1
|
Mayntz SP, Rosenbech KE, Mohamed RA, Lindholt JS, Diederichsen ACP, Frohn LM, Lambrechtsen J. Impact of air pollution and noise exposure on cardiovascular disease incidence and mortality: A systematic review. Heliyon 2024; 10:e39844. [PMID: 39524794 PMCID: PMC11550137 DOI: 10.1016/j.heliyon.2024.e39844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background The relationship between environmental pollutants, specifically air pollution and noise, and cardiovascular disease is well-recognized. However, their combined effects on cardiovascular health are not fully explored. Objectives To review evidence on the correlation between air pollution and noise exposure and cardiovascular disease incidence and mortality. Methods Following the PRISMA 2020 guidelines, we identified relevant studies through multiple databases and snowballing. We focused on studies published between 2003 and 2024. Studies were selected based on a PEOS framework, with a focus on exposure to air pollution or noise and clinical cardiovascular outcomes and evaluated for bias using the ROBINS-E tool. Results A total of 140 studies met our inclusion criteria. Most studies suggested a consistent association between long-term exposure to air pollutants and an increased risk of cardiovascular diseases, notably ischemic heart disease and stroke. While air pollution was often studied in isolation, the interaction effects between air pollution and noise exposure were less commonly investigated, showing mixed results. The majority of these studies were conducted in Western countries, which may limit the generalizability of the findings to global populations. No studies were found to use time-updated confounders, despite the long durations over which participants were followed, which could influence the accuracy of the results. Moreover, none of the studies incorporated both residential and occupational addresses in exposure assessments, suggesting a need for future studies to include these multiple exposure points to improve measurement precision and accuracy. Conclusion Air pollution exposure is increasingly linked to cardiovascular disease risks. Although individual air pollution and noise exposures are recognized as significant risk factors, the combined interaction between these exposures needs further exploration. Registration PROSPERO (CRD42023460443).
Collapse
Affiliation(s)
- Stephan Peronard Mayntz
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | | | - Roda Abdulkadir Mohamed
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| | - Jes Sanddal Lindholt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Axel Cosmus Pyndt Diederichsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jess Lambrechtsen
- Cardiology Research Unit, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN – Open Patient Data Explorative Network, Odense University Hospital, Denmark
| |
Collapse
|
2
|
Naimi N, Sarkhosh M, Nabavi BF, Najafpoor A, Musa Farkhani E. Estimating the burden of diseases attributed to PM 2.5 using the AirQ + software in Mashhad during 2016-2021. Sci Rep 2024; 14:24462. [PMID: 39424839 PMCID: PMC11489694 DOI: 10.1038/s41598-024-74328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
The study used the AirQ + software developed by the World Health Organization (WHO) to evaluate the health impacts associated with long-term exposure to PM2.5 in Mashhad, Iran. For this purpose, we analyzed the daily average concentrations of PM2.5 (with a diameter of 2.5 micrometers or less) registered by the air quality monitoring stations from 2016 to 2021. The levels of PM2.5 surpassed the Air Quality Guidelines (AQG) limit value of 5 µg/m3 (annual value) established by WHO. The findings revealed that the burden of mortality (from all-natural causes) at people above 30 years old associated with PM2.5 exposures was 2093 [95% confidence interval [CI]: 1627-2314] deaths in 2016 and 2750 [95% CI: 2139-3038] deaths in 2021. In general, the attributable mortality from specific causes of deaths (e.g., COPD (chronic obstructive pulmonary diseases), IHD (ischemic heart diseases) and stroke) in people above 25 years old increased between the years, but the mortality from lung cancer was stable at 46 [95% CI: 33-59] deaths in 2016 and 48 [95% CI: 34-61] deaths in 2021. The attributable mortality from ALRI (Acute Lower Respiratory Infection) in children below 5 years old increased between the years. We also found differences in mortality cases from IHD and stroke among the age groups and between the years 2016 and 2021. It was concluded that burden of disease methodologies are suitable tools for regional and national policymakers, who must take decisions to prevent and to control air pollution and to analyze the cost-effectiveness of interventions.
