which leads to dyslipidemia). In conclusion, maternal exposure to these toxicants persistently modified the gut-liver axis, which may produce an immune-suppressive and dyslipidemia-prone signature later in life.
Collapse
Affiliation(s)
- Matthew V Gomez
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Alexander Suvorov
- Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Sridhar Mani
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Costa DF, Moita MA, Márquez C. Novel competition test for food rewards reveals stable dominance status in adult male rats. Sci Rep 2021; 11:14599. [PMID: 34272430 PMCID: PMC8285491 DOI: 10.1038/s41598-021-93818-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Social hierarchy is a potent modulator of behavior, that is typically established through overt agonistic interactions between individuals in the group. Once established, social ranks are maintained through subtler interactions allowing the redirection of energy away from agonistic interactions towards other needs. The available tasks for assessing social rank in rats allow the study of the mechanisms by which social hierarches are formed in early phases but fail to assess the maintenance of established hierarchies between stable pairs of animals, which might rely on distinct neurobiological mechanisms. Here we present and validate a novel trial-based dominancy assay, the modified Food Competition test, where established social hierarchies can be identified in the home cage of non-food deprived pairs of male rats. In this task, we introduce a small conflict in the home cage, where access to a new feeder containing palatable pellets can only be gained by one animal at a time. We found that this subtle conflict triggered asymmetric social interactions and resulted in higher consumption of food by one of the animals in the pair, which reliably predicted hierarchy in other tests. Our findings reveal stable dominance status in pair-housed rats and provide a novel tool for the evaluation of established social hierarchies, the modified Food Competition test, that is robust and easy to implement.
Collapse
Affiliation(s)
- Diana F Costa
- Neural Circuits of Social Behavior Laboratory, Instituto de Neurociencias (CSIC-UMH), Avenida Ramon y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Marta A Moita
- Behavioral Neuroscience Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisbon, Portugal
| | - Cristina Márquez
- Neural Circuits of Social Behavior Laboratory, Instituto de Neurociencias (CSIC-UMH), Avenida Ramon y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
33
|
Meng L, Liu J, Wang C, Ouyang Z, Kuang J, Pang Q, Fan R. Sex-specific oxidative damage effects induced by BPA and its analogs on primary hippocampal neurons attenuated by EGCG. CHEMOSPHERE 2021; 264:128450. [PMID: 33007573 DOI: 10.1016/j.chemosphere.2020.128450] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BPA analogs, including bisphenol S (BPS) and bisphenol B (BPB), have been used to replace BPA since it was banned to be added. To investigate whether BPA and its analogs cause oxidative damage effects on primary hippocampal neurons of rats, reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), mitochondrial membrane potential (MMP), apoptosis and cell viability assays were conducted after hippocampal neurons exposure to different concentrations of BPA, BPS, and BPB (1, 10, 100 nM and 1, 10, 100 μM). Moreover, the effects of EGCG (5 and 6 μM for male and female, respectively) added on neurons exposed to BPA were assessed. Results showed that 24 h exposure to these bisphenols (BPs) could increase the levels of ROS and contents of MDA, but reduce the activity of SOD significantly. A decline of cell viabilities accompanied with the increasing of apoptosis rates was observed after 7 d exposure to BPs and the reduction of MMP was also observed after 7 d exposure to BPA. Interestingly, BPS has the lower toxicity to hippocampal neurons compared with BPA and BPB. Non-monotonic dose-effect relationships between the concentrations of BPs and the cytotoxic effects were observed, and the effects of BPs on male hippocampal neurons are greater than those of female ones in general. While EGCG can protect neurons free of oxidative damages. In conclusion, the results suggest that BPs may induce sex-specific neurotoxic effects involving oxidative stress, which can be attenuated by EGCG, and males are more sensitive to BPs than females.