1
|
Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al-Hetty HRAK, Qasim MT, Sapaev I, Deorari M, Mustafa YF, Elawady A. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem 2024; 80:811-829. [PMID: 39316240 DOI: 10.1007/s13105-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Exosomes are widely recognized for their roles in numerous biological processes and as intercellular communication mediators. Human cancerous and normal cells can both produce massive amounts of exosomes. They are extensively dispersed in tumor-modeling animals' pleural effusions, ascites, and plasma from people with cancer. Tumor cells interact with host cells by releasing exosomes, which allow them to interchange various biological components. Tumor growth, invasion, metastasis, and even tumorigenesis can all be facilitated by this delicate and complex system by modifying the nearby and remote surroundings. Due to the existence of significant levels of biomolecules like microRNA, exosomes can modulate the immune system's stimulation or repression, which in turn controls tumor growth. However, the role of microRNA in exosome-mediated communication between immunological and cancer cells is still poorly understood. This study aims to get the most recent information on the "yin and yang" of exosomal microRNA in the regulation of tumor immunity and immunotherapy, which will aid current cancer treatment and diagnostic techniques.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Ibrokhim Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan
- Western Caspian University, Scientific researcher, Baku, Azerbaijan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Xiao Y, Liu C, Fu Y, Zhong G, Guan X, Li W, Wang C, Hong S, Fu M, Zhou Y, You Y, Wu T, Zhang X, He M, Li Y, Guo H. Mediation of association between benzo[a]pyrene exposure and lung cancer risk by plasma microRNAs: A Chinese case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115980. [PMID: 38262095 DOI: 10.1016/j.ecoenv.2024.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Walewska A, Janucik A, Tynecka M, Moniuszko M, Eljaszewicz A. Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death Dis 2023; 14:720. [PMID: 37932257 PMCID: PMC10628230 DOI: 10.1038/s41419-023-06239-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Mesenchymal stem cells (mesenchymal stromal cells, MSC) are multipotent stem cells that can differentiate into cells of at least three mesodermal lineages, namely adipocytes, osteoblasts, and chondrocytes, and have potent immunomodulatory properties. Epigenetic modifications are critical regulators of gene expression and cellular differentiation of mesenchymal stem cells (MSCs). Epigenetic machinery controls MSC differentiation through direct modifications to DNA and histones. Understanding the role of epigenetic machinery in MSC is crucial for the development of effective cell-based therapies for degenerative and inflammatory diseases. In this review, we summarize the current understanding of the role of epigenetic control of MSC differentiation and immunomodulatory properties.
Collapse
Affiliation(s)
- Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Adrian Janucik
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marlena Tynecka
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland.
- Tissue and Cell Bank, Medical University of Bialystok Clinical Hospital, ul. Waszyngtona 13, 15-069, Bialystok, Poland.
| |
Collapse
|
4
|
Nour SM, Abbasi N, Sadi S, Ravan N, Alipourian A, Yarizadeh M, Soofi A, Ataei A, Tehrany PM. miRNAs as key modulators between normal cells and tumor microenvironment interactions. Chem Biol Drug Des 2023; 102:939-950. [PMID: 37402595 DOI: 10.1111/cbdd.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The tumor microenvironment (TME) is well-defined target for understanding tumor progression and various cell types. Major elements of the tumor microenvironment are the followings: endothelial cells, fibroblasts, signaling molecules, extracellular matrix, and infiltrating immune cells. MicroRNAs (miRNAs) are a group of small noncoding RNAs with major functions in the gene expression regulation at post-transcriptional level that have also appeared to exerts key functions in the cancer initiation/progression in diverse biological processes and the tumor microenvironment. This study summarized various roles of miRNAs in the complex interactions between the tumor and normal cells in their microenvironment.
Collapse
Affiliation(s)
| | - Nadia Abbasi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadi
- Medical Doctor, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ravan
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Yarizadeh
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Pooya M Tehrany
- Faculty of Medicine, National University of Malaysia, Bani, Malaysia
| |
Collapse
|
5
|
Izdebska WM, Daniluk J, Niklinski J. Microbiome and MicroRNA or Long Non-Coding RNA-Two Modern Approaches to Understanding Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:5643. [PMID: 37685710 PMCID: PMC10488817 DOI: 10.3390/jcm12175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of humans' most common and fatal neoplasms. Nowadays, a number of PDAC studies are being conducted in two different fields: non-coding RNA (especially microRNA and long non-coding RNA) and microbiota. It has been recently discovered that not only does miRNA affect particular bacteria in the gut microbiome that can promote carcinogenesis in the pancreas, but the microbiome also has a visible impact on the miRNA. This suggests that it is possible to use the combined impact of the microbiome and noncoding RNA to suppress the development of PDAC. Nevertheless, insufficient research has focused on bounding both approaches to the diagnosis, treatment, and prevention of pancreatic ductal adenocarcinoma. In this article, we summarize the recent literature on the molecular basis of carcinogenesis in the pancreas, the two-sided impact of particular types of non-coding RNA and the pancreatic cancer microbiome, and possible medical implications of the discovered phenomenon.
Collapse
Affiliation(s)
- Wiktoria Maria Izdebska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
6
|
Chen Y, Tang M, Li H, Huang J. Effects of C10orf10 on growth and prognosis of glioma under hypoxia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:499-507. [PMID: 37385612 PMCID: PMC10930248 DOI: 10.11817/j.issn.1672-7347.2023.220396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 07/01/2023]
Abstract
OBJECTIVES Glioma is the most common malignant tumor in the central nervous system, and the hypoxic microenvironment is prevalent in solid tumors. This study aims to investigate the up-regulation of genes under the condition of hypoxia and their roles in glioma growth, as well as their impact on glioma prognosis. METHODS The hypoxia-related dataset with glioma was screened in the Gene Expression Omnibus database (GEO), and the differentially expressed genes were analyzed between hypoxia and normoxia through bioinformatics, and chromosome 10 open reading frame 10 (C10orf10) was verified and screened in hypoxia-treated cells through real-time PCR and Western blotting. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets were downloaded to analyze the mRNA expression of C10orf10 in different grades of glioma and its impact on prognosis. The glioma specimens and follow-up data of 68 gliomas who underwent surgical treatment in Xiangya Hospital of Central South University from March 2017 to January 2021 were collected, and real-time PCR was used to detect the mRNA expression of C10orf10 in different grades of glioma, and the Kaplan-Meier method was used to analyze the relationship between the expression C10orf10 and prognosis. The glioma cells, which could interfere the expression of C10orf10, were constructed, and the effect of C10orf10 on the proliferation of glioma cells was evaluated by cell counting kit-8 (CCK-8) and colony formation assays. RESULTS Compared with the condition of normoxia, the expression levels of C10orf10 mRNA and protein were significantly up-regulated in glioma cells under hypoxia (P<0.001), and the mRNA expression level of C10orf10 in glioma tissues was up-regulated with the increase of WHO grade in glioma (P<0.001). Based on Kaplan-Meier survival analysis, the higher the mRNA expression level of C10orf10 was, the shorter the survival time of the patient was (P<0.05). And the expression of C10orf10 mRNA was higher in recurrent gliomas than that in primary gliomas in the CGGA database (P<0.001). Knockdown of C10orf10 could significantly inhibit the growth of glioma cells both under hypoxia and normoxia (both P<0.001). CONCLUSIONS The expression level of C10orf10 can promote the proliferation and prognosis of glioma, which is expected to become a prognostic marker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008.
| | - Miao Tang
- Department of Neurosurgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Hui Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008.
| |
Collapse
|
7
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Shang J, Zhu X, Sun Y, Li F, Kong X, Liu JX. DM-MOGA: a multi-objective optimization genetic algorithm for identifying disease modules of non-small cell lung cancer. BMC Bioinformatics 2023; 24:13. [PMID: 36624376 PMCID: PMC9830734 DOI: 10.1186/s12859-023-05136-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Constructing molecular interaction networks from microarray data and then identifying disease module biomarkers can provide insight into the underlying pathogenic mechanisms of non-small cell lung cancer. A promising approach for identifying disease modules in the network is community detection. RESULTS In order to identify disease modules from gene co-expression networks, a community detection method is proposed based on multi-objective optimization genetic algorithm with decomposition. The method is named DM-MOGA and possesses two highlights. First, the boundary correction strategy is designed for the modules obtained in the process of local module detection and pre-simplification. Second, during the evolution, we introduce Davies-Bouldin index and clustering coefficient as fitness functions which are improved and migrated to weighted networks. In order to identify modules that are more relevant to diseases, the above strategies are designed to consider the network topology of genes and the strength of connections with other genes at the same time. Experimental results of different gene expression datasets of non-small cell lung cancer demonstrate that the core modules obtained by DM-MOGA are more effective than those obtained by several other advanced module identification methods. CONCLUSIONS The proposed method identifies disease-relevant modules by optimizing two novel fitness functions to simultaneously consider the local topology of each gene and its connection strength with other genes. The association of the identified core modules with lung cancer has been confirmed by pathway and gene ontology enrichment analysis.
