1
|
Sumaryada T, Nabilah F, Handayasari F, Kartono A, Hardhienata H. Microplastic contaminant adsorption by graphene oxide layer. J Biol Phys 2025; 51:12. [PMID: 40085332 PMCID: PMC11909391 DOI: 10.1007/s10867-025-09677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
The increasing prevalence of microplastics in water sources poses significant threats to both human health and environmental sustainability. Bisphenol A (BPA) and polyethylene terephthalate (PET), two hazardous microplastic contaminants, are known to cause endocrine disruption and other health risks. This study investigates the potential of graphene oxide (GO) as an efficient adsorbent for the removal of these contaminants through detailed molecular interaction analysis. The adsorption efficiencies of GO were quantitatively assessed, demonstrating strong binding affinities of ∆G = - 9.50 kcal/mol for BPA and ∆G = - 6.90 kcal/mol for PET. The adsorption process is primarily governed by π-π stacking interactions between the aromatic structure of the microplastics and the polycyclic surface of GO, with additional contributions from hydrogen bonding and van der Waals forces. Computational simulations revealed consistent binding across specific active sites on the GO surface, indicating minimal variation in adsorption performance. These findings highlight the potential of GO-based filtration systems for large-scale water treatment applications, offering a promising approach to mitigating microplastic contamination and ensuring safer water supplies. These findings highlight the potential of GO-based filtration systems for large-scale water treatment applications, offering a promising approach to mitigating microplastic contamination and ensuring safer water supplies. Future research should focus on optimizing GO-based filtration techniques and exploring their long-term environmental impact.
Collapse
Affiliation(s)
- Tony Sumaryada
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building Dramaga Campus of IPB, Bogor, West Java, 16680, Indonesia.
| | - Fasya Nabilah
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building Dramaga Campus of IPB, Bogor, West Java, 16680, Indonesia
| | - Faridah Handayasari
- Department of Food Technology and Nutrition, Faculty of Halal Food Science, Djuanda University, Bogor. Jl. Tol Ciawi No.1, Postal Code 35, Ciawi, Bogor, 16720, Indonesia
| | - Agus Kartono
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building Dramaga Campus of IPB, Bogor, West Java, 16680, Indonesia
| | - Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University, Meranti Avenue, Wing S Building Dramaga Campus of IPB, Bogor, West Java, 16680, Indonesia.
| |
Collapse
|
2
|
Dey P, Bradley TM, Boymelgreen A. Trophic transfer and bioaccumulation of nanoplastics in Coryphaena hippurus (mahi-mahi) and effect of depuration. PLoS One 2024; 19:e0314191. [PMID: 39570852 PMCID: PMC11581304 DOI: 10.1371/journal.pone.0314191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Ocean plastic pollution is a global concern, exacerbated by the distinctive physiochemical characteristics of nanoplastics (NPs), making it crucial to study the impacts on marine animals, particularly fish, given their ecological and economic importance. Both trophic transfer and waterborne exposure are potential modes of NP entry into seafood for human consumption Although the majority of studies have focused on in-vitro impacts of NP exposure in fish, in-vivo methods can offer a more holistic understanding of these impacts. This study investigates polystyrene NP transfer to Coryphaena hippurus (mahi-mahi) larvae, a widely consumed fish and significant marine predator, during the early life stage. Brachionus plicatilis (rotifers) were exposed to NPs, and subsequently fed to C. hippurus larvae, with exposure duration ranging from 24 to 96 h. Significant NP transfer was observed via the food chain, varying with exposure duration. A depuration study over 72 h, simulating intermittent NP exposure, revealed substantial NP excretion but also notable retention in the larvae. Biodistribution analysis indicated that most NPs accumulated in the gut, with a significant portion remaining post-depuration and some translocating to other body areas containing vital organs like the heart, liver, and gall bladder. Despite no significant effects on body length and eye diameter during this short study period, histopathological analysis revealed intestinal tissue damage in the larvae. Overall, this study provides valuable insight into the trophic transfer of NPs in marine food webs, emphasizing the need for further research on ecological impacts and highlighting the importance of addressing NP contamination to protect marine ecosystems and food safety.
Collapse
Affiliation(s)
- Preyojon Dey
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida, United States of America
| | - Terence M. Bradley
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Alicia Boymelgreen
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
3
|
Zoppé H, Xavier J, Dupuis A, Migeot V, Bioulac S, Hary R, Bonnet-Brilhault F, Albouy M. Is exposure to Bisphenol A associated with Attention-deficit hyperactivity disorder (ADHD) and associated executive or behavioral problems in children? A comprehensive systematic review. Neurosci Biobehav Rev 2024; 167:105938. [PMID: 39551456 DOI: 10.1016/j.neubiorev.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Numerous studies have investigated environmental risk factors in ADHD, and Bisphenol A (BPA), an endocrine disruptor, is suspected by several reviews. However, the quality of the studies has never been carefully assessed, leading us to rigorously examine associations between BPA exposure and ADHD and associated symptoms in children. Using PRISMA criteria, we conducted a systematic review on the MEDLINE/PubMed, Web of Science, EBSCOhost, PsycINFO, PsycARTICLES and Cochrane databases. We used the ROBINS-E tool to assess the quality, and the GRADE Approach. This study was registered with PROSPERO, CRD42023377150. Out of 10446 screened articles, 46 were included. Unlike pre-existing reviews, most studies failed to find clear links with ADHD or associated symptoms, with a high risk of bias and a very low level of certainty. Our systematic review reveals insufficient evidence regarding the impact of BPA on ADHD, despite some behavioral results that cannot be generalized. Future studies will require improved consideration of confounding factors and more precise sampling methods. This study did not receive specific funding.
Collapse
Affiliation(s)
- Hugo Zoppé
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France.
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France; CNRS UMR 7295, Cognition and Learning Research Center, Poitiers, France
| | - Antoine Dupuis
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| | - Virginie Migeot
- Public Health Department, CHU Rennes, University of Rennes 1, Rennes 35000, France; INSERM UMR-S 1085, EHESP, Irset, F-35000 Rennes, France
| | - Stéphanie Bioulac
- Service de psychiatrie de l'enfant et l'adolescent, CHU Grenoble Alpes, Grenoble 38000, France; LPNC, UMR 5105 CNRS, Université Grenoble Alpes, France
| | - Richard Hary
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France
| | - Marion Albouy
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| |
Collapse
|
4
|
Le VG, Nguyen MK, Lin C, Nguyen HL, Nguyen TQH, Hue NK, Truong QM, Chang SW, Nguyen XH, Nguyen DD. Review on personal protective equipment: Emerging concerns in micro(nano)plastic pollution and strategies for addressing environmental challenges. ENVIRONMENTAL RESEARCH 2024; 257:119345. [PMID: 38851370 DOI: 10.1016/j.envres.2024.119345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal. An alarming 1.6 × 106 tons of plastic waste each day has been generated since the onset of the outbreak, predominantly from the inadequate disposal of PPE. The mismanagement and subsequent degradation of discarded PPE significantly contribute to increased non-biodegradable micro(nano)plastic (MNP) waste. This pollution has had profound adverse effects on terrestrial, marine, and aquatic ecosystems, which have been extensively of concern recently. Accumulated MNPs within aquatic organisms could serve as a potential route for human exposure when consuming seafood. This review presents a novel aspect concerning the pollution caused by MNPs, particularly remarking on their role during the pandemic and their detrimental effects on human health. These microplastic particles, through the process of fragmentation, transform into nanoparticles, persisting in the environment and posing potential hazards. The prevalence of MNP from PPE, notably masks, raises concerns about their plausible health risks, warranting global attention and comprehensive exploration. Conducting a comprehensive evaluation of the long-term effects of these processes and implementing effective management strategies is essential.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Tri Quang Hung Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen K Hue
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Quoc-Minh Truong
- Faculty of Management Science, Thu Dau Mot University, Binh Duong, 75000, Viet Nam
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, South Korea
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
5
|
Iwan E, Grenda A, Bomba A, Bielińska K, Wasyl D, Kieszko R, Rolska-Kopińska A, Chmielewska I, Krawczyk P, Rybczyńska-Tkaczyk K, Olejnik M, Milanowski J. Gut resistome of NSCLC patients treated with immunotherapy. Front Genet 2024; 15:1378900. [PMID: 39170692 PMCID: PMC11335565 DOI: 10.3389/fgene.2024.1378900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Background The newest method of treatment for patients with NSCLC (non-small cell lung cancer) is immunotherapy directed at the immune checkpoints PD-1 (Programmed Cell Death 1) and PD-L1 (Programmed Cell Death Ligand 1). PD-L1 is the only validated predictor factor for immunotherapy efficacy, but it is imperfect. Some patients do not benefit from immunotherapy and may develop primary or secondary resistance. This study aimed to assess the intestinal resistome composition of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors in the context of clinical features and potentially new prediction factors for assessing immunotherapy efficacy. Methods The study included 30 advanced NSCLC patients, 19 (57%) men and 11 (33%) women treated with first- or second-line immunotherapy (nivolumab, pembrolizumab or atezolizumab). We evaluated the patient's gut resistome composition using the high sensitivity of targeted metagenomics. Results Studies have shown that resistome richness is associated with clinical and demographic factors of NSCLC patients treated with immunotherapy. Smoking seems to be associated with an increased abundance of macrolides, lincosamides, streptogramins and vancomycin core resistome. The resistome of patients with progression disease appears to be more abundant and diverse, with significantly higher levels of genomic markers of resistance to lincosamides (lnuC). The resistance genes lnuC, msrD, ermG, aph(6), fosA were correlated with progression-free survival or/and overall survival, thus may be considered as factors potentially impacting the disease. Conclusion The results indicate that the intestinal resistome of NSCLC patients with immune checkpoint inhibitors treatment differs depending on the response to immunotherapy, with several distinguished markers. Since it might impact treatment efficacy, it must be examined more deeply.