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiahua Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Salahinejad A, Attaran A, Naderi M, Meuthen D, Niyogi S, Chivers DP. Chronic exposure to bisphenol S induces oxidative stress, abnormal anxiety, and fear responses in adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141633. [PMID: 32882496 DOI: 10.1016/j.scitotenv.2020.141633] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is increasingly used in a wide range of industrial and consumer products, resulting in its ubiquitous distribution across the environment, including aquatic ecosystems. Although it is commonly known as a weak/moderate estrogenic compound, there has been a growing acknowledgment of the potential of BPS to cause toxicity by inducing oxidative stress. Oxidative stress is a major participant in the development of anxiety-like behaviors in humans and animals. Therefore, the present study was designed to examine the impact of BPS on anxiety-like behavior and fear responses in adult zebrafish and also to elucidate the possible linkage between the BPS neurotoxicity and oxidative status of the brain. To this end, adult male and female zebrafish were exposed to 0 (control), 1, 10, and 30 μg/L of BPS and 1 μg/L of 17-β-estradiol (E2) for 75 days. Following exposure, changes in anxiety and fear-related responses were evaluated by applying a novel tank test and by exposing focal fish to chemical alarm cues. Additionally, we evaluated the expression of multiple antioxidant genes in the zebrafish brain. Our results indicate that BPS, irrespective of exposure concentration, and E2 significantly decreased bottom-dwelling behavior and the latency to enter the upper water column. Furthermore, exposure to the highest concentration of BPS and E2 induced a significant decrease in fear-related responses. The impaired anxiety and reduced fear-related responses were associated with a down-regulation in the transcription of genes involved in enzymatic antioxidant defense. Taken together, our results suggest that chronic exposure to BPS impairs anxiety and fear responses in adult zebrafish, possibly by inducing oxidative stress in the brain.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
35
|
Brulport A, Vaiman D, Bou-Maroun E, Chagnon MC, Corre LL. Hepatic transcriptome and DNA methylation patterns following perinatal and chronic BPS exposure in male mice. BMC Genomics 2020; 21:881. [PMID: 33297965 PMCID: PMC7727143 DOI: 10.1186/s12864-020-07294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background Bisphenol S (BPS) is a common bisphenol A (BPA) substitute, since BPA is virtually banned worldwide. However, BPS and BPA have both endocrine disrupting properties. Their effects appear mostly in adulthood following perinatal exposures. The objective of the present study was to investigate the impact of perinatal and chronic exposure to BPS at the low dose of 1.5 μg/kg body weight/day on the transcriptome and methylome of the liver in 23 weeks-old C57BL6/J male mice. Results This multi-omic study highlights a major impact of BPS on gene expression (374 significant deregulated genes) and Gene Set Enrichment Analysis show an enrichment focused on several biological pathways related to metabolic liver regulation. BPS exposure also induces a hypomethylation in 58.5% of the differentially methylated regions (DMR). Systematic connections were not found between gene expression and methylation profile excepted for 18 genes, including 4 genes involved in lipid metabolism pathways (Fasn, Hmgcr, Elovl6, Lpin1), which were downregulated and featured differentially methylated CpGs in their exons or introns. Conclusions This descriptive study shows an impact of BPS on biological pathways mainly related to an integrative disruption of metabolism (energy metabolism, detoxification, protein and steroid metabolism) and, like most high-throughput studies, contributes to the identification of potential exposure biomarkers. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07294-3.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France.,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France.,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France.,CNRS UMR8104, F-75014, Paris, France.,Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Elias Bou-Maroun
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000, Dijon, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France.,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France.,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France. .,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France. .,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| |