Collapse
Affiliation(s)
- Junliang Shang
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Xuhui Zhu
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Yan Sun
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Feng Li
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Xiangzhen Kong
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| | - Jin-Xing Liu
- grid.412638.a0000 0001 0227 8151School of Computer Science, Qufu Normal University, Rizhao, 276826 China
| |
Collapse
|
9
|
Yan Z, Wen JX, Cao XS, Zhao W, Han YL, Wen XH, Yan L, Zhang M, Wang YF, Hai L, Wang YJ, Zheng WQ, Hu ZD. Tumor cell-derived exosomal microRNA-146a promotes non-small cell lung cancer cell invasion and proliferation by inhibiting M1 macrophage polarization. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1307. [PMID: 36660623 PMCID: PMC9843328 DOI: 10.21037/atm-22-5565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Background Tumor-associated macrophages (TAMs) affects the outcomes of non-small cell lung cancer (NSCLC). NSCLC cells released exosomes to suppress the antitumor activity of TAMs. MiR-146a is a critical regulator in TAM polarization. We hypothesized that NSCLC cells released exosomal miR-146a to regulate TAM polarization and thus affected its antitumor activity. Methods We used H1299 cells-derived exosomes to stimulate THP-1 cells that was pretreated with phorbol 12-myristate 13-acetate (M0 macrophage). Flow cytometry and reverse transcription-quantitative polymerase chain reaction (PCR) were used to determine the polarization of macrophages. The conditioned medium of exosome-treated M0 cells was used to culture H1299 cells, and the Cell Counting Kit-8, Ki67, transwell and scratch wound assays were used to determine the biological behavior of H1299 cells. To investigate whether exosomal miR-146a regulates TAM macrophages through targeting tumor necrosis factor receptor-associated factor 6 (TRAF-6) and interleukin-1 receptor-associated kinase 1 (IRAK-1), we used small interfering RNA to knockdown the expressions of them. Results Upregulation of miR-146a inhibited M1 polarization and thus impaired the antitumor activity of TAMs. Exosomes released by H1299 cells can be taken by M0 macrophage, and they upregulated the expression of miR-146a in M0 macrophage. The exosome suppresses M1 polarization by exosomal miR-146a. TRAF-6 and IRAK-1 mediated the inhibitive effects of exosomal miR-146a on M1 polarization. Conclusions NSCLC cells released exosomal miR-146a to inhibit the expressions of TRAF-6 and IRAK-1 in TAMs, resulting in the impaired antitumor activity of TAMs. NSCLC cell-derived exosomal miR-146a represents a novel therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yu-Ling Han
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Man Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ling Hai
- Department of Pathology, the College of Basic Medical, Inner Mongolia Medical University, Hohhot, China;,Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ying-Jun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
10
|
Wong KY, Cheung AH, Chen B, Chan WN, Yu J, Lo KW, Kang W, To KF. Cancer-associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. Int J Cancer 2022; 151:1195-1215. [PMID: 35603909 PMCID: PMC9545594 DOI: 10.1002/ijc.34127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Alvin Ho‐Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongSARChina
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
11
|
Abstract
The lungs are continually subjected to noxious and inert substances, are immunologically active, and are in a constant state of damage and repair. This makes the pulmonary system particularly vulnerable to diseases of aging. Aging can be understood as random molecular damage that is unrepaired and accumulates over time, resulting in cellular defects and tissue dysfunction. The breakdown of cellular mechanisms, including stem cell exhaustion, genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, altered intercellular communication, and changes in the extracellular matrix is thought to advance the aging process itself. Chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and cancers illustrate a pathologic breakdown in these mechanisms beyond normal aging. The immune system becomes less effective with advancing age. There is a low-level state of chronic inflammation termed inflammaging which is thought to be driven by immunosenescence, the changes in the innate and adaptive immune systems with advancing age that lead to dysregulation and decreased effectiveness of the immune system. These processes of aging lead to expected changes in the form and function of the respiratory system, most notably a loss of lung elasticity, decrease in respiratory muscle strength, increase in ventilation-perfusion mismatching, and stiffening of the vasculature. The astute clinician is aware of these expected findings and does not often attribute dyspnea to aging alone. Maintaining a low threshold to investigate for comorbid disease and understanding how pulmonary disease presents differently in the elderly than in younger adults can improve clinical outcomes. © 2022 American Physiological Society. Compr Physiol 12:3509-3522, 2022.
Collapse
Affiliation(s)
- Julia Budde
- New York City Health and Hospitals/Metropolitan Hospital, New York, New York, USA
| | | |
Collapse
|
12
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
13
|
Takahashi H, Baba Y, Yasui T. Oxide nanowire microfluidics addressing previously-unattainable analytical methods for biomolecules towards liquid biopsy. Chem Commun (Camb) 2021; 57:13234-13245. [PMID: 34825908 DOI: 10.1039/d1cc05096f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanowire microfluidics using a combination of self-assembly and nanofabrication technologies is expected to be applied to various fields due to its unique properties. We have been working on the fabrication of nanowire microfluidic devices and the development of analytical methods for biomolecules using the unique phenomena generated by the devices. The results of our research are not just limited to the development of nanospace control with "targeted dimensions" in "targeted arrangements" with "targeted materials/surfaces" in "targeted spatial locations/structures" in microfluidic channels, but also cover a wide range of analytical methods for biomolecules (extraction, separation/isolation, and detection) that are impossible to achieve with conventional technologies. Specifically, we are working on the extraction technology "the cancer-related microRNA extraction method in urine," the separation technology "the ultrafast and non-equilibrium separation method for biomolecules," and the detection technology "the highly sensitive electrical measurement method." These research studies are not just limited to the development of biomolecule analysis technology using nanotechnology, but are also opening up a new academic field in analytical chemistry that may lead to the discovery of new pretreatment, separation, and detection principles.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
14
|
Lin Z, Pang K, Li H, Zhang X, Wan J, Zheng T, Liu T, Peng W. Characterization of Immune-Related Long Non-coding RNAs to Construct a Novel Signature and Predict the Prognosis and Immune Landscape of Soft Tissue Sarcoma. Front Cell Dev Biol 2021; 9:709241. [PMID: 34631703 PMCID: PMC8497898 DOI: 10.3389/fcell.2021.709241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Increasing evidence has demonstrated that immune-related long non-coding RNAs (irlncRNAs) are critically involved in tumor initiation and progression and associated with the prognosis of various cancers. However, their role in soft tissue sarcoma (STS) remains significantly uninvestigated. Materials and Methods: Gene expression profiles were extracted from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) for the identification of irlncRNAs. Univariate analysis and modified least absolute shrinkage and selection operator (LASSO) penalized regression analysis were employed to determine differently expressed irlncRNA (DEirlncRNA) pairs of prognostic value, and subsequently, a risk signature based on DEirlncRNA pairs was established. Furthermore, Kaplan–Meier analysis and the area under the receiver operating characteristic curve (AUC) were used to assess survival differences and the predictive accuracy of the risk signature, respectively. Lastly, the correlation of irlncRNAs with immune characteristics and chemosensitivity in patients with STS were further investigated. Results: A total of 1088 irlncRNAs were identified, and 311 irlncRNAs were distinguished as DEirlncRNAs. A total of 130 DEirlncRNA pairs were further identified as prognostic markers, and 14 pairs were selected for establishing a risk signature. The irlncRNA-based risk signature functioned as an independent prognostic marker for STS. Compared with the patients in the high-risk group, those in the low-risk group exhibited a better prognosis and were more sensitive to several chemotherapeutic agents. In addition, the irlncRNA-based risk signature was significantly associated with immune scores, infiltrating immune cells, and the expression of several immune checkpoints. Conclusion: In conclusion, our data revealed that the irlncRNA-based risk signature resulted in reliable prognosis, effectively predicted the immune landscape of patients with STS and was significantly correlated with chemosensitivity, thus providing insights into the potential role of irlncRNAs as prognostic biomarkers and novel therapeutic targets for STS.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ke Pang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Zhang R, Liu P, Zhang X, Ye Y, Yu J. Lin28A promotes the proliferation and stemness of lung cancer cells via the activation of mitogen-activated protein kinase pathway dependent on microRNA let-7c. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:982. [PMID: 34277782 PMCID: PMC8267304 DOI: 10.21037/atm-21-2124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Background Among patients with lung cancer, metastatic and relapsed cases account for the largest proportion of disease-associated deaths. Tumor metastasis and relapse are believed to originate from cancer stem cells (CSCs), which have the capacity to be highly proliferative and invasive. In our previous studies, we established a conditional basement membrane extract-based (BME-based) 3-dimensional (3D) culture system to mimic the tumor growth environment in vivo and further amplified lung cancer stem cells (LCSCs) in our system. However, the molecular mechanisms of LCSC amplification and development in our 3D culture system have not been fully uncovered. Method We established the conditional 3D culture system to amplify LCSCs in other lung cancer cell lines, followed by examining the expression of Lin28A and let-7 microRNAs in them. We also explored the expression of Lin28A and let-7 microRNAs in LCSCs from clinical lung cancer tissue samples and even analyzed the correlation of Lin28A/let-7c and patients’ survival outcomes. We further constructed A549 cells either knockdown of Lin28A or overexpression of let-7c, followed by investigating stemness marker gene expression, and stemness phenotypes including mammosphere culture, cell migration and invasion in vitro, as well as tumorigenicity in vivo. Results Here, we observed that Lin28A/let-7c was dysregulated in LCSCs in both the 3D culture system and lung cancer tissues. Further, the abnormal expression of Lin28A/let-7c was correlated with poor survival outcomes. Via the construction of A549 cells with let-7c over-expression, we found that let-7c inhibited the maintenance of LCSC properties, while the results of Lin28A knockdown showed that Lin28A played a critical role in the enrichment and proliferation of LCSCs via mitogen-activated protein kinase (MAPK) signaling pathway. Importantly, we found that LCSCs with knockdown of Lin28A or over-expression of let-7c exhibited inhibited carcinogenesis and disrupted expansion in vivo. Conclusions Our study uncovered the functions and mechanisms of the Lin28A/let-7c/MAPK signaling pathway in promoting the proliferation and cancer stemness of LCSCs, which might be a potential therapeutic target for reducing and even eliminating LCSCs in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
16
|
Yang Y, Wang Y. Role of Epigenetic Regulation in Plasticity of Tumor Immune Microenvironment. Front Immunol 2021; 12:640369. [PMID: 33868269 PMCID: PMC8051582 DOI: 10.3389/fimmu.2021.640369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a pivotal role in contributing to the development, progression, and immune escape of various types of cancer. Compelling evidence highlights the feasibility of cancer therapy targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA methylation, histone post-translational modifications, and noncoding RNA-mediated regulation, regulate the expression of many human genes and have been reported to be accurate in the reprogramming of TIME according to vast majority of published results. Recently, mounting evidence has shown that the gut microbiome can also influence the colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived molecules. A tumor is a kind of heterogeneous disease with specificity in time and space, which is not only dependent on genetic regulation, but also regulated by epigenetics. This review summarizes the reprogramming of immune cells by epigenetic modifications in TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic approaches. We also discuss the ongoing studies and future areas of research that benefits to cancer eradication.