Collapse
Affiliation(s)
- Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Katarzyna Bielińska
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Dariusz Wasyl
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Robert Kieszko
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Anna Rolska-Kopińska
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | | | - Małgorzata Olejnik
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Janusz Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| |
Collapse
|
6
|
Pathak RK, Jung DW, Shin SH, Ryu BY, Lee HS, Kim JM. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133935. [PMID: 38442602 DOI: 10.1016/j.jhazmat.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da-Woon Jung
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seung-Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
7
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
8
|
Geng M, Ding P, Wang S, Wang B, Tong J, Gao H, Yan S, Liu K, Wu X, Zhu P, Cao Y, Huang K, Tao F. Prenatal antibiotics exposure and preschoolers' internalizing and externalizing problems: A biomonitoring-based prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170891. [PMID: 38346651 DOI: 10.1016/j.scitotenv.2024.170891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Biomonitoring-based epidemiological studies on prenatal antibiotic exposure and behavioral problems in preschoolers are lacking. The present study aimed to investigate the relationship between prenatal antibiotic exposure and internalizing and externalizing problems in preschoolers. METHODS Data from 2449 mother-child pairs were analyzed. Urine samples were repeatedly collected across three trimesters, and 43 antibiotics and 2 metabolites were measured, including preferred as veterinary antibiotics (PVAs), VAs, preferred as human antibiotics and human antibiotics. Preschoolers' internalizing and externalizing problems were evaluated by the Achenbach Child Behavior Checklist. Poisson regression models with generalized estimating equations were used to estimate risk ratios (RRs) and 95 % confidence intervals (CIs) for preschoolers' internalizing, externalizing and total problems across tertiles of antibiotic concentrations during three periods of pregnancy, and performed several subgroup analyses. RESULTS First-trimester urinary oxytetracycline (RR = 1.69, 95%CI: 1.20, 2.39, P-FDR = 0.011), tetracycline (RR = 1.91, 95%CI: 1.36, 2.68, P-FDR < 0.001), doxycycline (RR = 1.66, 95%CI: 1.28, 2.17, P-FDR < 0.001) and PVAs (RR = 1.79, 95%CI: 1.29, 2.48, P-FDR < 0.001) concentrations in the highest tertile were related to an elevated risk of internalizing problems compared with concentrations in the lowest tertile. First-trimester urinary doxycycline concentrations in the third tertile were also associated with an increased risk of externalizing problems compared with the first tertile (RR = 2.00, 95%CI: 1.28, 3.15, P-FDR = 0.042). Compared with concentrations in the lowest tertile, first-trimester urinary doxycycline (RR = 1.63, 95%CI: 1.19, 2.22, P-FDR = 0.028) and PVAs (RR = 1.67, 95%CI: 1.14, 2.43, P-FDR = 0.047) concentrations in the middle tertile were related to an increased risk of total problems. Furthermore, the type of main caregiver and children's outdoor activities time modified the relationships between specific prenatal antibiotic exposure and preschoolers' behavioral problems. CONCLUSIONS Exposure to specific antibiotics during the first trimester may be related to an increased risk of internalizing and externalizing problems in preschoolers.
Collapse
Affiliation(s)
- Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Ding
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pediatric, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Dou L, Sun S, Chen L, Lv L, Chen C, Huang Z, Zhang A, He H, Tao H, Yu M, Zhu M, Zhang C, Hao J. The association between prenatal bisphenol F exposure and infant neurodevelopment: The mediating role of placental estradiol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116009. [PMID: 38277971 DOI: 10.1016/j.ecoenv.2024.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND There are limited population studies on the neurodevelopmental effects of bisphenol F (BPF), a substitute for bisphenol A. Furthermore, the role of placental estradiol as a potential mediator linking these two factors remains unclear. OBJECTIVE To examine the association between maternal prenatal BPF exposure and infant neurodevelopment in a prospective cohort study and to explore the mediating effects of placental estradiol between BPF exposure and neurodevelopment in a nested case-control study. METHODS The prospective cohort study included 1077 mother-neonate pairs from the Wuhu city cohort study in China. Maternal BPF was determined using the liquid/liquid extraction and Ultra-performance liquid chromatography tandem mass spectrometry method. Children's neurodevelopment was assessed at ages 3, 6, and 12 months using Ages and Stages Questionnaires. The nested case-control study included 150 neurodevelopmental delay cases and 150 healthy controls. Placental estradiol levels were measured using enzyme-linked immunosorbent assay kits. Generalized estimating equation models and robust Poisson regression models were used to examine the associations between BPF exposure and children's neurodevelopment. In the nested case-control study, causal mediation analysis was conducted to assess the role of placental estradiol as a mediator in multivariate models. RESULTS In the prospective cohort study, the pregnancy-average BPF concentration was positively associated with developmental delays in gross-motor, fine-motor, and problem-solving ( ORtotal ASQ: 1.14(1.05, 1.25), ORgross-motor: 1.22(1.10, 1.36), ORfine-motor: 1.19(1.07, 1.31), ORproblem-solving: 1.11(1.01, 1.23)). After sex-stratified analyses, pregnancy-average BPF concentration was associated with an increased risk of neurodevelopmental delays in the gross-motor (ORgross-motor:1.30(1.12, 1.51)) and fine-motor (ORfine-motor: 1.22(1.06, 1.40)) domains in boys. In the nested case-control study, placental estradiol mediated 16.6% (95%CI: 4.4%, 35.0%) of the effects of prenatal BPF exposure on developmental delay. CONCLUSIONS Our study supports an inverse relationship between prenatal BPF exposure and child neurodevelopment in infancy, particularly in boys. Decreased placental estradiol may be an underlying biological pathway linking prenatal BPF exposure to neurodevelopmental delay in offspring.
Collapse
Affiliation(s)
- Lianjie Dou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Shu Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lan Chen
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lanxing Lv
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Chen
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhaohui Huang
- Anhui Provincial Center for Women and Children's Health, Hefei, Anhui Province, China
| | - Anhui Zhang
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Haiyan He
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Hong Tao
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Min Yu
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Min Zhu
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Chao Zhang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui Province, China; Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
| | - Jiahu Hao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui Province, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui Province, China.
| |
Collapse
|
10
|
Zhang W, Zhang L, Liang W, Wang H, Hu F. Neurodevelopment effects of early life bisphenol-A exposure on visual memory: Insights into recovery dynamics. Toxicology 2024; 502:153718. [PMID: 38160929 DOI: 10.1016/j.tox.2023.153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disruptor, is implicated in the cognitive deficits observed in both children and animals. Especially, BPA-induced spatial memory deterioration during the whole development phase of rodents has been well delineated. However, whether BPA exposure on the different development phases exerts similar effects on the prefrontal cortex (PFC) dependent visual memory is still elusive. Here, we chose two exposure windows, the whole gestation and lactation phases (E0∼P21) and the whole juvenile and adolescent phases (P22∼P60), for exposing rats to BPA. The visual memory of those rats was accessed by object recognition testing in the open field after BPA exposure and a constant recovery interval. The results revealed a substantial decline of visual memory under both exposure conditions, accompanied by an increase in anxiety-like behavior in BPA-exposed rats. Notably, after a 20-day recovery period, those behavioral changes induced by BPA exposure during P22∼60, not E0∼P21, were reversed compared to the control rats. According to morphological analysis of those rats after recovery, we found that the spine density of pyramidal neurons in the PFC were significant decreased in rats with BPA exposure during E0∼P21 and there was no difference between rats with or without BPA exposure during P22∼P60. Additionally, a similar change trend in excitatory receptors expression was observed under both exposure conditions. After an additional 20 days of recovery, the behavioral changes in rats with perinatal BPA exposure reverted to the normal status. Our present findings illuminate the dynamic effects of BPA on PFC-dependent functions across two crucial early developmental stages of life.