Collapse
Affiliation(s)
- Nayera Naimi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Fatemeh Nabavi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliasghar Najafpoor
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Musa Farkhani
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
4
|
Yang L, Wang M, Xuan C, Yu C, Zhu Y, Luo H, Meng X, Shi S, Wang Y, Chu H, Chen R, Yan J. Long-term exposure to particulate matter pollution and incidence of ischemic and hemorrhagic stroke: A prospective cohort study in Eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124446. [PMID: 38945192 DOI: 10.1016/j.envpol.2024.124446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Although epidemiological studies have demonstrated significant associations of long-term exposure to particulate matter (PM) air pollution with stroke, evidence on the long-term effects of PM exposure on cause-specific stroke incidence is scarce and inconsistent. We incorporated 33,282 and 33,868 individuals aged 35-75 years without a history of ischemic or hemorrhagic stroke at the baseline in 2014, who were followed up till 2021. Residential exposures to particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) and particulate matter with an aerodynamic diameter less than 10 μm (PM10) for each participant were predicted using a satellite-based model with a spatial resolution of 1 × 1 km. We employed time-varying Cox proportional hazards models to assess the long-term effect of PM pollution on incident stroke. We identified 926 cases of ischemic stroke and 211 of hemorrhagic stroke. Long-term PM exposure was significantly associated with increased incidence of both ischemic and hemorrhagic stroke, with almost 2 times higher risk on hemorrhagic stroke. Specifically, a 10 μg/m³ increase in 3-year average concentrations of PM2.5 was linked to a hazard ratio (HR) of 1.35 (95% confidence interval (CI): 1.18-1.54) for incident ischemic stroke and 1.79 (95% CI: 1.36-2.34) for incident hemorrhagic stroke. The HR related to PM10, though smaller, remained statistically significant, with a HR of 1.25 for ischemic stroke and a HR of 1.51 for hemorrhagic stroke. The excess risks are larger among rural residents and individuals with lower educational attainment. The present cohort study contributed to the mounting evidence on the increased risk of incident stroke associated with long-term PM exposures. Our results further provide valuable evidence on the heightened sensitivity of hemorrhagic stroke to air pollution exposures compared with ischemic stroke.
Collapse
Affiliation(s)
- Li Yang
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Menghao Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cheng Xuan
- Chronic Disease Control Department, Zhuji Second People's Hospital, Zhuji, Zhejiang, China
| | - Caiyan Yu
- Chronic Disease Control Department, Zhuji Second People's Hospital, Zhuji, Zhejiang, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yali Wang
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Hongjie Chu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Yan
- Zhejiang Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Li J, Shi Y, Li S, Xu H, Tao T, Wang Q, Gilbert KM. The impact of residential environment on stroke onset and its spatial heterogeneity: A multiscale exploration in Shanghai. Prev Med 2024; 186:108067. [PMID: 39009190 DOI: 10.1016/j.ypmed.2024.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Stroke is a worldwide concern due to its high disability and mortality rates, especially in many countries entering ageing societies. This study aims to understand the spatial heterogeneity of stroke onset and residential environment influence scopes from multiscale. METHODS The 2013 to 2022 spatiotemporal distribution pattern of stroke onset was obtained via out-patient data from a hospital in Shanghai. Then nine residential environmental factors were selected to estimate the association of stroke onset by multiscale geographically weighted regression (MGWR), in three scenarios. RESULTS Accessibility to pubs/bars (PUB) and building density (BD) were the top two residential environmental factors both for the entire sample and by gender. Stress-related environmental factors have a greater impact on the onset of stroke in men but are limited in scope. The population of elderly people have relevance to environmental variables heterogeneity. The indicators relating to unhealthy food and alcohol suggest that habit-inducing environmental factors have a limited impact on stroke onset, but rather that pre-existing habits play a greater role. CONCLUSIONS MGWR analyses individual components across multiple bandwidths, revealing geographical disparities in the impact of elements that would otherwise be undetected on a global scale. Environmental factors have a limited impact on the onset of stroke. When society is faced with both heavy ageing and fiscal constraints, some of the blue-green space budgets can be scaled back to invest in more secure facilities.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.
| | - Yishao Shi
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.
| | - Shanzhu Li
- Tongji Hospital of Tongji University, Shanghai 200065, China.
| | - Hui Xu
- Tongji Hospital of Tongji University, Shanghai 200065, China.
| | - Tianhui Tao
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
| | - Qianxu Wang
- College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China.