Collapse
|
36
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
37
|
Guo J, Miao W, Wu C, Zhang J, Qi X, Yu H, Chang X, Zhang Y, Zhou Z. Umbilical cord serum PBDE concentrations and child adiposity measures at 7 years. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111009. [PMID: 32684521 DOI: 10.1016/j.ecoenv.2020.111009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) exist extensively in the environment. Toxicological studies suggested PBDEs may interfere with adipogenic pathways. However, few human evidence addressed PBDE exposures in utero related to childhood adiposity. OBJECTIVE We assessed associations between PBDEs concentrations in cord serum and childhood adiposity measures at 7 years. METHODS Among 318 mother-child pairs from Sheyang Mini Birth Cohort Study (SMBCS) in China, nine PBDE congener concentrations were quantified in umbilical cord serum using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-MS). Anthropometric indicators of children aged 7 years were measured, including weight, height and waist circumference. Age and sex-specific body mass index (BMI) z scores were calculated based on World Health Organization (WHO)'s child growth standards. Multivariate linear and logistic regression models adjusted for putative confounders were performed to examine associations between PBDE congeners and adiposity parameters. RESULTS BDE-209 was the most abundant congener of PBDEs with a median value of 19.5 ng/g lipid. The geometric mean values of nine PBDE congeners ranged from below limit of detection (LOD) to 18.1 ng/g lipid, and the detection rates were 46.5%~96.5%. Cord serum BDE-153 and BDE-154 concentrations were associated with lower childhood BMI z score (regression coefficient, β=-0.15, 95% confidence interval: -0.29, -0.02; p=0.02; β=-0.23, 95%CI: -0.43, -0.03; p=0.03, respectively) and lower waist circumference (β=-0.75 cm, 95%CI: -1.43, -0.06; p=0.03; β=-1.22 cm, 95%CI: -2.23, -0.21; p=0.02, respectively), after controlling for potential confounders. Moreover, prenatal BDE-154 exposure was related to a decreased obesity risk of children aged 7 years (odds ratio, OR=0.46, 95%CI: 0.22, 0.94; p=0.03). These effects were only observed among boys in sex-straitified analyses. CONCLUSIONS Cord serum BDE-153 and BDE-154 concentrations were related to reduced adiposity measures at 7 years of age. Further evidence regarding the impacts of prenatal PBDE exposures on childhood development is warranted.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Wenbin Miao
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Jiming Zhang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Haixing Yu
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
38
|
Coumailleau P, Trempont S, Pellegrini E, Charlier TD. Impacts of bisphenol A analogues on zebrafish post-embryonic brain. J Neuroendocrinol 2020; 32:e12879. [PMID: 32749037 DOI: 10.1111/jne.12879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is a widely studied and well-recognised endocrine-disrupting chemical, and one of the current issues is its safe replacement by various analogues. Using larva zebrafish as a model, the present study reveals that moderate and chronic exposure to BPA analogues such as bisphenol S, bisphenol F and bisphenol AF may also affect vertebrate neurodevelopment and locomotor activity. Several parameters of embryo-larval development were investigated, such as mortality, hatching, number of mitotically active cell, as defined by 5-bromo-2'-deoxyuridine incorporation and proliferative cell nuclear antigen labelling, aromatase B protein expression in radial glial cell and locomotor activity. Our results show that exposure to several bisphenol analogues induced an acceleration of embryo hatching rate. At the level of the developing brain, a strong up-regulation of the oestrogen-sensitive Aromatase B was also detected in the hypothalamic region. This up-regulation was not associated with effects on the numbers of mitotically active progenitors nor differentiated neurones in the preoptic area and in the nuclear recessus posterior of the hypothalamus zebrafish larvae. Furthermore, using a high-throughput video tracking system to monitor locomotor activity in zebrafish larvae, we show that some bisphenol analogues, such as bisphenol AF, significantly reduced locomotor activity following 6 days of exposure. Taken together, our study provides evidence that BPA analogues can also affect the neurobehavioural development of zebrafish.