Collapse
Affiliation(s)
- Wentai Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Huan Wang
- School of Life Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| |
Collapse
|
11
|
Leader J, Mínguez-Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Bellinger DC, Oken E, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception and maternal pregnancy urinary phthalate metabolite and BPA concentrations in relation to child behavior. ENVIRONMENT INTERNATIONAL 2024; 183:108337. [PMID: 38088019 PMCID: PMC10868726 DOI: 10.1016/j.envint.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Epidemiologic studies on health effects of parental preconception exposures are limited despite emerging evidence from toxicological studies suggesting that such exposures, including to environmental chemicals, may affect offspring health. OBJECTIVE We investigated whether maternal and paternal preconception and maternal pregnancy urinary phthalate metabolite and bisphenol A (BPA) concentrations were associated with child behavior. METHODS We analyzed data from the Preconception Environmental exposure And Childhood health Effects (PEACE) Study, an ongoing prospective cohort study of children aged 6-11 years whose parent(s) previously enrolled in the prospective preconception Environment and Reproductive Health (EARTH) study. Using linear mixed models, we estimated covariate-adjusted associations of 11 urinary phthalate metabolite and BPA concentrations collected prior to conception and during pregnancy with Behavioral Assessment System for Children-3 (BASC-3) T-scores (higher scores indicate more problem behaviors). RESULTS This analysis included 134 mothers, 87 fathers and 157 children (24 sets of twins); parents were predominantly non-Hispanic white (mothers and fathers86%). Higher maternal preconception or pregnancy monobenzyl phthalate (MBzP) concentrations were related to higher mean externalizing problems T-scores in their children (β = 1.3 per 1-loge unit increase; 95 % CI: -0.2, 2.4 and β = 2.1, 95 % CI: 0.7, 3.6, respectively). Higher maternal preconception monocarboxyoctyl phthalate (MCOP) was suggested to be related to lower mean externalizing problems T-scores (β = -0.9; 95 % CI: -1.8, 0.0). Higher paternal preconception MCOP was suggestively associated with lower internalizing problems (β = -0.9; 95 %CI:-1.9, 0.1) and lower Behavioral Symptoms Index (BSI) T-scores (β = -1.3; 95 % CI: -2.1, -0.4). CONCLUSION In this cohort, higher maternal preconception and pregnancy MBzP were associated with worse parent-reported child behavior, while higher maternal and paternal preconception MCOP concentrations were related to lower BASC-3 scores.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, MA, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Research Director Emeritus, Cardiac Neurodevelopment Program, Boston Children's Hospital, Boston, MA, USA; Professor of Neurology and Psychology, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
13
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
14
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
15
|
Law J, Orbach SM, Weston BR, Steele PA, Rajagopalan P, Murali TM. Computational Construction of Toxicant Signaling Networks. Chem Res Toxicol 2023; 36:1267-1277. [PMID: 37471124 PMCID: PMC10445288 DOI: 10.1021/acs.chemrestox.2c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 07/21/2023]
Abstract
Humans and animals are regularly exposed to compounds that may have adverse effects on health. The Toxicity Forecaster (ToxCast) program was developed to use high throughput screening assays to quickly screen chemicals by measuring their effects on many biological end points. Many of these assays test for effects on cellular receptors and transcription factors (TFs), under the assumption that a toxicant may perturb normal signaling pathways in the cell. We hypothesized that we could reconstruct the intermediate proteins in these pathways that may be directly or indirectly affected by the toxicant, potentially revealing important physiological processes not yet tested for many chemicals. We integrate data from ToxCast with a human protein interactome to build toxicant signaling networks that contain physical and signaling protein interactions that may be affected as a result of toxicant exposure. To build these networks, we developed the EdgeLinker algorithm, which efficiently finds short paths in the interactome that connect the receptors to TFs for each toxicant. We performed multiple evaluations and found evidence suggesting that these signaling networks capture biologically relevant effects of toxicants. To aid in dissemination and interpretation, interactive visualizations of these networks are available at http://graphspace.org.
Collapse
Affiliation(s)
- Jeffrey
N. Law
- Interdisciplinary
Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Sophia M. Orbach
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bronson R. Weston
- Interdisciplinary
Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Peter A. Steele
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Padmavathy Rajagopalan
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T. M. Murali
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
17
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
18
|
Akhtar S, Pranay K, Kumari K. Personal protective equipment and micro-nano plastics: A review of an unavoidable interrelation for a global well-being hazard. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100055. [PMID: 37102160 PMCID: PMC10089666 DOI: 10.1016/j.heha.2023.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The usage and the demand for personal protective equipments (PPEs) for our day-to-day survival in this pandemic period of COVID-19 have seen a steep rise which has consequently led to improper disposal and littering. Fragmentation of these PPE units has eventually given way to micro-nano plastics (MNPs) emission in the various environmental matrices and exposure of living organisms to these MNPs has proven to be severely toxic. Numerous factors contribute to the toxicity imparted by these MNPs that mainly include their shape, size, functional groups and their chemical diversity. Even though multiple studies on the impacts of MNPs toxicity are available for other organisms, human cell line studies for various plastic polymers, other than the most common ones namely polyethylene (PE), polystyrene (PS) and polypropylene (PP), are still at their nascent stage and need to be explored more. In this article, we cover a concise review of the literature on the impact of these MNPs in biotic and human systems focusing on the constituents of the PPE units and the additives that are essentially used for their manufacturing. This review will subsequently identify the need to gather scientific evidence at the smaller level to help combat this microplastic pollution and induce a more in-depth understanding of its adverse effect on our existence.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| | - Kumar Pranay
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences (IGIMS), Patna 800014, Bihar, India
| | - Kanchan Kumari
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| |
Collapse
|
19
|
Rybczyńska-Tkaczyk K, Skóra B, Szychowski KA. Toxicity of bisphenol A (BPA) and its derivatives in divers biological models with the assessment of molecular mechanisms of toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27747-y. [PMID: 37213006 DOI: 10.1007/s11356-023-27747-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The aim of the study was to determine totoxicity of bisphenol A (BPA) and its derivatives (bisphenol S (BPS), bisphenol F (BPF), and tetrabromobisphenol A (TBBPA)) due to its high accumulation in environment. The performed analysis revealed the toxicity of the BPA, BPF, and BPS against Kurthia gibsoni, Microbacterium sp., and Brevundimonas diminuta as the most sensitive, reaching microbial toxic concentrations in the range of 0.018-0.031 mg ∙ L-1. Moreover, the genotoxicity assay shows the ability of all tested compounds to increase in the β-galactosidase level at the concentration range 7.81-500 µM (in Escherichia coli, PQ37). In turn, the matbolic activation of tested bishpenols has caused the enhacement of the genotoxicity and cytotoxicity effect. Interestingely, the highest phytotoxicity effect was pointed for BPA and TBBPA at the concentrations of 10 mg ∙ L-1 and 50 mg ∙ L-1, which cause the inhibition of root growth by 58% and 45%, respectively (especially for S. alba and S. saccharatum). Furthermore, the cytotoxicity analyses show the ability of BPA, BPS, and TBBPA to significantly decrease the metabolic activity of human keratynoctes in vitro after 24 h of treatment at the micromolar concentrations. Simialry, the impact of the certain bisphenols on proliferation-, apoptosis-, and inflammation-related mRNA expression was shown in tested cell line. Summarizing, the presented results have proved that BPA and its derrivatives are able to show high negative effect on certain living orgnisms such as bacteria, plants, and human cells, which is strict related to pro-apoptotic and genotoxic mechanism of action.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069, Lublin, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| |
Collapse
|
20
|
From old pollutants to the regulation of bisphenol A: Lessons learned for health promotion and disease prevention. Prev Med 2023; 169:107460. [PMID: 36809834 DOI: 10.1016/j.ypmed.2023.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Citizens deserve regulatory changes and policies more sensitive to the current needs of humans, the climate, and nature. In this work we draw on prior experiences of preventable human suffering and economic losses caused by delayed regulation of legacy and emerging pollutants. Heightened awareness of environmental health problems is necessary among health professionals, the media, and citizens' organizations. Improved translation from research to the clinical world and to policy is critical to reduce the population burden of diseases caused by exposure to endocrine disruptors and other environmental chemicals. Numerous lessons can be learned from science-to-policy processes built for "old pollutants" (as persistent organic pollutants, heavy metals, tributyltin), as well as from current trends regarding the regulation of non-persistent chemicals, such as the prototypical endocrine disruptor bisphenol A. We end discussing relevant pieces of the puzzle to tackle the environmental and regulatory challenges faced by our societies.