Collapse
Affiliation(s)
- Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Azimi T, Paryan M, Mondanizadeh M, Sarmadian H, Zamani A. Pap Smear miR-92a-5p and miR-155-5p as potential diagnostic biomarkers of squamous intraepithelial cervical cancer. Asian Pac J Cancer Prev 2021; 22:1271-1277. [PMID: 33906322 PMCID: PMC8325111 DOI: 10.31557/apjcp.2021.22.4.1271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND one of the female-specific diseases with a high incidence and mortality is cervical cancer. The main cause of cervical cancer is infection with Human papilloma virus (HPV). Low-grade squamous intraepithelial lesions (LSIL) and High-grade squamous intraepithelial lesions (HSIL) usually is caused by an HPV infection. Considering the role of microRNAs (miRNAs) as diagnostic biomarkers for a variety of cancers, the aim of this study was to determine miR-92a-5p and miR-155-5p expression levels in LSIL and HSIL Pap Smear samples. METHODS After initial bioinformatic studies, A total of 75 samples (25 samples of patients with LSIL, 25 patients with HSIL and 25 healthy individuals) were subjected to RNA extraction and cDNA synthesis. The expressions levels of confirmed miRNAs in samples of patients with LSIL, HSIL and healthy individuals were evaluated by Real time PCR analysis. To demonstration the role of predicted miRNAs as novel biomarkers in diagnosis of LSIL and HSIL, ROC curve analysis was done. RESULTS Bioinformatics results showed that miR-92a-5p and miR-155-5p target the HPV E6 and E7 genes. The expression levels of these miRNAs were strikingly higher in Pap smear of patients with LSIL than in the healthy individuals (35.36, P = 0.001) (62.23, P = 0.001). Similarity, expression levels of miR-92a-5p and miR-155-5p were amazingly higher in patients with HSIL than in the healthy individuals (33.62, P= 0.001) (69.07, P= 0.001). Although, the levels of miR-92a-5p (0.95, P = 0. 85) and miR-155-5p (1.11, P = 0.84) exhibited no statistical differences between patients with LSIL and HSIL. Also, ROC curve analyses verified that miR-92a-5p and miR-155-5p are specific and sensitive and may serve as new biomarkers for the early detection of cervical cancer. CONCLUSION These data suggest miR-92a-5p and miR-155-5p, which are upregulated in LSIL and HSIL, can be consider as predictive biomarkers for the prognosis of cervical cancer patients. .
Collapse
Affiliation(s)
- Tahereh Azimi
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran.
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hossian Sarmadian
- Department of Infectious Diseases Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Ashraf Zamani
- Department of Obstetrics and Gynecology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
18
|
Abolfathi H, Sheikhpour M, Mohammad Soltani B, Fahimi H. The comparison and evaluation of the miR-16, miR-155 and miR-146a expression pattern in the blood of TB and NSCLC patients: A Research paper. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12102922. [PMID: 33050637 PMCID: PMC7600069 DOI: 10.3390/cancers12102922] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary By the virtue of targeting multiple genes, a microRNA (miRNA) can infer variable consequences on tumorigenesis by appearing as both a tumour suppressor and oncogene. miRNAs can regulate gene expression by modulating genome-wide epigenetic status of genes that are involved in various cancers. These miRNAs perform direct inhibition of key mediators of the epigenetic machinery, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) genes. Along with miRNAs gene expression, similar to other protein-coding genes, miRNAs are also controlled by epigenetic mechanisms. Overall, this reciprocal interaction between the miRNAs and the epigenetic architecture is significantly implicated in the aberrant expression of miRNAs detected in various human cancers. Comprehensive knowledge of the miRNA-epigenetic dynamics in cancer is essential for the discovery of novel anticancer therapeutics. Abstract Initiation and progression of cancer are under both genetic and epigenetic regulation. Epigenetic modifications including alterations in DNA methylation, RNA and histone modifications can lead to microRNA (miRNA) gene dysregulation and malignant cellular transformation and are hereditary and reversible. miRNAs are small non-coding RNAs which regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. miRNAs can target epigenetic modifier enzymes involved in epigenetic modulation, establishing a trilateral regulatory “epi–miR–epi” feedback circuit. The intricate association between miRNAs and the epigenetic architecture is an important feature through which to monitor gene expression profiles in cancer. This review summarises the involvement of epigenetically regulated miRNAs and miRNA-mediated epigenetic modulations in various cancers. In addition, the application of bioinformatics tools to study these networks and the use of therapeutic miRNAs for the treatment of cancer are also reviewed. A comprehensive interpretation of these mechanisms and the interwoven bond between miRNAs and epigenetics is crucial for understanding how the human epigenome is maintained, how aberrant miRNA expression can contribute to tumorigenesis and how knowledge of these factors can be translated into diagnostic and therapeutic tool development.
Collapse
|
20
|
Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev 2020; 62:101106. [PMID: 32565329 DOI: 10.1016/j.arr.2020.101106] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.