| | | |
Collapse
|
6
|
Opare-Addo PA, Sarfo FS, Aikins M, Bediako SA, Ovbiagele B. Epigenetics as a target to mitigate excess stroke risk in people of African ancestry: A scoping review. J Stroke Cerebrovasc Dis 2024; 33:107585. [PMID: 38253246 PMCID: PMC11060795 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Globally, individuals of African ancestry have a relatively greater stroke preponderance compared to other racial/ethnic groups. The higher prevalence of traditional stroke risk factors in this population, however, only partially explains this longstanding disparity. Epigenetic signatures are transgenerational and could be a plausible therapeutic target to further bend the stroke disparities curve for people of African ancestry. There is, however, limited data on epigenetics and stroke risk in this population. PURPOSE To examine existing evidence and knowledge gaps on the potential contribution of epigenetics to excess stroke risk in people of African ancestry and avenues for mitigation. MATERIALS AND METHODS We conducted a scoping review of studies published between January 2003 and July 2023, on epigenetics and stroke risk. We then summarized our findings, highlighting the results for people of African ancestry. RESULTS Of 104 studies, there were only 6 studies that specifically looked at epigenetic mechanisms and stroke risk in people of African ancestry. Results of these studies show how patterns of DNA methylation and non-coding RNA interact with lifestyle choices, xenobiotics, and FVIII levels to raise stroke risk in people of African ancestry. However, no studies evaluated epigenetic patterns as actionable targets for the influence of psychosocial stressors or social context and excess stroke risk in this population (versus others). Also, no studies interrogated the role of established or novel therapeutic agents with the potential to reprogram DNA by adding or removing epigenetic markers in people of African ancestry. CONCLUSION Epigenetics potentially offers a promising target for modifying the effects of lifestyle, environmental exposures, and other factors that differentially affect people of African ancestry and place them at relatively greater stroke risk compared to other populations. Studies that precisely assess the pathways by which epigenetic mechanisms modulate population-specific disparities in the risk of stroke are needed.
Collapse
Affiliation(s)
| | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Neurology Division, Kwame Nkrumah University of Science & Technology, P. O. Box 1934, Kumasi, Ghana.
| | | | | | | |
Collapse
|
7
|
Li P, Wang Y, Tian D, Liu M, Zhu X, Wang Y, Huang C, Bai Y, Wu Y, Wei W, Tian S, Li Y, Qiao Y, Yang J, Cao S, Cong C, Zhao L, Su J, Wang M. Joint Exposure to Ambient Air Pollutants, Genetic Risk, and Ischemic Stroke: A Prospective Analysis in UK Biobank. Stroke 2024; 55:660-669. [PMID: 38299341 DOI: 10.1161/strokeaha.123.044935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Our primary objective was to assess the association between joint exposure to various air pollutants and the risk of ischemic stroke (IS) and the modification of the genetic susceptibility. METHODS This observational cohort study included 307 304 British participants from the United Kingdom Biobank, who were stroke-free and possessed comprehensive baseline data on genetics, air pollutant exposure, alcohol consumption, and dietary habits. All participants were initially enrolled between 2006 and 2010 and were followed up until 2022. An air pollution score was calculated to assess joint exposure to 5 ambient air pollutants, namely particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, as well as nitrogen oxide and nitrogen dioxide. To evaluate individual genetic risk, a polygenic risk score for IS was calculated for each participant. We adjusted for demographic, social, economic, and health covariates. Cox regression models were utilized to estimate the associations between air pollution exposure, polygenic risk score, and the incidence of IS. RESULTS Over a median follow-up duration of 13.67 years, a total of 2476 initial IS events were detected. The hazard ratios (95% CI) of IS for per 10 µg/m3 increase in particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, nitrogen dioxide, and nitrogen oxide were 1.73 (1.33-2.14), 1.24 (0.88-1.70), 1.13 (0.89-1.33), 1.03 (0.98-1.08), and 1.04 (1.02-1.07), respectively. Furthermore, individuals in the highest quintile of the air pollution score exhibited a 29% to 66% higher risk of IS compared with those in the lowest quintile. Notably, participants with both high polygenic risk score and air pollution score had a 131% (95% CI, 85%-189%) greater risk of IS than participants with low polygenic risk score and air pollution score. CONCLUSIONS Our findings suggested that prolonged joint exposure to air pollutants may contribute to an increased risk of IS, particularly among individuals with elevated genetic susceptibility to IS.