Collapse
|
21
|
Rodríguez-Carrillo A, Mustieles V, Salamanca-Fernández E, Olivas-Martínez A, Suárez B, Bajard L, Baken K, Blaha L, Bonefeld-Jørgensen EC, Couderq S, D'Cruz SC, Fini JB, Govarts E, Gundacker C, Hernández AF, Lacasaña M, Laguzzi F, Linderman B, Long M, Louro H, Neophytou C, Oberemn A, Remy S, Rosenmai AK, Saber AT, Schoeters G, Silva MJ, Smagulova F, Uhl M, Vinggaard AM, Vogel U, Wielsøe M, Olea N, Fernández MF. Implementation of effect biomarkers in human biomonitoring studies: A systematic approach synergizing toxicological and epidemiological knowledge. Int J Hyg Environ Health 2023; 249:114140. [PMID: 36841007 DOI: 10.1016/j.ijheh.2023.114140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Human biomonitoring (HBM) studies have highlighted widespread daily exposure to environmental chemicals. Some of these are suspected to contribute to adverse health outcomes such as reproductive, neurological, and metabolic disorders, among other developmental and chronic impairments. One of the objectives of the H2020 European Human Biomonitoring Initiative (HBM4EU) was the development of informative effect biomarkers for application in a more systematic and harmonized way in large-scale European HBM studies. The inclusion of effect biomarkers would complement exposure data with mechanistically-based information on early and late adverse effects. For this purpose, a stepwise strategy was developed to identify and implement a panel of validated effect biomarkers in European HBM studies. This work offers an overview of the complete procedure followed, from comprehensive literature search strategies, selection of criteria for effect biomarkers and their classification and prioritization, based on toxicological data and adverse outcomes, to pilot studies for their analytical, physiological, and epidemiological validation. We present the example of one study that demonstrated the mediating role of the effect biomarker status of brain-derived neurotrophic factor BDNF in the longitudinal association between infant bisphenol A (BPA) exposure and behavioral function in adolescence. A panel of effect biomarkers has been implemented in the HBM4EU Aligned Studies as main outcomes, including traditional oxidative stress, reproductive, and thyroid hormone biomarkers. Novel biomarkers of effect, such as DNA methylation status of BDNF and kisspeptin (KISS) genes were also evaluated as molecular markers of neurological and reproductive health, respectively. A panel of effect biomarkers has also been applied in HBM4EU occupational studies, such as micronucleus analysis in lymphocytes and reticulocytes, whole blood comet assay, and malondialdehyde, 8-oxo-2'-deoxyguanosine and untargeted metabolomic profile in urine, to investigate, for example, biological changes in response to hexavalent chromium Cr(VI) exposure. The use of effect biomarkers in HBM4EU has demonstrated their ability to detect early biological effects of chemical exposure and to identify subgroups that are at higher risk. The roadmap developed in HBM4EU confirms the utility of effect biomarkers, and support one of the main objectives of HBM research, which is to link exposure biomarkers to mechanistically validated effect and susceptibility biomarkers in order to better understand the public health implications of human exposure to environmental chemicals.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain.
| | - Alicia Olivas-Martínez
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Beatriz Suárez
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Stephan Couderq
- Physiologie Moléculaire et Adaptation, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Jean-Baptiste Fini
- Physiologie Moléculaire et Adaptation, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090, Vienna, Austria
| | - Antonio F Hernández
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Marina Lacasaña
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Federica Laguzzi
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Birgitte Linderman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | | | - Axel Oberemn
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences and Toxicological Center, University of Antwerp, Belgium
| | - Maria Joao Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Ulla Vogel
- National Food Institute, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| |
Collapse
|
22
|
Bajard L, Adamovsky O, Audouze K, Baken K, Barouki R, Beltman JB, Beronius A, Bonefeld-Jørgensen EC, Cano-Sancho G, de Baat ML, Di Tillio F, Fernández MF, FitzGerald RE, Gundacker C, Hernández AF, Hilscherova K, Karakitsios S, Kuchovska E, Long M, Luijten M, Majid S, Marx-Stoelting P, Mustieles V, Negi CK, Sarigiannis D, Scholz S, Sovadinova I, Stierum R, Tanabe S, Tollefsen KE, van den Brand AD, Vogs C, Wielsøe M, Wittwehr C, Blaha L. Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations. ENVIRONMENTAL RESEARCH 2023; 217:114650. [PMID: 36309218 PMCID: PMC9850416 DOI: 10.1016/j.envres.2022.114650] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
Collapse
Affiliation(s)
- Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Kirsten Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium
| | - Robert Barouki
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905 Nuussuaq, Greenland
| | | | - Milo L de Baat
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Filippo Di Tillio
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Rex E FitzGerald
- Swiss Centre for Applied Human Toxicology SCAHT, University of Basel, Missionsstrasse 64, CH-4055 Basel, Switzerland
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Antonio F Hernández
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Avda. de la Investigación, 11, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Sanah Majid
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Berlin, Germany
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Stefan Scholz
- UFZ Helmholtz Center for Environmental Research, Dept Bioanalyt Ecotoxicol, D-04318 Leipzig, Germany
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norway
| | - Annick D van den Brand
- Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, 3720 BA Bilthoven, the Netherlands
| | - Carolina Vogs
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
23
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
24
|
Ibroci E, Thurston SW, Barrett ES, Bush NR, Nguyen RHN, Sathyanarayana S, Reichenberg A, Collett BR, Swan SH, Evans SF. Prenatal bisphenol A exposure in relation to behavioral outcomes in girls aged 4-5 and modification by socio-demographic factors in The Infant Development and Environment Study (TIDES). Neurotoxicology 2022; 91:262-268. [PMID: 35661784 PMCID: PMC10026942 DOI: 10.1016/j.neuro.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is a polymer used in the production of polycarbonate plastics and epoxy resins. An estrogen mimic, prenatal BPA exposure has been associated with several behavioral outcomes in children; however, the impact of maternal demographic and economic factors on associations between BPA and child behavioral outcomes have not been examined. The objective of this study was to examine associations between prenatal maternal urinary BPA and behavior in 4-5 year old girls, and to assess whether socio-demographic factors modify this relationship. Mothers enrolled in The Infant Development and Environment Study (TIDES) provided a single spot urine at enrollment (median gestational age 11 weeks) and completed the Behavior Assessment System for Children-2 (BASC-2) and Social Responsiveness Scale-2 (SRS-2) when their daughters were 4-5 years of age. Mother-daughter pairs with complete phthalate, BASC-2, SRS-2, and covariate data were included in this analysis (N = 244). BPA was detectable in 93 % of urine samples. We used multivariable linear regression analyses to estimate associations between maternal urinary log10-transformed BPA concentration and BASC-2 subscale and composite scores and SRS-2 Total Score. To examine the role of socioeconomic and demographic factors associated with study site, we stratified by TIDES center, comparing those enrolled at University of Rochester Medical Center (URMC), a predominately lower socioeconomic population, and those enrolled elsewhere: University of Washington, University of Minnesota, and University of California San Francisco, whose populations share similar higher socioeconomic demographic characteristics. Across all centers, no associations were seen between BPA and BASC-2 or SRS-2 scores. When stratifying by center, BPA was significantly associated with greater social impairment as measured by the SRS-2 Total Score (β-coefficient [95 % confidence intervals]: 5.1 [1.0, 9.2]) in URMC participants (N = 61). In non-URMC participants (N = 183), BPA was significantly associated with lower BASC-2 Internalizing composite (-3.3 [-6.7, 0.0]) and Depression subscale scores (-3.4 [-6.7, 0.0]) while no associations were seen between BPA and SRS-2 scores. Our findings suggest that sociodemographic factors may modify the impacts of maternal prenatal BPA on developmental endpoints.