Collapse
|
21
|
Ding L, Lu S, Li Y. Regulation of PD-1/PD-L1 Pathway in Cancer by Noncoding RNAs. Pathol Oncol Res 2020; 26:651-663. [PMID: 31748880 DOI: 10.1007/s12253-019-00735-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Immune checkpoint blockade has demonstrated significant anti-tumor immunity in an array of cancer types, yet the underlying regulatory mechanism of it is still obscure, and many problems remain to be solved. As an inhibitory costimulatory signal of T-cells, the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway can paralyze T-cells at the tumor site, enabling the immune escape of tumor cells. Although many antibodies targeting PD-1/PD-L1 have been developed to block their interaction for the treatment of cancer, the reduced response rate and resistance to the therapies call for further comprehension of this pathway in the tumor microenvironment. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main types of noncoding RNAs that play critical parts in the regulation of immune response in tumorigenesis, including the PD-1/PD-L1 pathway. Here we summarize the most recent studies on the control of this pathway by noncoding RNAs in cancer and hopefully will offer new insights into immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shengdi Lu
- Shanghai Sixth People's Hospital, affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
22
|
Liu LZ, Wang M, Xin Q, Wang B, Chen GG, Li MY. The permissive role of TCTP in PM 2.5/NNK-induced epithelial-mesenchymal transition in lung cells. J Transl Med 2020; 18:66. [PMID: 32046740 PMCID: PMC7011287 DOI: 10.1186/s12967-020-02256-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background Translationally controlled tumor protein (TCTP) is linked to lung cancer. However, upon lung cancer carcinogens stimulation, there were no reports on the relationship between TCTP and lung cell carcinogenic epithelial–mesenchymal transition (EMT). This study was designed to investigate the molecular mechanism of regulation of TCTP expression and its role in lung carcinogens-induced EMT. Methods To study the role of TCTP in lung carcinogens [particulate matter 2.5 (PM2.5) or 4-methylnitrosamino-l-3-pyridyl-butanone (NNK)]-induced EMT, PM2.5/NNK-treated lung epithelial and non-small cell lung cancer (NSCLC) cells were tested. Cell derived xenografts, human lung cancer samples and online survival analysis were used to confirm the results. MassArray assay, Real-time PCR and Reporter assays were performed to elucidate the mechanism of regulation of TCTP expression. All statistical analyses were performed using GraphPad Prism version 6.0 or SPSS version 20.0. Results Translationally controlled tumor protein and vimentin expression were up-regulated in PM2.5/NNK-treated lung cells and orthotopic implantation tumors. TCTP expression was positively correlated with vimentin in human NSCLC samples. Patients with high expression of TCTP displayed reduced overall and disease-free survival. TCTP overexpression could increase vimentin expression and promote cell metastasis. Furthermore, PM2.5/NNK stimulation brought a synergistic effect on EMT in TCTP-transfected cells. TCTP knockdown blocked PM2.5/NNK carcinogenic effect. Mechanically, PM2.5/NNK-induced TCTP expression was regulated by one microRNA, namely miR-125a-3p, but not by methylation on TCTP gene promoter. The level of TCTP was regulated by its specific microRNA during the process of PM2.5/NNK stimulation, which in turn enhanced vimentin expression and played a permissive role in carcinogenic EMT. Conclusions Our results provided new insights into the mechanisms of TCTP regulatory expression in lung carcinogens-induced EMT. TCTP and miR-125a-3p might act as potential prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.
| | - Menghuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qihang Xin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Bowen Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Zhou W, Chen L, Li C, Huang R, Guo M, Ning S, Ji J, Guo X, Lou G, Jia X, Zhao J, Luo F, Li C, Qu Z, Yu S, Tai S. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell Int 2020; 20:41. [PMID: 32042268 PMCID: PMC7003405 DOI: 10.1186/s12935-020-1126-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related deaths worldwide. Due to the shortage of effective biomarkers for predicting survival and diagnosing PC, the underlying mechanism is still intensively investigated but poorly understood. Long noncoding RNAs (lncRNAs) provide biological functional diversity and complexity in protein regulatory networks. Scientific studies have revealed the emerging functions and regulatory roles of lncRNAs in PC behaviors. It is worth noting that some in-depth studies have revealed that lncRNAs are significantly associated with the initiation and progression of PC. As lncRNAs have good properties for both diagnostic and prognostic prediction due to their translation potential, we herein address the current understanding of the multifaceted roles of lncRNAs as regulators in the molecular mechanism of PC. We also discuss the possibility of using lncRNAs as survival biomarkers and their contributions to the development of targeted therapies based on the literature. The present review, based on what we know about current research findings, may help us better understand the roles of lncRNAs in PC.
Collapse
Affiliation(s)
- Wenjia Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Lu Chen
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Chao Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Huang
- Department of Colorectal Surgery, The second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Xinqi Jia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Junjie Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Feng Luo
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Chunlong Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Zhaowei Qu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| | - Sheng Tai
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People’s Republic of China
| |
Collapse
|
24
|
Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in Asthma and Respiratory Infections: Identifying Common Pathways. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:4-23. [PMID: 31743961 PMCID: PMC6875476 DOI: 10.4168/aair.2020.12.1.4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate gene expression at the post-transcriptional level; several of these are differentially expressed in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute asthma exacerbations. In recent years, miRs have been studied in order to discover drug targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe recent findings on miR expression and function in asthma and their role in the regulation of viral ARIs, according to cell tissue specificity and asthma severity. By combining the above information, we identify miRs that may be important in virus-induced asthma exacerbations. This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, addressing the question of whether there might be a specific miR deficit in asthmatic subjects that make them more susceptible and/or reactive to infection.
Collapse
Affiliation(s)
- Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Hannah Wanstall
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
25
|
Li MY, Liu LZ, Li W, Ng CSH, Liu Y, Kong AWY, Zhao Z, Wang S, Qi H, Jia H, Yang S, Du J, Long X, Ho RLK, Chak ECW, Wan IYP, Mok TSK, Underwood MJ, Gali NK, Ning Z, Chen GG. Ambient fine particulate matter inhibits 15-lipoxygenases to promote lung carcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:359. [PMID: 31420013 PMCID: PMC6697918 DOI: 10.1186/s13046-019-1380-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Background Epidemiological observations have demonstrated that ambient fine particulate matter with dp < 2.5 μm (PM2.5) as the major factor responsible for the increasing incidence of lung cancer in never-smokers. However, there are very limited experimental data to support the association of PM2.5 with lung carcinogenesis and to compare PM2.5 with smoking carcinogens. Methods To study whether PM2.5 can contribute to lung tumorigenesis in a way similar to smoking carcinogen 4-methylnitrosamino-l-3-pyridyl-butanone (NNK) via 15-lipoxygenases (15-LOXs) reduction, normal lung epithelial cells and cancer cells were treated with NNK or PM2.5 and then epigenetically and post-translationally examined the cellular and molecular profiles of the cells. The data were verified in lung cancer samples and a mouse lung tumor model. Results We found that similar to smoking carcinogen NNK, PM2.5 significantly enhanced cell proliferation, migration and invasion, but reduced the levels of 15-lipoxygenases-1 (15-LOX1) and 15-lipoxygenases-2 (15-LOX2), both of which were also obviously decreased in lung cancer tissues. 15-LOX1/15-LOX2 overexpression inhibited the oncogenic cell functions induced by PM2.5/NNK. The tumor formation and growth were significantly higher/faster in mice implanted with PM2.5- or NNK-treated NCI-H23 cells, accompanied with a reduction of 15-LOX1/15-LOX2. Moreover, 15-LOX1 expression was epigenetically regulated at methylation level by PM2.5/NNK, while both 15-LOX1 and 15-LOX2 could be significantly inhibited by a set of PM2.5/NNK-mediated microRNAs. Conclusion Collectively, PM2.5 can function as the smoking carcinogen NNK to induce lung tumorigenesis by inhibiting 15-LOX1/15-LOX2. Electronic supplementary material The online version of this article (10.1186/s13046-019-1380-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Li-Zhong Liu
- Faculty of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Wende Li
- Guangdong Key Laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Calvin S H Ng
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Yi Liu
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong.,Guangdong Medical College, Zhangjiang, Guangdong, China
| | - Angel W Y Kong
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Zhili Zhao
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Haolong Qi
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Hao Jia
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen, Shenzhen, China
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiang Long
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Rocky L K Ho
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Ernest C W Chak
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Innes Y P Wan
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Tony S K Mok
- Department of Clinical Oncology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Malcolm J Underwood
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - George G Chen
- Department of Surgery, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Aldawsari HM, Gorain B, Alhakamy NA, Md S. Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression. J Drug Target 2019; 28:166-175. [DOI: 10.1080/1061186x.2019.1648478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Li ZY, Zhang ZZ, Bi H, Zhang QD, Zhang SJ, Zhou L, Zhu XQ, Zhou J. Upregulated microRNA‑671‑3p promotes tumor progression by suppressing forkhead box P2 expression in non‑small‑cell lung cancer. Mol Med Rep 2019; 20:3149-3159. [PMID: 31432170 PMCID: PMC6755202 DOI: 10.3892/mmr.2019.10563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the present study, the expression of microRNA (miR)‑671‑3p in non‑small‑cell lung cancer (NSCLC) was detected via reverse transcription‑quantitative polymerase chain reaction analysis, and its role in cell proliferation, apoptosis, migration and invasion was investigated via Cell Counting Kit‑8, colony formation, flow cytometry, Transwell and scratch assays, respectively. It was observed that the expression of miR‑671‑3p was upregulated in NSCLC tissues and cell lines (A549 and H1975). Treatment with miR‑671‑3p inhibitors suppressed cell proliferation, migration and invasion, and increased apoptosis in vitro, suggesting that miR‑671‑3p functions as an oncogene in NSCLC. In addition, forkhead box P2 (FOXP2) has been reported to be a tumor suppressor that is downregulated in several types of cancer, and its low expression was confirmed in NSCLC tissues and cell lines in the current study via western blotting. The results of the luciferase reporter assay also demonstrated that miR‑671‑3p targeted directly the 3'‑untranslated region of FOXP2. Furthermore, overexpression of FOXP2 in A549 and H1975 cell lines suppressed the growth, migration and invasion, and promoted apoptosis, whereas these effects were reversed by transfection with miR‑671‑3p mimics, suggesting that miR‑671‑3p promoted tumor progression via regulating FOXP2. Taken together, the results reported in the present study implied that miR‑671‑3p may be a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Zhi-Ying Li
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Zi-Zhou Zhang
- Department of Respiratory Medicine, The Seventh People's Hospital of Changzhou, Changzhou, Jiangsu 213011, P.R. China
| | - Hui Bi
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Qiu-Di Zhang
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Su-Juan Zhang
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Lin Zhou
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Xiao-Qin Zhu
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Zhou
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
28
|
Bonanno L, Zulato E, Pavan A, Attili I, Pasello G, Conte P, Indraccolo S. LKB1 and Tumor Metabolism: The Interplay of Immune and Angiogenic Microenvironment in Lung Cancer. Int J Mol Sci 2019; 20:ijms20081874. [PMID: 30995715 PMCID: PMC6514929 DOI: 10.3390/ijms20081874] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Liver kinase B1 (LKB1) is a tumor suppressor gene whose inactivation is frequent in different tumor types, especially in lung adenocarcinoma (about 30% of cases). LKB1 has an essential role in the control of cellular redox homeostasis by regulating ROS production and detoxification. Loss of LKB1 makes the tumor cell more sensitive to oxidative stress and consequently to stress-inducing treatments, such as chemotherapy and radiotherapy. LKB1 loss triggers complex changes in tumor microenvironment, supporting a role in the regulation of angiogenesis and suggesting a potential role in the response to anti-angiogenic treatment. On the other hand, LKB1 deficiency can promote an immunosuppressive microenvironment and may be involved in primary resistance to anti-PD-1/anti-PD-L1, as it has been reported in lung cancer. The aim of this review is to discuss interactions of LKB1 with the tumor microenvironment and the potential applications of this knowledge in predicting response to treatment in lung cancer.