Collapse
Affiliation(s)
- Pascal Coumailleau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Sarah Trempont
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| |
Collapse
|
39
|
Jardim NS, Müller SG, Sari MHM, Nogueira CW. Females are more susceptible than male mice to thermal hypernociceptive behavior induced by early-life bisphenol-A exposure: Effectiveness of diphenyl diselenide. Eur J Pharmacol 2020; 879:173156. [PMID: 32360838 DOI: 10.1016/j.ejphar.2020.173156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/17/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
Humans are ubiquitously exposed to bisphenol A (BPA), one of the most used synthetic monomers for manufacturing polycarbonate plastics. BPA exposure leads to abnormal nociceptive perception and neuroinflammation in rodents. This study investigated whether diphenyl diselenide (PhSe)2, a pleiotropic selenium-containing molecule, would be effective against the hypernociceptive behavior induced by the early-life BPA exposure to mice. Three-week-old male and female Swiss mice received intragastrically BPA (5 mg/kg) from 21st to 60th postnatal day. After, the mice received by the intragastric route (PhSe)2 (1 mg/kg) once a day for seven days. After the last day of treatment, the mice performed the hot plate and tail immersion tests. The cerebral cortex samples were used to determine the levels of proteins related to apoptosis and inflammation. The results demonstrated that females were more susceptible than male mice to thermal hypernociception induced by early-life exposure to BPA. (PhSe)2 was effective against the reduction in the latency to paw and tail withdrawal induced by BPA exposure in female mice. Furthermore, (PhSe)2 restored the impairment in the levels of inflammatory proteins (COX-2, IL-1β, and p-JNK/JNK) but not those of apoptosis in the cerebral cortex of female mice exposed to BPA. Collectively, these data showed that females were more susceptible to thermal hypernociceptive behavior induced by early-life exposure to BPA than male mice. The administration of (PhSe)2 reduced thermal hypernociceptive behavior, a sex independent effect, in BPA-exposed mice. (PhSe)2 modulated inflammatory protein levels in the cerebral cortex of female mice exposed to BPA.
Collapse
Affiliation(s)
- Natália S Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Sabrina G Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Marcel H M Sari
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| |
Collapse
|
40
|
Naderi M, Salahinejad A, Attaran A, Chivers DP, Niyogi S. Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114060. [PMID: 32045791 DOI: 10.1016/j.envpol.2020.114060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
41
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
42
|
Mao J, Jain A, Denslow ND, Nouri MZ, Chen S, Wang T, Zhu N, Koh J, Sarma SJ, Sumner BW, Lei Z, Sumner LW, Bivens NJ, Roberts RM, Tuteja G, Rosenfeld CS. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc Natl Acad Sci U S A 2020; 117:4642-4652. [PMID: 32071231 PMCID: PMC7060676 DOI: 10.1073/pnas.1919563117] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.
Collapse
Affiliation(s)
- Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
| | - Ashish Jain
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Nancy D Denslow
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Mohammad-Zaman Nouri
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Tingting Wang
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Ning Zhu
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Barbara W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biochemistry, University of Missouri, Columbia, MO 65211
- Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Geetu Tuteja
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011;
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211
- University of Missouri Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
43
|
Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review. Nutrients 2020; 12:nu12020532. [PMID: 32092919 PMCID: PMC7071457 DOI: 10.3390/nu12020532] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years, bisphenol analogues such as bisphenol S (BPS) have come to replace bisphenol A in food packaging and food containers, since bisphenol A (BPA) has been shown to leach into food and water, causing numerous negative health effects. Unfortunately, little or no research was done to determine the safety of these BPA-free products before they were marketed to the public as a healthier alternative. The latest studies have shown that some of these bisphenol analogues may be even more harmful than the original BPA in some situations. This article used a literature survey to investigate the bisphenol analogue BPS and compare it to BPA and other analogues with regards to increased obesity, metabolic disorders, cancer, and reproductive defects; among others. It was found that BPS works via different pathways than does BPA while causing equivalent obesogenic effects, such as activating preadipocytes, and that BPS was correlated with metabolic disorders, such as gestational diabetes, that BPA was not correlated with. BPS was also shown to be more toxic to the reproductive system than BPA and was shown to hormonally promote certain breast cancers at the same rate as BPA. Therefore, a strong argument may be made to regulate BPS in exactly the same manner as BPA.