Collapse
Affiliation(s)
- Panlong Li
- Department of Medical Imaging (P.L., Y.B., Y. Wu, W.W., M.W.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China (P.L., X.Z., Yanfeng Wang, C.H.)
| | - Ying Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China (Ying Wang)
- School of Public Health, Zhengzhou University (Ying Wang)
| | - Dandan Tian
- Department of Hypertension (D.T., M.L.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
| | - Min Liu
- Department of Hypertension (D.T., M.L.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China (P.L., X.Z., Yanfeng Wang, C.H.)
| | - Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China (P.L., X.Z., Yanfeng Wang, C.H.)
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China (P.L., X.Z., Yanfeng Wang, C.H.)
| | - Yan Bai
- Department of Medical Imaging (P.L., Y.B., Y. Wu, W.W., M.W.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Science, China (Y.B.)
| | - Yaping Wu
- Department of Medical Imaging (P.L., Y.B., Y. Wu, W.W., M.W.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
| | - Wei Wei
- Department of Medical Imaging (P.L., Y.B., Y. Wu, W.W., M.W.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Junting Yang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Shanshan Cao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Chaohua Cong
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.T., Y.L., Y.Q., J.Y., S.C., C.C., L.Z., J.S.)
| | - Meiyun Wang
- Department of Medical Imaging (P.L., Y.B., Y. Wu, W.W., M.W.), Henan Provincial People's Hospital and Zhengzhou University People's Hospital, China
| |
Collapse
|
8
|
HU SS. Cardiovascular Risk Factors in China. J Geriatr Cardiol 2024; 21:153-199. [PMID: 38544492 PMCID: PMC10964013 DOI: 10.26599/1671-5411.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Annual Report on Cardiovascular Health and Diseases in China (2022) intricate landscape of cardiovascular health in China. This section dissects cardiovascular risk factors in China which including hypertension, dyslipidemia, diabetes mellitus, chronic kidney disease, metabolic syndrome and air pollution. Hypertension prevalence has steadily increased in China, with efforts to control it facing challenges in achieving optimal rates, especially in rural areas. Interventions like salt substitutes and intensive blood pressure control show promise but need improvement. Abnormal lipid levels, indicative of dyslipidemia, have risen significantly, posing a risk for cardiovascular diseases. Despite efforts, many patients struggle to achieve target lipid levels, necessitating improved treatment strategies. Both type 1 and type 2 diabetes mellitus affect millions of adults in China, with long-term complications adding to the disease burden. Early intervention and effective management are crucial to mitigate its impact. Prevalent among older adults, chronic kidney disease is associated with diabetes mellitus, hypertension, and cardiovascular diseases, necessitating comprehensive management approaches. The prevalence of metabolic syndrome, characterized by a cluster of risk factors, has increased in both adults and adolescents, calling for lifestyle modifications and public health interventions. Ambient and household air pollution remain significant environmental risk factors, despite some improvements in air quality. Continued efforts to reduce emissions are essential for mitigating associated health risks. Addressing these risk factors requires a multifaceted approach, including public health initiatives, policy interventions, and individual-level strategies to promote healthy lifestyles and reduce environmental exposures. Surveillance and research efforts are crucial for monitoring trends and developing effective strategies to lessen the burden of cardiovascular diseases in China.