Collapse
Affiliation(s)
- Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| | - Elisabetta Zulato
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| | - Alberto Pavan
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, 35128 Padova, Italy.
| | - Ilaria Attili
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, 35128 Padova, Italy.
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| | - PierFranco Conte
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, 35128 Padova, Italy.
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| |
Collapse
|
29
|
Yan X, Tang B, Chen B, Shan Y, Yang H. Replication Study: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. eLife 2019; 8:43511. [PMID: 30860027 PMCID: PMC6414201 DOI: 10.7554/elife.43511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
As part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Li et al., 2015), that described how we intended to replicate selected experiments from the paper 'The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44' (Liu et al., 2011). Here we report the results. We found the microRNA, miR-34a, was expressed at twice the level in CD44+ prostate cancer cells purified from xenograft tumors (LAPC4 cells) compared to CD44- LAPC4 cells, whereas the original study reported miR-34a was underexpressed in CD44+ LAPC4 cells (Figure 1B; Liu et al., 2011). When LAPC4 cells engineered to express miR-34a were injected into mice, we did not observe changes in tumor growth or CD44 expression; however, unexpectedly miR-34a expression was lost in vivo. In the original study, LAPC4 cells expressing miR-34a had a statistically significant reduction in tumor regeneration and reduced CD44 expression compared to control (Figure 4A and Supplemental Figures 4A,B and 5C; Liu et al., 2011). Furthermore, when we tested if miR-34a regulated CD44 through binding sites in the 3'UTR we did not find a statistically significant difference, whereas the original study reported miR-34a decreased CD44 expression that was partially abrogated by mutation of the binding sites in the CD44 3'UTR (Figure 4D; Liu et al., 2011). Finally, where possible, we report meta-analyses for each result.
Collapse
Affiliation(s)
- Xuefei Yan
- Crown Biosciences Inc, Science & Technology Innovation Park, Taicang, China
| | - Beibei Tang
- Crown Biosciences Inc, Science & Technology Innovation Park, Taicang, China
| | - Biao Chen
- Crown Biosciences Inc, Science & Technology Innovation Park, Taicang, China
| | - Yongli Shan
- Crown Biosciences Inc, Science & Technology Innovation Park, Taicang, China
| | - Huajun Yang
- Crown Biosciences Inc, Science & Technology Innovation Park, Taicang, China
| | | |
Collapse
|
30
|
He B, Peng F, Li W, Jiang Y. Interaction of lncRNA-MALAT1 and miR-124 regulates HBx-induced cancer stem cell properties in HepG2 through PI3K/Akt signaling. J Cell Biochem 2018; 120:2908-2918. [PMID: 30500989 DOI: 10.1002/jcb.26823] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatitis B virus X protein (HBx) plays a crucial role in initiating and promoting HBV-induced hepatocellular carcinoma (HCC) development. Reports indicated that HBx promotes cancer stem cell (CSC) generation, which may be associated with HBV-related HCC. Noncoding RNA miR-124 and long noncoding RNA (lncRNA)-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) were considered to be involved deeply in the progress of HBx-related HCC. Hence, the underlying mechanism of miR-124 and lncRNA-MALAT1 in regulating HBx-promoted CSC needs to be studied. MATERIALS AND METHODS In present study, HepG2-X cell line was induced by transfect HBx into HepG2 cells. Overexpressing of miR-124 or silencing of lncRNA-MALAT1 was completed by transfecting miR-124 mimic or shMALAT1 into HepG2-X cells. HBx-induced CSC properties and tumorigenic potential of HepG2 cells were determined by detecting CSC marker expression, colony formation assay, and xenograft tumorigenesis. The mechanism of HBx-induced CSC properties was explored by PI3K/Akt inhibitor. Interaction of miR-124 and lncRNA-MALAT1 was detected by luciferase reporter assay. RESULTS HBx promoted CSC properties through upregulating stemness markers and reprogramming proteins, and contributed to tumorigenicity of HepG2-X cells both in vivo and in vitro. Inhibition of Akt activation blocked the HBx-stimulated reprogramming proteins and stemness markers. HBx upregulated lncRNA-MALAT1 expression while downregulating miR-124 expression in HepG2-X cells. miR-124 interacts with lncRNA-MALAT1 by direct targeting. Overexpression of miR-124 or silencing of lncRNA-MALAT1 both blocked HBx-induced CSC generation, stemness-related factor activation and tumorigenicity via PI3K/Akt signaling. CONCLUSION Our results demonstrated that miR-124 interact with lncRNA-MALAT1 and involve in regulating HBx-induced CSC properties via PI3K/Akt signaling.
Collapse
Affiliation(s)
- Bo He
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Feng Peng
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wei Li
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongfang Jiang
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
31
|
Wang X, Jia Z, Shi H, Pan C. Identification and evaluation of 2 circulating microRNAs for non-small cell lung cancer diagnosis. Clin Exp Pharmacol Physiol 2018; 45:1083-1086. [PMID: 29862540 DOI: 10.1111/1440-1681.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoqin Wang
- Department of Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| | - Zhongzhi Jia
- Department of Interventional Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| | - Haifeng Shi
- Department of Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| | - Changjie Pan
- Department of Radiology; Changzhou No. 2 People's Hospital; Changzhou Jiangsu China
| |
Collapse
|
32
|
Liu C, Hu W, Li LL, Wang YX, Zhou Q, Zhang F, Song-Yang YY, Zhu W, Sun CC, Li DJ. Roles of miR-200 family members in lung cancer: more than tumor suppressors. Future Oncol 2018; 14:2875-2886. [PMID: 30208739 DOI: 10.2217/fon-2018-0155] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
miRNAs are a class of single-stranded noncoding RNAs, which have no coding potential, but modulate many molecular mechanisms including cancer pathogenesis. miRNAs participate in cell proliferation, differentiation, apoptosis, as well as carcinogenesis or cancer progression, and their involvement in lung cancer has been recently shown. They are suggested to have bidirectional functions on important cancer-related genes so as to enhance or attenuate tumor genesis. Epithelial-mesenchymal transition (EMT) is a fundamental process which contributes to integrity of organogenesis and tissue differentiation as well as tissue repair, organ fibrosis and the progression of carcinoma, and several miRNAs were suggested to form the network regulating EMT in lung cancer, among which, miR-200 family members (miR-200a, miR-200b, miR-200c, miR-429 and miR-141) play crucial roles in the suppression of EMT.