Collapse
|
44
|
Yuan L, Qian L, Qian Y, Liu J, Yang K, Huang Y, Wang C, Li Y, Mu X. Bisphenol F-Induced Neurotoxicity toward Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14638-14648. [PMID: 31702913 DOI: 10.1021/acs.est.9b04097] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the influence of bisphenol F (BPF) toward central nervous system (CNS) was assessed using zebrafish embryos. We found that BPF could induce significant neurotoxicity toward zebrafish embryos, including inhibited locomotion, reduced moving distance, and CNS cell apoptosis at an effective concentration of 0.0005 mg/L. Immunofluorescence assay showed that both microglia and astrocyte in zebrafish brain were significantly activated by BPF, indicating the existence of neuroinflammatory response. Peripheral motor neuron development was significantly inhibited by BPF at 72 hpf. RNA-seq data indicated that neuronal developmental processes and cell apoptosis pathways were significantly affected by BPF exposure, which was consistent with the phenotypic results. Chip-seq assay implied that the transcriptional changes were not mediated by ERα. Additionally, no significant change was found in neurotransmitter levels (5-hydroxytryptamine, dopamine, and acetylcholine) or acetylcholinesterase (Ache) enzyme activity after BPF exposure, indicating that BPF may not affect neurotransmission. In conclusion, BPF could lead to abnormal neural outcomes during zebrafish early life stage through inducing neuroinflammation and CNS cell apoptosis even at environmentally relevant concentration.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Le Qian
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Chengju Wang
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| |
Collapse
|
45
|
Rock KD, Gillera SEA, Devarasetty P, Horman B, Knudsen G, Birnbaum LS, Fenton SE, Patisaul HB. Sex-specific behavioral effects following developmental exposure to tetrabromobisphenol A (TBBPA) in Wistar rats. Neurotoxicology 2019; 75:136-147. [PMID: 31541695 PMCID: PMC6935469 DOI: 10.1016/j.neuro.2019.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA) has become a ubiquitous indoor contaminant due to its widespread use as an additive flame retardant in consumer products. Reported evidence of endocrine disruption and accumulation of TBBPA in brain tissue has raised concerns regarding its potential effects on neurodevelopment and behavior. The goal of the present study was to examine the impact of developmental TBBPA exposure, across a wide range of doses, on sexually dimorphic non-reproductive behaviors in male and female Wistar rats. We first ran a pilot study using a single TBBPA dose hypothesized to produce behavioral effects. Wistar rat dams were orally exposed using cookie treats to 0 or 0.1 mg TBBPA/kg bw daily from gestational day (GD) 9 to postnatal day (PND) 21 to assess offspring (both sexes) activity and anxiety-related behaviors. Significant effects were evident in females, with exposure increasing activity levels. Thus, this dose was used as the lowest TBBPA dose in a subsequent, larger study conducted as part of a comprehensive assessment of TBBPA toxicity. Animals were exposed to 0, 0.1, 25, or 250 mg TBBPA/kg bw daily by oral gavage starting on GD 6 through PND 90 (dosed dams GD 6 - PND 21, dosed offspring PND 22 - PND 90). Significant behavioral findings were observed for male offspring, with increased anxiety-like behavior as the primary phenotype. These findings demonstrate that exposure to environmental contaminants, like TBBPA, can have sex-specific effects on behavior highlighting the vulnerability of the developing brain.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pratyush Devarasetty
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gabriel Knudsen
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Linda S Birnbaum
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
46
|
Effects of bisphenol S, a major substitute of bisphenol A, on neurobehavioral responses and cerebral monocarboxylate transporters expression in mice. Food Chem Toxicol 2019; 132:110670. [DOI: 10.1016/j.fct.2019.110670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
|
47
|
Pelch K, Wignall JA, Goldstone AE, Ross PK, Blain RB, Shapiro AJ, Holmgren SD, Hsieh JH, Svoboda D, Auerbach SS, Parham FM, Masten SA, Walker V, Rooney A, Thayer KA. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 2019; 424:152235. [PMID: 31201879 DOI: 10.1016/j.tox.2019.06.