Collapse
Affiliation(s)
- Erona Ibroci
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - Emily S Barrett
- University of Rochester, Rochester, NY, USA; Rutgers School of Public Health, New Brunswick, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, New Brunswick, NJ, USA
| | - Nicole R Bush
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | | | - Brent R Collett
- University of Rochester, Rochester, NY, USA; Rutgers School of Public Health, New Brunswick, NJ, USA
| | - Shanna H Swan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah F Evans
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Nuñez P, Arguelles J, Perillan C. Sex-specific influence of maternal exposure to bisphenol A on sodium and fluid balance in response to dipsogenic challenges in rats. Appetite 2022; 176:106091. [DOI: 10.1016/j.appet.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
|
26
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
27
|
Mustieles V, Rodríguez-Carrillo A, Vela-Soria F, D'Cruz SC, David A, Smagulova F, Mundo-López A, Olivas-Martínez A, Reina-Pérez I, Olea N, Freire C, Arrebola JP, Fernández MF. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150014. [PMID: 34788942 DOI: 10.1016/j.scitotenv.2021.150014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF). OBJECTIVE To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain). METHODS BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9-11 years, normalized by creatinine and log-2 transformed. At adolescence (15-17 years), blood and urine specimens were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNA methylation levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in 148 boys. Adjusted linear regression and mediation models were fit. RESULTS Childhood urinary BPA concentrations were longitudinally and positively associated with thought problems (β = 0.76; 95% CI: 0.02, 1.49) and somatic complaints (β = 0.80; 95% CI: -0.16, 1.75) at adolescence. BPA concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36) and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein levels. When independent variables were categorized in tertiles, positive dose-response associations were observed between BPA-thought problems (p-trend = 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought problems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNA methylation was observed (β = 0.23; 95% CI: 0.01, 0.57), accounting for up to 34% of the BPA-thought problems association. CONCLUSIONS In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF DNA methylation, supporting the biological plausibility of BPA-behavior relationships previously described in the epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be replicated in larger birth cohorts.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | | | | | | | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
28
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
29
|
Liu C, Messerlian C, Chen YJ, Mustieles V, Huang LL, Sun Y, Deng YL, Cheng YH, Liu J, Liu AM, Lu WQ, Wang YX. Trimester-specific associations of maternal exposure to disinfection by-products, oxidative stress, and neonatal neurobehavioral development. ENVIRONMENT INTERNATIONAL 2021; 157:106838. [PMID: 34450548 DOI: 10.1016/j.envint.2021.106838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Toxicological studies suggest that maternal exposure to disinfection by-products (DBPs) can impair fetal neurodevelopment. However, evidence from epidemiological studies is scarce and the underlying mechanisms remain unclear. OBJECTIVE To explore the trimester-specific associations between maternal blood trihalomethane (THM) and urinary haloacetic acid (HAA) concentrations and neonatal neurobehavioral development, and the potential mediating role of oxidative stress (OS). METHODS We included 438 pregnant Chinese women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort. Biospecimens were repeatedly collected across trimesters and measured for blood THMs, urinary HAAs, and urinary OS biomarker concentrations. On the third day after birth, the Neonatal Behavioral Neurological Assessment (NBNA) test was administered to newborns. Associations of trimester-specific DBP measurements and OS biomarkers with neonatal NBNA scores were assessed using linear regression models with generalized estimating equations. The potential mediating role of maternal OS biomarkers was also investigated using mediation analyses. RESULTS After adjusting for potential confounders, blood bromodichloromethane (BDCM) concentrations in the first trimester were inversely associated with NBNA scores [percent change comparing the extreme BDCM tertiles = -28.1% (95% CI: -55.2%, -0.88%); p for trend = 0.043]. Besides, third-trimester urinary trichloroacetic acid (TCAA) concentrations were inversely associated with NBNA scores [percent change comparing the extreme TCAA tertiles = -32.9% (95% CI: -64.7%, -1.0%); p for trend = 0.046]. These inverse associations differed across pregnancy trimesters (Type 3p-value = 0.066 and 0.053, respectively) and were stronger in male infants and mothers aged ≥25 years. There was no evidence of mediating effect by 8-hydroxy-2-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), or 8-iso-prostaglandin F2α (8-isoPGF2α). CONCLUSIONS Higher prenatal BDCM and TCAA concentrations during specific pregnancy trimesters were associated with lower NBNA scores. However, additional research is required to investigate underlying mechanisms.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Li-Li Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Hui Cheng
- The Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Jing Liu
- The Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - A-Mei Liu
- The Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
30
|
Morris J, Bealer EJ, Souza IDS, Repmann L, Bonelli H, Stanzione JF, Staehle MM. Chemical Exposure-Induced Developmental Neurotoxicity in Head-Regenerating Schmidtea Mediterranea. Toxicol Sci 2021; 185:220-231. [PMID: 34791476 DOI: 10.1093/toxsci/kfab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growing number of commercially-used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A (BPA)). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F (BPF), and bisguaiacol (BG) on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-hour delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the two. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the central nervous system in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.
Collapse
Affiliation(s)
- J Morris
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - E J Bealer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - I D S Souza
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - L Repmann
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - H Bonelli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - J F Stanzione
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - M M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| |
Collapse
|
31
|
Liu J, Martin LJ, Dinu I, Field CJ, Dewey D, Martin JW. Interaction of prenatal bisphenols, maternal nutrients, and toxic metal exposures on neurodevelopment of 2-year-olds in the APrON cohort. ENVIRONMENT INTERNATIONAL 2021; 155:106601. [PMID: 33962233 DOI: 10.1016/j.envint.2021.106601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epidemiological studies suggest that Bisphenol-A (BPA) is a developmental neurotoxicant, but the modifying effects of maternal nutrient status or neurotoxicant metal co-exposures have not been reported. Bisphenol-S (BPS) is being used as a BPA-alternative, but few epidemiological studies have evaluated its effects. OBJECTIVES To examine if prenatal maternal BPA or BPS exposure are associated with children's neurodevelopment at two years of age while adjusting for effect-measure modification by sex, maternal nutrients, and co-exposure to neurotoxic metals. METHODS Total BPA and BPS concentrations were analyzed in spot maternal urine from the second trimester; metals and maternal nutrient status were analyzed in blood. Child neurodevelopment was evaluated with the Bayley Scales of Infant Development-III (Bayley-III) at age 2 (394 maternal-child pairs) and linear regression was used to investigate associations. RESULTS Among nutrients and neurotoxic metals, selenium (Se) and cadmium (Cd) were the most significant predictors of Bayley-III scale scores. Higher maternal Cd was significantly correlated with poorer motor performance (p < 0.01), and higher levels of maternal Se were significantly associated with poorer performance on the cognitive, motor, and adaptive behavior scales (p < 0.05). While maternal Cd did not modify relationships between bisphenol exposures and Bayley-III scores, both maternal Se and child sex were significant effect-measure modifiers. Associations between BPA exposure and social emotional scores were negative for boys (p = 0.056) but positive for girls (p = 0.046). Higher exposure to bisphenols was associated with lower motor scores among children with lower levels of maternal Se. CONCLUSION Higher maternal Cd was associated with poorer motor development, but it was not an effect-measure modifier of bisphenols' effects on motor development. Maternal Se may be protective against adverse effects of bisphenols, and additional nutrient-bisphenol interaction studies examining sex-specific effects of BPA and BPS on child development are warranted.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Nutrition and Health, China Agricultural University, Beijing, China
| | | | - Irina Dinu
- School of Public Health, University of Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences and the Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
32
|
Zare Jeddi M, Virgolino A, Fantke P, Hopf NB, Galea KS, Remy S, Viegas S, Mustieles V, Fernandez MF, von Goetz N, Vicente JL, Slobodnik J, Rambaud L, Denys S, St-Amand A, Nakayama SF, Santonen T, Barouki R, Pasanen-Kase R, Mol HGJ, Vermeire T, Jones K, Silva MJ, Louro H, van der Voet H, Duca RC, Verhagen H, Canova C, van Klaveren J, Kolossa-Gehring M, Bessems J. A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. Int J Hyg Environ Health 2021; 238:113826. [PMID: 34583227 DOI: 10.1016/j.ijheh.2021.113826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily. We argue that an HBM Global Registry Framework (HBM GRF) could be the solution to several of challenges hampering the (re)use of HBM (meta)data. The aim is to develop a global, host-independent HBM registry framework based on the use of harmonised open-access protocol templates from designing, undertaking of an HBM study to the use and possible reuse of the resulting HBM (meta)data. This framework should apply FAIR (Findable, Accessible, Interoperable and Reusable) principles as a core data management strategy to enable the (re)use of HBM (meta)data to its full potential through the data value chain. Moreover, we believe that implementation of FAIR principles is a fundamental enabler for digital transformation within environmental health. The HBM GRF would encompass internationally harmonised and agreed open access templates for HBM study protocols, structured web-based functionalities to deposit, find, and access harmonised protocols of HBM studies. Registration of HBM studies using the HBM GRF is anticipated to increase FAIRness of the resulting (meta)data. It is also considered that harmonisation of existing data sets could be performed retrospectively. As a consequence, data wrangling activities to make data ready for analysis will be minimised. In addition, this framework would enable the HBM (inter)national community to trace new HBM studies already in the planning phase and their results once finalised. The HBM GRF could also serve as a platform enhancing communication between scientists, risk assessors, and risk managers/policy makers. The planned European Partnership for the Assessment of Risk from Chemicals (PARC) work along these lines, based on the experience obtained in previous joint European initiatives. Therefore, PARC could very well bring a first demonstration of first essential functionalities within the development of the HBM GRF.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Ana Virgolino