Collapse
Affiliation(s)
- Cong Liu
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Wei Hu
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Lin-Lin Li
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Yu-Xuan Wang
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Qun Zhou
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Feng Zhang
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Yi-Yan Song-Yang
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Wei Zhu
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - Cheng-Chao Sun
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| | - De-Jia Li
- Department of Occupational & Environmental Health, Wuhan University School of Health Sciences, Wuhan, Hubei 430071, PR China
| |
Collapse
|
33
|
Kang Y, Zhang Y, Sun Y, Wen Y, Sun F. MicroRNA-300 suppresses metastasis of oral squamous cell carcinoma by inhibiting epithelial-to-mesenchymal transition. Onco Targets Ther 2018; 11:5657-5666. [PMID: 30254458 PMCID: PMC6141125 DOI: 10.2147/ott.s173236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Oral cancer is the sixth most prevalent form of cancer, with oral squamous cell carcinomas (OSCCs) exhibiting the highest morbidity of all head and neck cancers. However, the specific metastatic mechanism is not yet clear. MicroR-300 (miR-300) has been identified as a critical regulator in tumor development. In this study, we focused on the roles of miR-300 in regulating epithelial–mesenchymal transition (EMT) in OSCC. Methods The surgical specimens from cases of OSCC (N=120) were collected, and the miR-300 expression was tested and the results were analyzed for possible correlations with clinical characteristics, and the prognostic significance was assessed by Kaplan–Meier analysis and Cox proportional hazards regression in OSCC patients. In addition, the proliferation and invasion of OSCC cells were evaluated after transfection of miR-300 mimics or inhibitor. At last, the role of miR-300 in EMT was investigated. Results The results showed that miR-300 levels were significantly lower in patients with OSCC than in controls and miR-300 levels in patients with OSCC were significantly associated with TNM classification. Kaplan–Meier analysis indicated that miR-300 with lower level had significantly decreased overall survival and disease-free survival of OSCC patients. In multivariate analysis, TNM stage, miR-300 expression and tobacco usage were the independent prognostic factors for overall survival and disease-free survival in OSCC. Moreover, in vitro experiments showed that miR-300 could inhibit the proliferation and invasion of OSCC cells. More importantly, miR-300 could inhibit the EMT process. In addition, we found that ET-1 could inhibit the expression of miR-300. Conclusion Our findings indicated that miR-300 could suppress metastasis of OSCC by inhibiting EMT. The present study indicates that miR-300 is a potential therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang 110002, China,
| | - Ying Zhang
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang 110002, China,
| | - Yan Sun
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang 110002, China,
| | - Yan Wen
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang 110002, China,
| | - Fuli Sun
- Department of Emergency and Oral Medicine, School of Stomatology, China Medical University, Shenyang 110002, China,
| |
Collapse
|
34
|
Jiang P, Xu C, Chen L, Chen A, Wu X, Zhou M, Haq IU, Mariyam Z, Feng Q. Epigallocatechin-3-gallate inhibited cancer stem cell-like properties by targeting hsa-mir-485-5p/RXRα in lung cancer. J Cell Biochem 2018; 119:8623-8635. [PMID: 30058740 DOI: 10.1002/jcb.27117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Non-small-cell lung cancer (NSCLC) appears to be a significant threat to public health worldwide. MicroRNAs have been identified as significant regulators for the development of NSCLC. Previous reports have suggested that hsa-mir-485-5p is dysregulated in various cancers. RXRα, as a kind of nuclear receptor, is an effective target of cancer treatment. Cancer stem cells (CSCs) are recognized as the main cause for tumor metastasis, recurrence, and chemotherapy resistance. However, the mechanism by which hsa-mir-485-5p and RXRα modulate CSCs in NSCLC remains unknown. Here, we found that hsa-mir-485-5p was decreased in serum samples from patients with NSCLC and NSCLC cells. Meanwhile, epigallocatechin-3-gallate (EGCG), an effective anticancer compound extracted from green tea, can enhance hsa-mir-485-5p expression. Hsa-mir-485-5p mimics markedly inhibited NSCLC cell growth and induced cell apoptosis. However, inhibition of hsa-mir-485-5p significantly enriched CSC-like traits. Moreover, bioinformatics analysis predicted the binding correlation between hsa-mir-485-5p and RXRα, which was confirmed by a dual-luciferase reporter assay. We observed that RXRα was increased in NSCLC and EGCG could inhibit RXRα levels dose dependently. In addition, RXRα upregulation or activation expanded the CSC-like properties of NSCLC cells, whereas RXRα inhibition or inactivation could exert a reverse phenomenon. Consistently, in vivo experiments also validated that EGCG could repress the CSC-like characteristics by modulating the hsa-mir-485-5p/RXRα axis. Our findings may reveal a novel molecular mechanism for the treatment of NSCLC.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Parayath NN, Parikh A, Amiji MM. Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. NANO LETTERS 2018; 18:3571-3579. [PMID: 29722542 DOI: 10.1021/acs.nanolett.8b00689] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tumor-associated macrophages (TAMs) acquire a pro-tumor (M2) phenotype, which promotes tumor growth, angiogenesis, and metastasis. Certain microRNAs (miRs), such as miR-125b, can reprogram TAMs into an antitumor/pro-inflammatory (M1) phenotype. Using CD44 targeting hyaluronic acid-poly(ethylenimine) (HA-PEI)-based nanoparticles encapsulating miR-125b, we have herein shown macrophage-specific delivery and transfection upon intraperitoneal (i.p.) administration. We have exploited the inherent ability of peritoneal macrophages to migrate toward the inflammation/injury and demonstrated that following intraperitoneal administration of HA-PEI nanoparticles, there is an accumulation of HA-PEI nanoparticles in the macrophage-ablated lung tissues of both naïve and KRAS/p53 double mutant genetically engineered (KP-GEM) nonsmall cell lung cancer (NSCLC) mouse model. Additionally, upon transfection with miR-125b, we observed a >6-fold increase in the M1 to M2 macrophage ratio and 300-fold increase in the iNOS (M1 marker)/Arg-1 (M2 marker) ratio in TAMs as compared to the untreated control group. The results of these studies show that i.p. administered macrophage-specific HA-PEI nanoparticles can successfully transfect TAMs in lung tissues of both naïve mice and a KP-GEM NSCLC mouse model. Successful TAM repolarization toward the M1 phenotype has significant implication in anticancer immunotherapy.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , Massachusetts 02115 United States
| | - Avani Parikh
- Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , Massachusetts 02115 United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , Massachusetts 02115 United States
| |
Collapse
|
36
|
Cui D, Zhu D, Ren H, Lin J, Lai W, Huang Q, Zhao J, Yang M. MicroRNA‑198 contributes to lupus nephritis progression by inhibition of phosphatase and tensin homology deleted on chromosome ten expression. Mol Med Rep 2017; 16:7813-7820. [PMID: 28944868 DOI: 10.3892/mmr.2017.7527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/22/2017] [Indexed: 11/05/2022] Open
Abstract
A number of short noncoding microRNAs (miRs) have been demonstrated to be highly expressed in many kidney diseases such as renal cancer and lupus nephritis (LN); however, these results have not been extensively investigated. The aim of the present study was to investigate the expression and function of miR‑198 in LN based on the previous studies. miR‑198 expression level in systemic lupus erythematosus (SLE) patients was determined to determine its clinicopathological significance and effect on glomerular cell proliferation. It was demonstrated that higher expression of miR‑198 was observed in patients with SLE, and was correlated with disease activity. Bioinformatics prediction and luciferase assays were used to demonstrate that miR‑198 could directly bind to the phosphatase and tensin homology deleted on chromosome ten (PTEN) 3'‑untranslated region. Furthermore, miR‑198 overexpression reduced PTEN expression levels, while miR‑198 silencing increased its expression at both the mRNA and protein level. Furthermore, there was a negative association between miR‑198 and PTEN in the patients with active SLE. Thus, miR‑198 may promote proliferation and contribute to SLE progression by targeting PTEN.