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Recent studies report widespread usage or exposure to a variety of chemicals with structural or functional similarity to bisphenol A (BPA), referred to as BPA analogues or derivatives. These have been detected in foodstuffs, house dust, environmental samples, human urine or blood, and consumer products. Compared to BPA, relatively little is known about potential toxicity of these compounds. This scoping review aimed to summarize the human, animal, and mechanistic toxicity data for 24 BPA analogues of emerging interest to research and regulatory communities. PubMed was searched from March 1, 2015 to January 5, 2019 and combined with the results obtained from literature searches conducted through March 23, 2015, in The National Toxicology Program's Research Report 4 (NTP RR-04), "Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives". Study details are presented in interactive displays using Tableau Public. In total, 5748 records were screened for inclusion. One hundred sixty seven studies were included from NTP RR-04 and 175 studies were included from the updated literature search through January 2019. In total, there are 22, 117, and 221 human epidemiological, experimental animal, or in vitro studies included. The most frequently studied BPA analogues are bisphenol S (BPS), bisphenol F (4,4-BPF), and bisphenol AF (BPAF). Notable changes in the literature since 2015 include the growing body of human epidemiological studies and in vivo studies conducted in zebrafish. Numerous new endpoints were also evaluated across all three evidence streams including diabetes, obesity, and oxidative stress. However, few studies have addressed endpoints such as neurodevelopmental outcomes or impacts on the developing mammary or prostate glands, which are known to be susceptible to disruption by BPA. Further, there remains a critical need for better exposure information in order to prioritize experimental studies. Moving forward, researchers should also ensure that full dose responses are performed for all main effects in order to support hazard and risk characterization efforts. The evidence gathered here suggests that hazard and risk characterizations should expand beyond BPA in order to consider BPA structural and functional analogues.
Collapse
Affiliation(s)
- Katherine Pelch
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States.
| | | | | | - Pam K Ross
- ICF, 9300 Lee Highway, Fairfax, VA, 22031, United States
| | - Robyn B Blain
- ICF, 9300 Lee Highway, Fairfax, VA, 22031, United States
| | - Andrew J Shapiro
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Stephanie D Holmgren
- Office of Scientific Information Management, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Daniel Svoboda
- SciOme LLC, 2 Davis Dr, Durham, NC, 27709, United States
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Fredrick M Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Scott A Masten
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Vickie Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Andrew Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Kristina A Thayer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| |
Collapse
|
48
|
Kolla S, McSweeney DB, Pokharel A, Vandenberg LN. Bisphenol S alters development of the male mouse mammary gland and sensitizes it to a peripubertal estrogen challenge. Toxicology 2019; 424:152234. [PMID: 31201878 DOI: 10.1016/j.tox.2019.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/22/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022]
Abstract
Humans are exposed to estrogenic chemicals in food and food packaging, personal care products, and other industrial and consumer goods. Bisphenol A (BPA), a well-studied xenoestrogen, is known to alter development of estrogen-sensitive organs including the brain, reproductive tract, and mammary gland. Bisphenol S (BPS; 4,4'-sulfonyldiphenol), which has a similar chemical structure to BPA, is also used in many consumer products, but its effects on estrogen-sensitive organs in mammals has not been thoroughly examined. Here, we quantified the effects of perinatal exposures to BPS on the male mouse mammary gland. In our first study, pregnant CD-1 mice were orally exposed to BPS (2 or 200 μg/kg/day) starting on pregnancy day 9 through lactation day 20, and male mammary glands were evaluated on embryonic day 16, prior to puberty, and in early adulthood. We observed modest changes in tissue organization in the fetal gland, and significant increases in growth of the gland induced by developmental BPS exposure in adulthood. In our second study, pregnant CD-1 mice were orally exposed to BPS (2, 200 or 2000 μg/kg/day) starting on pregnancy day 9 through lactational day 2. After weaning, the male pups were administered either oil (vehicle) or an estrogen challenge (1 μg ethinyl estradiol/kg/day) for ten days starting prior to puberty. After the 10-day estrogen challenge, we examined hormone-sensitive outcomes including anogenital index (AGI), weight of the seminal vesicles, and morphological parameters of the mammary gland. Although AGI and seminal vesicle weight were not affected by BPS, we observed dose-specific effects on the response of male mammary glands to the peripubertal estrogen challenge. Because male mammary glands are structurally less developed compared to females, they may provide a simple model tissue to evaluate the effects of putative xenoestrogens.