- Environmental Health Behaviour Lab, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Karen S Galea
- IOM - Institute of Occupational Medicine, Edinburgh, EH14 4AP, UK
| | - Sylvie Remy
- VITO - Flemish Institute for Technological Research, Health Unit, Mol, Belgium
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1169-056, Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1500-310, Lisboa, Portugal
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | | | - Joana Lobo Vicente
- EEA - European Environment Agency, Kongens Nytorv 6, 1050, Copenhagen K, Denmark
| | - Jaroslav Slobodnik
- NORMAN Association, Rue Jacques Taffanel - Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France
| | - Loïc Rambaud
- SPF - Santé Publique France, Environmental and Occupational Health Division, France
| | - Sébastien Denys
- SPF - Santé Publique France, Environmental and Occupational Health Division, France
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Japan
| | - Tiina Santonen
- FIOH-Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Finland
| | - Robert Barouki
- Université de Paris, Inserm Unit 1124, 45 rue des Saints Pères, 75006, Paris, France
| | - Robert Pasanen-Kase
- SECO - State Secretariat for Economic Affairs, Labour Directorate Section Chemicals and Work (ABCH), Switzerland
| | - Hans G J Mol
- Wageningen Food Safety Research (WFSR) - part of Wageningen University & Research, Wageningen, The Netherlands
| | - Theo Vermeire
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton, SK17 9JN, UK
| | - Maria João Silva
- INSA - National Institute of Health Dr. Ricardo Jorge, Portugal; TOXOMICS - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Henriqueta Louro
- INSA - National Institute of Health Dr. Ricardo Jorge, Portugal; TOXOMICS - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Portugal
| | - Hilko van der Voet
- Wageningen University & Research, Biometris, Wageningen, the Netherlands
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg; Centre Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Hans Verhagen
- University of Ulster, Coleraine, Northern Ireland, UK; Technical University of Denmark, Lyngby, Denmark
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology, and Public Health-University of Padua, Padua, Italy
| | - Jacob van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Jos Bessems
- VITO - Flemish Institute for Technological Research, Health Unit, Mol, Belgium
| |
Collapse
|
33
|
Llorca M, Farré M. Current Insights into Potential Effects of Micro-Nanoplastics on Human Health by in-vitro Tests. FRONTIERS IN TOXICOLOGY 2021; 3:752140. [PMID: 35295102 PMCID: PMC8915894 DOI: 10.3389/ftox.2021.752140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Humans are exposed to micro and nanoplastics (MNPLs) through inhalation, ingestion and, to a lesser extent, dermal contact. In recent years, new insights indicate the potential of MNPLs to cause damages to human health. Particle toxicity can include oxidative stress, inflammatory lesions, and then increased internalization or translocation through tissues. On the other hand, plastic additives are used in plastic particles, once internalized, can release toxic substances. It is noteworthy that the potential effects of MNPLs encompass a wide range of polymers and chemical additives, showing various physicochemical and toxicological properties, and the size, shape and surface properties are other variables influencing their effects. In spite of the research carried out recently, MNPLs research is in its early stages, and further investigation is required. In this review article, the knowledge of human exposure routes and the recent results on the toxicological effects of MNPLs in human health are presented and discussed. Finally, the current limitations and the main gaps in the body of knowledge are summarised.
Collapse
Affiliation(s)
- Marta Llorca
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Marinella Farré
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
34
|
Garí M, Moos R, Bury D, Kasper-Sonnenberg M, Jankowska A, Andysz A, Hanke W, Nowak D, Bose-O’Reilly S, Koch HM, Polanska K. Human-Biomonitoring derived exposure and Daily Intakes of Bisphenol A and their associations with neurodevelopmental outcomes among children of the Polish Mother and Child Cohort Study. Environ Health 2021; 20:95. [PMID: 34433458 PMCID: PMC8390261 DOI: 10.1186/s12940-021-00777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an industrial chemical mostly used in the manufacture of plastics, resins and thermal paper. Several studies have reported adverse health effects with BPA exposures, namely metabolic disorders and altered neurodevelopment in children, among others. The aim of this study was to explore BPA exposure, its socio-demographic and life-style related determinants, and its association with neurodevelopmental outcomes in early school age children from Poland. METHODS A total of 250 urine samples of 7 year-old children from the Polish Mother and Child Cohort Study (REPRO_PL) were analyzed for BPA concentrations using high performance liquid chromatography with online sample clean-up coupled to tandem mass spectrometry (online-SPE-LC-MS/MS). Socio-demographic and lifestyle-related data was collected by questionnaires or additional biomarker measurements. Emotional and behavioral symptoms in children were assessed using mother-reported Strengths and Difficulties Questionnaire (SDQ). Cognitive and psychomotor development was evaluated by Polish adaptation of the Intelligence and Development Scales (IDS) performed by trained psychologists. RESULTS Urinary BPA concentrations and back-calculated daily intakes (medians of 1.8 μg/l and 46.3 ng/kg bw/day, respectively) were similar to other European studies. Urinary cotinine levels and body mass index, together with maternal educational level and socio-economic status, were the main determinants of BPA levels in Polish children. After adjusting for confounding factors, BPA has been found to be positively associated with emotional symptoms (β: 0.14, 95% CI: 0.022; 0.27). Cognitive and psychomotor development were not found to be related to BPA levels. CONCLUSIONS This study represents the first report of BPA levels and their determinants in school age children in Poland. The exposure level was found to be related to child emotional condition, which can have long-term consequences including social functioning and scholastic achievements. Further monitoring of this population in terms of overall chemical exposure is required.
Collapse
Affiliation(s)
- Mercè Garí
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich. Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Rebecca Moos
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Agnieszka Jankowska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Aleksandra Andysz
- Department of Health and Work Psychology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Bose-O’Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Kinga Polanska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| |
Collapse
|
35
|
Dualde P, León N, Sanchis Y, Corpas-Burgos F, Fernández SF, Hernández CS, Saez G, Pérez-Zafra E, Mora-Herranz A, Pardo O, Coscollà C, López A, Yusà V. Biomonitoring of Phthalates, Bisphenols and Parabens in Children: Exposure, Predictors and Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178909. [PMID: 34501500 PMCID: PMC8431397 DOI: 10.3390/ijerph18178909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 11/20/2022]
Abstract
Exposure to emerging contaminants, such as phthalates, bisphenols and parabens in children has been associated with possible neurodevelopment and endocrine alterations. In the present study, the biomonitoring of biomarkers in children (5–12 years old) from the Valencia Region (Spain) have been implemented using urines from the BIOVAL program. More than 75% of the children studied (n = 562) were internally exposed (>LOQ) to bisphenols and parabens, and the whole population assessed (n = 557) were exposed to at least one phthalate. The geometric means (GM) of the concentrations of bisphenol A, methyl paraben and propyl paraben were 0.9, 1.4 and 0.39 ng/mL, respectively. Regarding phthalates, monoethyl phthalate GM was 55.0 ng/mL and diethyl hexyl phthalate (as the sum of five metabolites) GM was 60.6 ng/mL. Despite the studied population being widely exposed, the detection frequencies and concentrations were in general lower than in previous studies involving children in Spain and in other countries in recent years. Furthermore, the risk assessment study concluded that the internal exposure to phthalates, bisphenols and parabens is lower than the guidance values established, and, therefore, a health risk derived from the exposure to these compounds in the studied population is not expected.
Collapse
Affiliation(s)
- Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
| | - Nuria León
- Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain; (N.L.); (Y.S.)
| | - Yovana Sanchis
- Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain; (N.L.); (Y.S.)
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
| | - Sandra F. Fernández
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
| | - Cristina S. Hernández
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
| | - Guillermo Saez
- Conselleria Sanitat, Universitary Hospital Doctor Peset, Av. Gaspar Aguilar, 90, 46017 Valencia, Spain; (G.S.); (E.P.-Z.); (A.M.-H.)
| | - Erika Pérez-Zafra
- Conselleria Sanitat, Universitary Hospital Doctor Peset, Av. Gaspar Aguilar, 90, 46017 Valencia, Spain; (G.S.); (E.P.-Z.); (A.M.-H.)
| | - Antonio Mora-Herranz
- Conselleria Sanitat, Universitary Hospital Doctor Peset, Av. Gaspar Aguilar, 90, 46017 Valencia, Spain; (G.S.); (E.P.-Z.); (A.M.-H.)
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; (P.D.); (F.C.-B.); (S.F.F.); (C.S.H.); (O.P.); (C.C.); (A.L.)
- Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain; (N.L.); (Y.S.)