Collapse
Affiliation(s)
- Danyu Cui
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dingji Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hao Ren
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingli Lin
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weinan Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qin Huang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinjun Zhao
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Min Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
37
|
Zhou N, Cheng W, Peng C, Liu Y, Jiang B. Decreased expression of hsa‑miR‑372 predicts poor prognosis in patients with gallbladder cancer by affecting chloride intracellular channel 1. Mol Med Rep 2017; 16:7848-7854. [PMID: 28944858 DOI: 10.3892/mmr.2017.7520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
It has been reported that hsa‑microRNA (miRNA/miR)‑372 functions as a tumor suppressor or oncogene in various digestive system tumors, however, its roles in gallbladder cancer (GBC) are yet to be established. The present study aimed to determine the expression and clinical relevance of hsa‑miR‑372 in GBC. The expression of hsa‑miR‑372 in 80 pairs of human GBC tissues and adjacent normal gallbladder tissues was measured by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the associations between hsa‑miR‑372 expression levels and the clinicopathological characteristics of patients with GBC were determined using χ2 test. Furthermore, Kaplan‑Meier method and Cox regression analysis were performed to evaluate the association between hsa‑miR‑372 expression and the prognosis of patients with GBC. Furthermore, a dual‑luciferase reporter assay and western blot analysis were performed to predict and verify the target gene of hsa‑miR‑372. The results demonstrated that markedly lower hsa‑miR‑372 expression was observed in GBC tissues, which was associated with poor prognosis in patients with GBC. Downregulated expression of hsa‑miR‑372 was negatively associated with tumor histological grade, tumor‑node‑metastasis stage, lymph node metastasis and distant metastasis, however, no association was observed between reduced hsa‑miR‑372 expression and patient gender, age, tumor size and gallbladder stones. Multivariate Cox regression analysis revealed that hsa‑miR‑372 expression, histological grade and lymph node metastasis were independent prognostic factors for overall survival in patients with GBC. Chloride intracellular channel 1 (CLIC1) was previously reported to be an effective biomarker for predicting the prognosis of GBC. Notably, the results of the present study indicated that CLIC1 may be a direct target gene of hsa‑miR‑372. In conclusion, the current study provides the first statistically convincing evidence that downregulation of hsa‑miR‑372 may occur in GBC tissues, which may be associated with aggressive and progressive tumor behavior by affecting CLIC1 expression.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Yi Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
38
|
Tong L, Chu M, Yan B, Zhao W, Liu S, Wei W, Lou H, Zhang S, Ma S, Xu J, Wei L. MTDH promotes glioma invasion through regulating miR-130b-ceRNAs. Oncotarget 2017; 8:17738-17749. [PMID: 28107197 PMCID: PMC5392282 DOI: 10.18632/oncotarget.14717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Cell invasion is crucial for high mortality and recurrence rate in glioma. Epithelial-mesenchymal transition (EMT) is an important step in cancer invasion. Metadherin (MTDH) contributes to EMT in several cancers, but the role and mechanism of MTDH in EMT-like process of glioma remain unknown. Here we demonstrate that MTDH was overexpressed in glioma tissues and cells and induced EMT-like change and invasion of glioma cells. Interestingly, MTDH could modulate the expression of a group of glioma-related miRNAs. In particular, MTDH upregulated miR-130b transcription via acting as a coactivator of NF-kB. MiR-130b promoted EMT-like change and invasion of glioma cells through targeting multiple EMT-related genes, including PTEN, PPP2CA and SMAD7. In addition, PTEN acted as the competing endogenous RNA (ceRNA) to affect PPP2CA and SMAD7 expression, and inhibited EMT-like change in glioma cells. Furthermore, miR-130b mediated EMT-like change induced by MTDH, and MTDH inhibited the expression levels of PTEN, PPP2CA and SMAD7. Taken together, we reveal a novel mechanism that MTDH induces EMT-like change and invasion of glioma via the regulation of miR-130b-ceRNAs, providing the first direct link between MTDH and miRNAs in cancer cells.
Collapse
Affiliation(s)
- Liping Tong
- Wu Lien-Teh institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogen Biology, Harbin 150081, China
| | - Ming Chu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Bingqing Yan
- Wu Lien-Teh institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogen Biology, Harbin 150081, China
| | - Weiyi Zhao
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Shuang Liu
- Jiamusi University, Jiamusi 154002, China
| | - Wei Wei
- Jiamusi University, Jiamusi 154002, China
| | - Huihuang Lou
- Wu Lien-Teh institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogen Biology, Harbin 150081, China
| | - Shengkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Shuai Ma
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Juan Xu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Lanlan Wei
- Wu Lien-Teh institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogen Biology, Harbin 150081, China
| |
Collapse
|
39
|
Ascher K, Elliot SJ, Rubio GA, Glassberg MK. Lung Diseases of the Elderly: Cellular Mechanisms. Clin Geriatr Med 2017; 33:473-490. [PMID: 28991645 DOI: 10.1016/j.cger.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural lung aging is characterized by molecular and cellular changes in multiple lung cell populations. These changes include shorter telomeres, increased expression of cellular senescence markers, increased DNA damage, oxidative stress, apoptosis, and stem cell exhaustion. Aging, combined with the loss of protective repair processes, correlates with the development and incidence of chronic respiratory diseases, including idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Ultimately, it is the interplay of age-related changes in biology and the subsequent responses to environmental exposures that largely define the physiology and clinical course of the aging lung.
Collapse
Affiliation(s)
- Kori Ascher
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, 1600 Northwest 10th Avenue RMSB 7056 (D-60), Miami, FL 33136, USA
| | - Sharon J Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Gustavo A Rubio
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Marilyn K Glassberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, 1600 Northwest 10th Avenue RMSB 7056 (D-60), Miami, FL 33136, USA; DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA; Division of Pediatric Pulmonology, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2017; 51:149-159. [PMID: 28807546 DOI: 10.1016/j.semcancer.2017.08.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.
Collapse
|
41
|
Sakamoto N, Honma R, Sekino Y, Goto K, Sentani K, Ishikawa A, Oue N, Yasui W. Non-coding RNAs are promising targets for stem cell-based cancer therapy. Noncoding RNA Res 2017; 2:83-87. [PMID: 30159424 PMCID: PMC6096406 DOI: 10.1016/j.ncrna.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
The term “non-coding RNA” (ncRNA) is generally used to indicate RNA that does not encode a protein and includes several classes of RNAs, such as microRNA and long non-coding RNA. Several lines of evidence suggest that ncRNAs appear to be involved in a hidden layer of biological procedures that control various levels of gene expression in physiology and development including stem cell biology. Stem cells have recently constituted a revolution in regenerative medicine by providing the possibility of generating suitable cell types for therapeutic use. Here, we review the recent progress that has been made in elaborating the interaction between ncRNAs and tissue/cancer stem cells, discuss related technical and biological challenges, and highlight plausible solutions to surmount these difficulties. This review particularly emphasises the involvement of ncRNAs in stem cell biology and in vivo modulation to treat and cure specific pathological disorders especially in cancer. We believe that a better understanding of the molecular machinery of ncRNAs as related to pluripotency, cellular reprogramming, and lineage-specific differentiation is essential for progress of cancer therapy.
Collapse
Key Words
- CD, cytosine deaminase
- CSC, cancer stem cell
- EMT, epithelial to mesenchymal transition
- ESCs, embryonic stem cells
- MET, mesenchymal to epithelial transition
- MSCs, mesenchymal stem cells
- Non-coding RNA
- Stem cell-based therapy
- T-UCR, transcribed ultraconserved region
- Transcribed ultraconserved region
- iPSCs, induced pluripotent stem cells
- lincRNA, long inverting non-coding RNA
- lncRNA, long ncRNA
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ririno Honma
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Cancer Biology Program, University of Hawaii Cancer Center, United States
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
42
|
Yao J, Zhang P, Li J, Xu W. MicroRNA-215 acts as a tumor suppressor in breast cancer by targeting AKT serine/threonine kinase 1. Oncol Lett 2017; 14:1097-1104. [PMID: 28693279 DOI: 10.3892/ol.2017.6200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/07/2017] [Indexed: 01/15/2023] Open
Abstract
There are accumulating reports that microRNAs are dysregulated in a number of human cancer types, and that they may function as tumor suppressors or oncogenes in tumorigenesis and tumor development. microRNA-215 (miR-215) has been identified as a tumor suppressor in epithelial ovarian, pancreatic, non-small cell lung and colon cancer, whereas it may act as an oncogene in gastric and cervical cancer. The role of miR-215 in breast cancer carcinogenesis and progression has yet to be elucidated. In the present study, the expression level of miR-215 was determined in breast cancer tissues and cell lines using the reverse transcription-quantitative polymerase chain reaction. The effects of miR-215 overexpression on proliferation and the invasive capacity of breast cancer cells were assessed using MTT and cell invasion assays. The results revealed that miR-215 was significantly downregulated in breast cancer tissues and cell lines. Restoration of miR-215 expression inhibited the proliferation and invasion of breast cancer cells. The underlying molecular mechanism for the suppression of proliferation and invasion by miR-215 was investigated. AKT serine/threonine kinase 1 (AKT1) was validated as a novel direct target of miR-215, and the effect of AKT1 small interfering RNA mimicked the effect of miR-215 overexpression in breast cancer cells. These results indicated that miR-215 acted as a tumor suppressor, and that its downregulation in tumor tissues may contribute to the carcinogenesis and progression of breast cancer, indicating that miR-215 may be a novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jian Yao
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Zhang
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Li
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Xu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
43
|