Collapse
Affiliation(s)
- Sheng-Shou HU
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
9
|
Huang K, Jia J, Liang F, Li J, Niu X, Yang X, Chen S, Cao J, Shen C, Liu X, Yu L, Lu F, Wu X, Zhao L, Li Y, Hu D, Huang J, Liu Y, Gu D, Liu F, Lu X. Fine Particulate Matter Exposure, Genetic Susceptibility, and the Risk of Incident Stroke: A Prospective Cohort Study. Stroke 2024; 55:92-100. [PMID: 38018834 PMCID: PMC11831602 DOI: 10.1161/strokeaha.123.043812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Both genetic factors and environmental air pollution contribute to the risk of stroke. However, it is unknown whether the association between air pollution and stroke risk is influenced by the genetic susceptibilities of stroke and its risk factors. METHODS This prospective cohort study included 40 827 Chinese adults without stroke history. Satellite-based monthly fine particulate matter (PM2.5) estimation at 1-km resolution was used for exposure assessment. Based on 534 identified genetic variants from genome-wide association studies in East Asians, we constructed 6 polygenic risk scores for stroke and its risk factors, including atrial fibrillation, blood pressure, type 2 diabetes, body mass index, and triglyceride. The Cox proportional hazards model was applied to evaluate the hazard ratios and 95% CIs for the associations of PM2.5 and polygenic risk score with incident stroke and the potential effect modifications. RESULTS Over a median follow-up of 12.06 years, 3147 incident stroke cases were documented. Compared with the lowest quartile of PM2.5 exposure, the hazard ratio (95% CI) for stroke in the highest quartile group was 2.72 (2.42-3.06). Among individuals at high genetic risk, the relative risk of stroke was 57% (1.57; 1.40-1.76) higher than those at low genetic risk. Although no statistically significant interaction was found, participants with both the highest PM2.5 and high genetic risk showed the highest risk of stroke, with ≈4× that of the lowest PM2.5 and low genetic risk group (hazard ratio, 3.55 [95% CI, 2.84-4.44]). Similar upward gradients were observed in the risk of stroke when assessing the joint effects of PM2.5 and genetic risks of blood pressure, type 2 diabetes, body mass index, atrial fibrillation, and triglyceride. CONCLUSIONS Long-term exposure to PM2.5 was associated with a higher risk of incident stroke across different genetic susceptibilities. Our findings highlighted the great importance of comprehensive assessment of air pollution and genetic risk in the prevention of stroke.
Collapse
Affiliation(s)
- Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jiajing Jia
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiaoge Niu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, 450053, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300203, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People’s Hospital and Cardiovascular Institute, Guangzhou, 510080, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial People’s Hospital, Fuzhou, 350014, China
| | - Fanghong Lu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Liancheng Zhao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Ying Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
10
|
de Bont J, Pickford R, Åström C, Colomar F, Dimakopoulou K, de Hoogh K, Ibi D, Katsouyanni K, Melén E, Nobile F, Pershagen G, Persson Å, Samoli E, Stafoggia M, Tonne C, Vlaanderen J, Wolf K, Vermeulen R, Peters A, Ljungman P. Mixtures of long-term exposure to ambient air pollution, built environment and temperature and stroke incidence across Europe. ENVIRONMENT INTERNATIONAL 2023; 179:108136. [PMID: 37598594 DOI: 10.1016/j.envint.2023.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION The complex interplay of multiple environmental factors and cardiovascular has scarcely been studied. Within the EXPANSE project, we evaluated the association between long-term exposure to multiple environmental indices and stroke incidence across Europe. METHODS Participants from three traditional adult cohorts (Germany, Netherlands and Sweden) and four administrative cohorts (Catalonia [region Spain], Rome [city-wide], Greece and Sweden [nationwide]) were followed until incident stroke, death, migration, loss of follow-up or study end. We estimated exposures at residential addresses from different exposure domains: air pollution (nitrogen dioxide (NO2), particulate matter < 2.5 μm (PM2.5), black carbon (BC), ozone), built environment (green/blue spaces, impervious surfaces) and meteorology (seasonal mean and standard deviation of temperatures). Associations between environmental exposures and stroke were estimated in single and multiple-exposure Cox proportional hazard models, and Principal Component (PC) Analyses derived prototypes for specific exposures domains. We carried out random effects meta-analyses by cohort type. RESULTS In over 15 million participants, increased levels of NO2 and BC were associated with increased higher stroke incidence in both cohort types. Increased Normalized Difference Vegetation Index (NDVI) was associated with a lower stroke incidence in both cohort types, whereas an increase in impervious surface was associated with an increase in stroke incidence. The first PC of the air pollution domain (PM2.5, NO2 and BC) was associated with an increase in stroke incidence. For the built environment, higher levels of NDVI and lower levels of impervious surfaces were associated with a protective effect [%change in HR per 1 unit = -2.0 (95 %CI, -5.9;2.0) and -1.1(95 %CI, -2.0; -0.3) for traditional adult and administrative cohorts, respectively]. No clear patterns were observed for distance to blue spaces or temperature parameters. CONCLUSIONS We observed increased HRs for stroke with exposure to PM2.5, NO2 and BC, lower levels of greenness and higher impervious surface in single and combined exposure models.