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100 Burjassot, Spain
- Correspondence:
| | | |
Collapse
|
36
|
Bajard L, Negi CK, Mustieles V, Melymuk L, Jomini S, Barthelemy-Berneron J, Fernandez MF, Blaha L. Endocrine disrupting potential of replacement flame retardants - Review of current knowledge for nuclear receptors associated with reproductive outcomes. ENVIRONMENT INTERNATIONAL 2021; 153:106550. [PMID: 33848905 DOI: 10.1016/j.envint.2021.106550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIM Endocrine disrupting chemicals (EDCs) constitute a major public health concern because they can induce a large spectrum of adverse effects by interfering with the hormonal system. Rapid identification of potential EDCs using in vitro screenings is therefore critical, particularly for chemicals of emerging concerns such as replacement flame retardants (FRs). The review aimed at identifying (1) data gaps and research needs regarding endocrine disrupting (ED) properties of replacement FRs and (2) potential EDCs among these emerging chemicals. METHODS A systematic search was performed from open literature and ToxCast/Tox21 programs, and results from in vitro tests on the activities of 52 replacement FRs towards five hormone nuclear receptors (NRs) associated with reproductive outcomes (estrogen, androgen, glucocorticoid, progesterone, and aryl hydrocarbon receptors) were compiled and organized into tables. Findings were complemented with information from structure-based in silico model predictions and in vivo information when relevant. RESULTS For the majority of the 52 replacement FRs, experimental in vitro data on activities towards these five NRs were either incomplete (15 FRs) or not found (24 FRs). Within the replacement FRs for which effect data were found, some appeared as candidate EDCs, such as triphenyl phosphate (TPhP) and tris(1,3-dichloropropyl)phosphate (TDCIPP). The search also revealed shared ED profiles. For example, anti-androgenic activity was reported for 19 FRs and predicted for another 21 FRs. DISCUSSION This comprehensive review points to critical gaps in knowledge on ED potential for many replacement FRs, including chemicals to which the general population is likely exposed. Although this review does not cover all possible characteristics of ED, it allowed the identification of potential EDCs associated with reproductive outcomes, calling for deeper evaluation and possibly future regulation of these chemicals. By identifying shared ED profiles, this work also raises concerns for mixture effects since the population is co-exposed to several FRs and other chemicals.
Collapse
Affiliation(s)
- Lola Bajard
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Chander K Negi
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Ciber de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain; Instituto de Investigacion Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Lisa Melymuk
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Direction de l'Evaluation des Risques, Unité Evaluation des Substances Chimiques, 14 rue Pierre Marie Curie. 94701 Maisons-Alfort Cedex, France
| | - Johanna Barthelemy-Berneron
- ANSES, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Direction de l'Evaluation des Risques, Unité Evaluation des Substances Chimiques, 14 rue Pierre Marie Curie. 94701 Maisons-Alfort Cedex, France
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Ciber de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain; Instituto de Investigacion Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia.
| |
Collapse
|
37
|
Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP). Int J Mol Sci 2021; 22:ijms22115534. [PMID: 34073890 PMCID: PMC8197233 DOI: 10.3390/ijms22115534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA’s known impact on neurodevelopment.
Collapse
|
38
|
Bornehag CG, Engdahl E, Unenge Hallerbäck M, Wikström S, Lindh C, Rüegg J, Tanner E, Gennings C. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. ENVIRONMENT INTERNATIONAL 2021; 150:106433. [PMID: 33637302 DOI: 10.1016/j.envint.2021.106433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experimental evidence demonstrates that exposure to bisphenol A (BPA), and the recently introduced alternatives bisphenol S (BPS) and bisphenol F (BPF) alter normal neurodevelopment. More research is needed to evaluate the associations between exposure to individual BPA alternatives and neurodevelopmental outcomes in humans. OBJECTIVE The present study aimed at examining the individual associations between prenatal BPA, BPS and BPF exposure and cognitive outcomes in children at age 7 years. METHOD Women were enrolled in the Swedish Environmental Longitudinal Mother and Child, Asthma and Allergy (SELMA) study, at gestational median week 10.0, and their children were examined for cognitive function at 7 years of age (N = 803). Maternal urinary BPA, BPS, and BPF concentrations were measured at enrollment and childreńs cognitive function at the age of 7 years was measured using the Wechsler Intelligence Scale for Children IV (WISC-IV). RESULTS All three bisphenols were detected in over 90% of the women, where BPA had the highest geometric mean concentrations (1.55 ng/mL), followed by BPF (0.16 ng/mL) and BPS (0.07 ng/mL). Prenatal BPF exposure was associated with decreased full scale IQ (β = -1.96, 95%CI; -3.12; -0.80), as well as with a decrease in all four sub scales covering verbal comprehension, perceptual reasoning, working memory and processing speed. This association corresponded to a 1.6-point lower IQ score for an inter-quartile-range (IQR) change in prenatal BPF exposure (IQR = 0.054-0.350 ng/mL). In sex-stratified analyses, significant associations with full scale IQ were found for boys (β = -2.86, 95%CI; -4.54; -1.18), while the associations for girls did not reach significance (β = -1.38, 95%CI; -2.97; 0.22). No significant associations between BPA nor BPS and cognition were found. DISCUSSION Prenatal exposure to BPF was significantly associated with childreńs cognitive function at 7 years. Since BPF is replacing BPA in numerous consumer products globally, this finding urgently call for further studies.
Collapse
Affiliation(s)
- Carl-Gustaf Bornehag
- Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York City, USA.
| | | | | | | | | | - Joëlle Rüegg
- Karlstad University, Karlstad, Sweden; Uppsala University, Uppsala, Sweden
| | - Eva Tanner
- Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York City, USA
| |
Collapse
|
39
|
Kawa IA, Fatima Q, Mir SA, Jeelani H, Manzoor S, Rashid F. Endocrine disrupting chemical Bisphenol A and its potential effects on female health. Diabetes Metab Syndr 2021; 15:803-811. [PMID: 33839640 DOI: 10.1016/j.dsx.2021.03.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM A large number of chemical compounds with endocrine-disrupting activity have been documented. These chemicals are ubiquitous and widely used in many products of our daily lives. Bisphenol A (BPA) is among the most common Endocrine Disrupting Chemical (EDC) that has been used for many years in the manufacture of polycarbonate plastics and epoxy resins. There is growing evidence that exposure to these EDCs poses a possible health risk. This review focuses on the effect of EDCs, in particular, BPA on female reproduction and Polycystic Ovary Syndrome (PCOS), which is the most prevalent endocrine disorder of reproductively aged women. METHODS A relevant literature survey was conducted with Google scholar and Pubmed using several appropriate keywords to select the most relevant studies evaluating the role of endocrine disrupting-chemicals in female reproduction. RESULTS The female menstrual cycle and fertility are very sensitive to hormonal imbalance and alteration in endocrine function during critical times and different stages of lifecycle owing to EDC exposure results in many abnormalities like menstrual irregularities, impaired fertility, PCOS, and Endometriosis among others. BPA is the most extensively studied EDC worldwide and has been strongly associated with female reproductive health. CONCLUSION EDCs lead to deleterious effects on human health including reproductive health which are of global concern. Exposure to EDCs in early life can elicit disease in adult life and maybe even transgenerational. There is an immediate need to minimize the ill effect of EDCs which can be tackled through the collection of more data to clarify the clinical implications of EDCs.
Collapse
Affiliation(s)
- Iram Ashaq Kawa
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Qudsia Fatima
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, India
| | - Humira Jeelani
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Saika Manzoor
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Fouzia Rashid
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India.
| |
Collapse
|
40
|
Jedynak P, Maitre L, Guxens M, Gützkow KB, Julvez J, López-Vicente M, Sunyer J, Casas M, Chatzi L, Gražulevičienė R, Kampouri M, McEachan R, Mon-Williams M, Tamayo I, Thomsen C, Urquiza J, Vafeiadi M, Wright J, Basagaña X, Vrijheid M, Philippat C. Prenatal exposure to a wide range of environmental chemicals and child behaviour between 3 and 7 years of age - An exposome-based approach in 5 European cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144115. [PMID: 33422710 PMCID: PMC7840589 DOI: 10.1016/j.scitotenv.2020.144115] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Studies looking at associations between environmental chemicals and child behaviour usually consider only one exposure or family of exposures. OBJECTIVE This study explores associations between prenatal exposure to a wide range of environmental chemicals and child behaviour. METHODS We studied 708 mother-child pairs from five European cohorts recruited in 2003-2009. We assessed 47 exposure biomarkers from eight chemical exposure families in maternal blood or urine collected during pregnancy. We used the Strengths and Difficulties Questionnaire (SDQ) to evaluate child behaviour between three and seven years of age. We assessed associations of SDQ scores with exposures using an adjusted least absolute shrinkage and selection operator (LASSO) considering all exposures simultaneously and an adjusted exposome-wide association study (ExWAS) considering each exposure independently. RESULTS LASSO selected only copper (Cu) as associated with externalizing behaviour. In the ExWAS, bisphenol A [BPA, incidence rate ratio (IRR): 1.06, 95% confidence interval (95%CI): 1.01;1.12] and mono-n-butyl phthalate (MnBP, IRR: 1.06, 95%CI: 1.00;1.13) were associated with greater risk of externalizing behaviour problems. Cu (IRR: 0.90, 95%CI: 0.82;0.98), perfluoroundecanoate (PFUnDA, IRR: 0.92, 95%CI: 0.84;0.99) and organochlorine compounds (OCs) were associated with lower risk of externalizing behaviour problems, however the associations with OCs were mainly seen among women with insufficient weight gain during pregnancy. Internalizing score worsen in association with exposure to diethyl thiophosphate (DETP, IRR: 1.11, 95%CI: 1.00;1.24) but the effect was driven by the smallest cohort. Internalizing score improved with increased concentration of perfluorooctane sulfonate (PFOS, IRR: 0.92, 95%CI: 0.85;1.00), however the association was driven by the two smallest cohorts with the lowest PFOS concentrations. DISCUSSION This study added evidence on deleterious effects of prenatal exposure to BPA and MnBP on child behaviour. Other associations should be interpreted cautiously since they were not consistent with previous studies or they have not been studied extensively.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France.