Collapse
Affiliation(s)
- SriDurgaDevi Kolla
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Danny B McSweeney
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Aastha Pokharel
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
49
|
Meng Z, Wang D, Liu W, Li R, Yan S, Jia M, Zhang L, Zhou Z, Zhu W. Perinatal exposure to Bisphenol S (BPS) promotes obesity development by interfering with lipid and glucose metabolism in male mouse offspring. ENVIRONMENTAL RESEARCH 2019; 173:189-198. [PMID: 30921577 DOI: 10.1016/j.envres.2019.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), a substitute of bisphenol A (BPA), is widely used for manufacturing different polymers. Due to its wide range of applications, BPS has been frequently detected in the foodstuffs, environment and human blood and excreta. In this study, we examined the effects of the perinatal exposure to BPS on obesity development using 1H NMR based on metabolomics strategy combined with gene expression analysis in male mouse offspring at a dosage of 100 ng/g bw/day. We found that perinatal exposure to BPS significantly increased the body weight, the weights of liver and epididymal white adipose tissue (epiWAT), serum alanine aminotransferase (ALT) activity, and the contents of triglyceride (TG) and cholesterol (T-Cho) in the liver. Histopathological analysis showed that lipids were accumulated significantly in liver tissues and epiWAT with BPS exposure. Furthermore, expressions of genes involved in the inflammatory pathways were significantly increased in liver tissues and epiWAT. Meanwhile, serum metabolomics study showed significant changes in the contents of metabolites associated with lipid and glucose metabolism. Correspondingly, the relative expression levels of genes involved in lipid and glucose metabolism were significantly changed in the liver tissue and epiWAT of male mouse offspring. In conclusion, these results showed that perinatal exposure to BPS may increase the risk of obesity by interfering with lipid and glucose metabolism in male mouse offspring. The potential health risks of BPS in the human required further detailed studies evaluating.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wan Liu
- Department of Digestive, The Traditional Chinese Medicine Hospital of Xuzhou City Affiliated to Nanjing University of Chinese, Xuzhou, 221003, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Qiu W, Zhan H, Hu J, Zhang T, Xu H, Wong M, Xu B, Zheng C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:192-202. [PMID: 30772709 DOI: 10.1016/j.ecoenv.2019.01.114] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 05/20/2023]
Abstract
Bisphenol S (BPS) has been introduced into the industry as a safer alternative to bisphenol A (BPA). The distribution of BPS has recently become an important issue worldwide, but investigations on the toxicity and mechanisms of BPS remain limited. A review of the literature reveals that BPS has widespread presence in environmental media, such as indoor dust, surface water, sediments, and sewage sludge. It has been detected in plants, paper products, some food items, and even in the human body. In addition, compared to BPA, BPS has a lower acute toxicity, similar or less endocrine disruption, similar neurotoxicity and immunotoxicity, and lower reproductive and developmental toxicity. The mechanisms underlying BPS toxicity may be related to the chemical properties of BPS in the human body, including interactions with estrogen receptors, and binding to DNA and some proteins, subsequently including exerting oxidative stress. However, further investigation on the potential risks of BPS to humans and its mechanisms of toxicity should be conducted to better understand and control the risks of such novel chemicals.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyan Zhan
- Institute of Water Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Minghung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Bentuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|