Collapse
Affiliation(s)
- Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Regina Pickford
- Institute of Epidemiology (EPI), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Neuherberg, Germany
| | - Christopher Åström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Fabian Colomar
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Dorina Ibi
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Federica Nobile
- Department of Epidemiology, Lazio Region Health Service /ASL Roma 1, Rome, Italy
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Persson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service /ASL Roma 1, Rome, Italy
| | - Cathryn Tonne
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology (EPI), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Neuherberg, Germany
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Annette Peters
- Institute of Epidemiology (EPI), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Neuherberg, Germany; Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany; Munich Heart Alliance, German Center for Cardiovascular Health (DZHK e.V., partner-site Munich), Munich, Germany
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Zhang HW, Tsai ZR, Kok VC, Peng HC, Chen YH, Tsai JJP, Hsu CY. Long-term ambient hydrocarbon exposure and incidence of urinary bladder cancer. Sci Rep 2022; 12:20799. [PMID: 36460770 PMCID: PMC9718740 DOI: 10.1038/s41598-022-25425-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Particulate matter and volatile organic compounds, including total hydrocarbons (THCs), are major ambient air pollutants. Primary nonmethane hydrocarbons (NMHCs) originate from vehicle emissions. The association between air pollution and urinary bladder cancer (UBC) is debatable. We investigated whether long-term exposure to ambient hydrocarbons increases UBC risk among people aged ≥ 20 years in Taiwan. Linkage dataset research with longitudinal design was conducted among 589,135 initially cancer-free individuals during 2000-2013; 12 airborne pollutants were identified. Several Cox models considering potential confounders were employed. The study outcomes were invasive or in situ UBC incidence over time. The targeted pollutant concentration was divided into three tertiles: T1/T2/T3. The mean age of individuals at risk was 42.5 (SD 15.7), and 50.5% of the individuals were men. The mean daily average over 10 years of airborne THC concentration was 2.25 ppm (SD 0.13), and NMHC was 0.29 ppm (SD 0.09). Both pollutants show long-term monotonic downward trend over time using the Mann-Kendall test. There was a dose-dependent increase in UBC at follow-up. UBC incidence per 100,000 enrollees according to T1/T2/T3 exposure to THC was 60.9, 221.2, and 651.8, respectively; it was 170.0/349.5/426.7 per 100,000 enrollees, corresponding to T1/T2/T3 exposure to NMHC, respectively. Without controlling for confounding air pollutants, the adjusted hazard ratio (adj.HR) was 1.83 (95% CI 1.75-1.91) per 0.13-ppm increase in THC; after controlling for PM2.5, adj.HR was even higher at 2.09 (95% CI 1.99-2.19). The adj.HR was 1.37 (95% CI 1.32-1.43) per 0.09-ppm increase in ambient NMHC concentration. After controlling for SO2 and CH4, the adj.HR was 1.10 (95% CI 1.06-1.15). Sensitivity analyses showed that UBC development risk was not sex-specific or influenced by diabetes status. Long-term exposure to THC and NMHC may be a risk factor for UBC development. Acknowledging pollutant sources can inform risk management strategies.
Collapse
Affiliation(s)
- Han-Wei Zhang
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Biomedica Corporation, New Taipei, Taiwan
| | - Zhi-Ren Tsai
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Center for Precision Medicine Research, Asia University, Taichung, Taiwan
| | - Victor C Kok
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, 117 Shatien Rd Shalu Dist., Taichung, 43303, Taiwan.
| | | | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| | - Jeffrey J P Tsai
- Center for Precision Medicine Research, Asia University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Tapolyai M, Krivanek L, Fülöp T. Indoor air quality and the risk of hypertension. J Clin Hypertens (Greenwich) 2022; 24:1012-1014. [PMID: 35904179 PMCID: PMC9380166 DOI: 10.1111/jch.14535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mihály Tapolyai
- Department of Nephrology, Szent Margit Hospital, Budapest, Hungary.,Medicine Services, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - László Krivanek
- Szent Kristóf Szakrendelő Közhasznú Nonprofit Kft., Budapest, Hungary
| | - Tibor Fülöp
- Medicine Services, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.,Department of Medicine - Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|