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Jordi Julvez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Reus, Spain; ISGlobal, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Social Medicine, University of Crete, Heraklion, Greece; Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | - Mariza Kampouri
- Department of Social Medicine, University of Crete, Heraklion, Greece
| | - Rosie McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Ibon Tamayo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - José Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| |
Collapse
|
41
|
Ayar G, Yalçın SS, Emeksiz S, Yırün A, Balcı A, Kocer-Gumusel B, Erkekoğlu P. The association between urinary BPA levels and medical equipment among pediatric intensive care patients. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103585. [PMID: 33460802 DOI: 10.1016/j.etap.2021.103585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
We aim to evaluate urinary total BPA (tBPA) levels and association with medical devices used on patients in pediatric intensive care units. This cross-sectional descriptive study included 117 critically ill children. Urinary tBPA levels were determined using high-performance liquid chromatography. General estimating equations with repeated measures analyzed the effect of interventions and devices on urinary BPA levels. A total of 292 urine samples taken from 117 child intensive care patients were studied. When age, sex, and body mass index-for age z-scores were controlled, cases having endotracheal intubation showed higher urinary tBPA levels (p = 0.003) and hemodialyzed patients had considerably higher urinary tBPA levels (p = 0.004). When confounding factors were controlled, cases using both multiple iv treatment and more than four medical devices showed higher urinary tBPA levels than their counterparts (p = 0.007 and p = 0.028, respectively). The use of certain medical devices and interventions could increase BPA exposure in pediatric intensive care patients.
Collapse
Affiliation(s)
- Ganime Ayar
- Ministry of Health, Ankara City Hospital, Bilkent, Ankara, Turkey
| | - Sıddıka Songül Yalçın
- Hacettepe University, Faculty of Medicine, Department of Pediatrics, Sıhhiye, Ankara, Turkey.
| | - Serhat Emeksiz
- Ministry of Health, Ankara City Hospital, Bilkent, Ankara, Turkey
| | - Anıl Yırün
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Ankara, Turkey
| | - Aylin Balcı
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Ankara, Turkey; Lokman Hekim University, Faculty of Pharmacy, Department of Toxicology, Çankaya, Ankara, Turkey
| | - Pınar Erkekoğlu
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Ankara, Turkey
| |
Collapse
|
42
|
Hansen JB, Bilenberg N, Timmermann CAG, Jensen RC, Frederiksen H, Andersson AM, Kyhl HB, Jensen TK. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and5 years from the Odense Child Cohort. Environ Health 2021; 20:24. [PMID: 33712018 PMCID: PMC7955642 DOI: 10.1186/s12940-021-00709-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a non-persistent chemical with endocrine disrupting abilities used in a variety of consumer products. Fetal exposure to BPA is of concern due to the elevated sensitivity, which particularly relates to the developing brain. Several epidemiological studies have investigated the association between prenatal BPA exposure and neurodevelopment, but the results have been inconclusive. OBJECTIVE To assess the association between in utero exposure to BPA and Attention Deficit/Hyperactivity Disorder (ADHD-) symptoms and symptoms of Autism Spectrum Disorder (ASD) in 2 and 5-year old Danish children. METHOD In the prospective Odense Child Cohort, BPA was measured in urine samples collected in gestational week 28 and adjusted for osmolality. ADHD and ASD symptoms were assessed with the use of the ADHD scale and ASD scale, respectively, derived from the Child Behaviour Checklist preschool version (CBCL/1½-5) at ages 2 and 5 years. Negative binomial and multiple logistic regression analyses were performed to investigate the association between maternal BPA exposure (continuous ln-transformed or divided into tertiles) and the relative differences in ADHD and ASD problem scores and the odds (OR) of an ADHD and autism score above the 75th percentile adjusting for maternal educational level, maternal age, pre-pregnancy BMI, parity and child age at evaluation in 658 mother-child pairs at 2 years of age for ASD-score, and 427 mother-child pairs at 5 years of age for ADHD and ASD-score. RESULTS BPA was detected in 85.3% of maternal urine samples even though the exposure level was low (median 1.2 ng/mL). No associations between maternal BPA exposure and ASD at age 2 years or ADHD at age 5 years were found. Trends of elevated Odds Ratios (ORs) were seen among 5 year old children within the 3rd tertile of BPA exposure with an ASD-score above the 75th percentile (OR = 1.80, 95% CI 0.97,3.32), being stronger for girls (OR = 3.17, 95% CI 1.85,9.28). A dose-response relationship was observed between BPA exposure and ASD-score at 5 years of age (p-trend 0.06) in both boys and girls, but only significant in girls (p-trend 0.03). CONCLUSION Our findings suggest that prenatal BPA exposure even in low concentrations may increase the risk of ASD symptoms which may predict later social abilities. It is therefore important to follow-up these children at older ages, measure their own BPA exposure, and determine if the observed associations persist.
Collapse
Affiliation(s)
- Julie Bang Hansen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Clara Amalie Gade Timmermann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Richard Christian Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
43
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
44
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
45
|
Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2020; 230:113597. [PMID: 32795877 DOI: 10.1016/j.ijheh.2020.113597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to bisphenol A (BPA) and other phenolic endocrine disrupting chemicals (EDCs) may affect child neurodevelopment, but data on the effects of prenatal exposure to phenols on cognitive function remain sparse. Our aim was to examine the association of placental concentrations of several phenolic EDCs, including BPA, parabens (PBs), and benzophenones (BzPs), with cognitive development in preschool children from the Environment and Childhood (INMA) Project in Spain. Concentrations of BPA, four PBs (methylparaben [MePB], ethylparaben [EtPB], propylparaben [PrPB], and butylparaben [BuPB]), and six BzPs (BzP-1, BzP-2, BzP-3, BzP-6, BzP-8, and 4-hydroxybenzophenone [4-OH-BzP]) were measured in 490 placenta samples randomly selected from five INMA cohorts collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was performed with the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5 years. Associations were assessed in a sub-sample of 191 mother-child pairs using linear and logistic regression models adjusted for confounding factors. PB compounds were detected in more than 71% of placentas, BPA in 62%, 4-OH-BzP in 50%, and the remaining BzPs in <9% of the samples. Because of the low detection frequency of BzP compounds, only 4-OH-BzP was included in the exposure-outcome analyses. After adjustment for confounders, BPA was associated with greater odds of scoring lower (below the 20th percentile) in the verbal (third vs. first exposure tertile: odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.00; 5.81, p-trend = 0.05) and gross motor (detected vs. undetected: OR = 1.75, 95%CI = 1.06; 9.29) areas, and these associations were only significant for boys. Regarding PB compounds, PrPB was associated with lower scores in memory (detected vs. undetected: β = -4.96, 95%CI = -9.54; -0.31), span memory (OR = 2.50, 95%CI = 0.95; 6.92 and 2.71, 95%CI = 0.97; 6.64, respectively for second and third tertiles, p-trend = 0.03), and motor function (β = -5.15, 95%CI = -9.26; -0.01 for third vs. first exposure tertile, p-trend = 0.04). EtPB and total PBs concentrations in the second tertile were also associated with poorer visual function of posterior cortex and worse quantitative performance, respectively, but linear trends were not statistically significant. The associations of BPA and PrPB with poorer verbal, memory, and motor skills are novel observations that warrant further attention. Larger prospective studies are required to confirm whether prenatal exposure to BPA and other phenolic EDCs is associated with impaired cognitive development.
Collapse
|