Tian J, Hu X, Gao W, Zhang J, Chen M, Zhang X, Ma J, Yuan H. Identification of the long non‑coding RNA LET as a novel tumor suppressor in gastric cancer. Mol Med Rep 2017; 15:2229-2234. [PMID: 28260083 DOI: 10.3892/mmr.2017.6263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/15/2016] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged recently as important factors in regulating fundamental biological processes. Alterations in the expression and function of lncRNAs have been observed to promote tumor formation, progression and metastasis. Although downregulation of the expression levels of LET lncRNA in several tumors has been reported, its role in gastric cancer remains unknown. The aim of the present study was to investigate the expression and function of LET in gastric cancer development. The expression levels of LET in 37 pairs of gastric cancer and adjacent non‑tumor tissues were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). In addition, LET expression in gastric cancer cell lines was analyzed by RT‑qPCR assay analysis. Furthermore, the impact of LET on cell proliferation, migration and apoptosis were detected using the cell counting kit‑8, wound scratch and ELISA assays, respectively. The results demonstrated that the expression level of LET was downregulated in gastric cancer tissues and cell lines (SGC‑7901 and MGC‑803) compared with normal tissues and a normal human gastric epithelial cell line (GES‑1). Restoration of LET expression using a synthesized recombinant overexpression vector transfected into SGC‑7901 and MGC‑803 cells, significantly inhibited cell proliferation and migration, and promoted cell apoptosis in vitro. The present study is the first to demonstrate that LET may function as a tumor suppressor in gastric cancer. The results indicate that LET may be a promising biomarker and/or a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jingjing Tian
- Department of Gastroenterology, NanKai Hospital, Tianjin 300100, P.R. China
| | - Xibao Hu
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Wei Gao
- Department of Gastroenterology, NanKai Hospital, Tianjin 300100, P.R. China
| | - Jie Zhang
- Department of Gastroenterology, NanKai Hospital, Tianjin 300100, P.R. China
| | - Ming Chen
- Department of Gastroenterology, NanKai Hospital, Tianjin 300100, P.R. China
| | - Xinrong Zhang
- Department of Gastroenterology, NanKai Hospital, Tianjin 300100, P.R. China
| | - Junhong Ma
- Department of Gastroenterology, NanKai Hospital, Tianjin 300100, P.R. China
| | - Hongxia Yuan
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
44
|
Sripada L, Singh K, Lipatova AV, Singh A, Prajapati P, Tomar D, Bhatelia K, Roy M, Singh R, Godbole MM, Chumakov PM, Singh R. hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells. J Mol Med (Berl) 2017; 95:641-651. [PMID: 28220193 DOI: 10.1007/s00109-017-1517-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/07/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
The modulation of mitochondrial functions is important for maintaining cellular homeostasis. Mitochondria essentially depend on the import of RNAs and proteins encoded by the nuclear genome. MicroRNAs encoded in the nucleus can translocate to mitochondria and target the genome, affecting mitochondrial function. Here, we analyzed the role of miR-4485 in the regulation of mitochondrial functions. We showed that miR-4485 translocated to mitochondria where its levels varied in response to different stress conditions. A direct binding of miR-4485 to mitochondrial 16S rRNA was demonstrated. MiR-4485 regulated the processing of pre-rRNA at the 16S rRNA-ND1 junction and the translation of downstream transcripts. MiR-4485 modulated mitochondrial complex I activity, the production of ATP, ROS levels, caspase-3/7 activation, and apoptosis. Transfection of a miR-4485 mimic downregulated the expression of regulatory glycolytic pathway genes and reduced the clonogenic ability of breast cancer cells. Ectopic expression of miR-4485 in MDA-MB-231 breast carcinoma cells decreased the tumorigenicity in a nude mouse xenograft model. Furthermore, levels of both precursor and mature miR-4485 are decreased in tumor tissue of breast cancer patients. We conclude that the mitochondria-targeted miR-4485 may act as a tumor suppressor in breast carcinoma cells by negatively regulating mitochondrial RNA processing and mitochondrial functions.
Collapse
Affiliation(s)
- Lakshmi Sripada
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aru Singh
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Paresh Prajapati
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhanendra Tomar
- Center for Translational Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Khyati Bhatelia
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Madan M Godbole
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Rajesh Singh
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
45
|
Yang N, Liang Y, Yang P, Yang T, Jiang L. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating microRNA-486 expression. ACTA ACUST UNITED AC 2017; 50:e5794. [PMID: 28076456 PMCID: PMC5264538 DOI: 10.1590/1414-431x20165794] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/03/2016] [Indexed: 02/06/2023]
Abstract
Propofol is a frequently used intravenous anesthetic agent. Recent studies show that
propofol exerts a number of non-anesthetic effects. The present study aimed to
investigate the effects of propofol on lung cancer cell lines H1299 and H1792 and
functional role of microRNA (miR)-486 in these effects. H1299 and/or H1792 cells were
treated with or without propofol and transfected or not with miR-486 inhibitor, and
then cell viability and apoptosis were analyzed by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow
cytometry. The expression of miR-486 was determined by quantitative real-time
polymerase chain reaction (qRT-PCR) with or without propofol treatment. Western blot
was performed to analyze the protein expression of Forkhead box, class O (FOXO) 1 and
3, Bcl-2 interacting mediator of cell death (Bim), and pro- and activated caspases-3.
Results showed that propofol significantly increased the miR-486 levels in both H1299
and H1792 cells compared to untreated cells in a dose-dependent manner (P<0.05 or
P<0.01). Propofol statistically decreased cell viability but increased the
percentages of apoptotic cells and protein expressions of FOXO1, FOXO3, Bim, and pro-
and activated caspases-3; however, miR-486 inhibitor reversed the effects of propofol
on cell viability, apoptosis, and protein expression (P<0.05 or P<0.01). In
conclusion, propofol might be an ideal anesthetic for lung cancer surgery by
effectively inhibiting lung cancer cell viability and inducing cell apoptosis.
Modulation of miR-486 might contribute to the anti-tumor activity of propofol.
Collapse
Affiliation(s)
- N Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - P Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - T Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - L Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
46
|
Liu M, Zhou J, Chen Z, Cheng ASL. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol 2016; 241:10-24. [PMID: 27770445 DOI: 10.1002/path.4832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The tumour microenvironment plays an instrumental role in cancer development, progression and treatment response/resistance. Accumulating evidence is underscoring the fundamental importance of epigenetic regulation in tumour immune evasion. Following many pioneering discoveries demonstrating malignant transformation through epigenetic anomalies ('epimutations'), there is also a growing emphasis on elucidating aberrant epigenetic mechanisms that reprogramme the milieu of tumour-associated immune and stromal cells towards an immunosuppressive state. Pharmacological inhibition of DNA methylation and histone modifications can augment the efficiency of immune checkpoint blockage, and unleash anti-tumour T-cell responses. However, these non-specific agents also represent a 'double-edged sword', as they can also reactivate gene transcription of checkpoint molecules, interrupting immune surveillance programmes. By understanding the impact of epigenetic control on the tumour microenvironment, rational combinatorial epigenetic and checkpoint blockage therapies have the potential to harness the immune system for the treatment of cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Man Liu
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Jingying Zhou
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
47
|
Martínez-Fernández M, Dueñas M, Feber A, Segovia C, García-Escudero R, Rubio C, López-Calderón FF, Díaz-García C, Villacampa F, Duarte J, Gómez-Rodriguez MJ, Castellano D, Rodriguez-Peralto JL, de la Rosa F, Beck S, Paramio JM. A Polycomb-mir200 loop regulates clinical outcome in bladder cancer. Oncotarget 2016; 6:42258-75. [PMID: 26517683 PMCID: PMC4747223 DOI: 10.18632/oncotarget.5546] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is a highly prevalent disease, ranking fifth in the most common cancers worldwide. Various miRNAs have recently emerged as potential prognostic biomarkers in cancer. The miR-200 family, which repressed the epithelial-to-mesenchymal transition (EMT), is repressed in multiple advanced cancers. However, its expression and function in BC is still poorly understood. Here we show that miR-200 family displays increased expression, probably due to the activation of specific oncogenic signaling pathways, and reduced promoter methylation, in BC compared to normal bladder samples. Furthermore, we show that the expression of these miRNAs is decreased in high grade and stage tumors, and the down-regulation is associated with patient's poor clinical outcome. Our data indicate that the miR-200 family plays distinct roles in Non-Muscle (NMIBC) and Muscle-Invasive BC (MIBC). In MIBC, miR-200 expression post transcriptionally regulates EMT-promoting transcription factors ZEB1 and ZEB2, whereas suppresses BMI1 expression in NMIBC. Interestingly, we show that increased EZH2 and/or BMI1 expression repress the expression of miR-200 family members. Collectively, these findings support a model of BC progression through a coordinated action between the Polycomb Repression Complex (PRC) members repressing the miR-200 expression, which ultimately favors invasive BC development. Since pharmacological inhibition of EZH2 in BC cell lines lead to increased miR-200 expression, our findings may support new therapeutic strategies for BC clinical management.
Collapse
Affiliation(s)
- Mónica Martínez-Fernández
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Andrew Feber
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Fernando F López-Calderón
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | | | - Felipe Villacampa
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - José Duarte
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - María J Gómez-Rodriguez
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Daniel Castellano
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - José L Rodriguez-Peralto
- Anatomic Pathology Service, Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| | - Federico de la Rosa
- Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain.,Uro-oncology Section, Universitary Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (ed70A), 28040 Madrid, Spain.,Universitary Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, 28041 Madrid, Spain
| |
Collapse
|
48
|
Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, Yao J, Khokha MK, Giraldez AJ. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J 2016; 35:2087-2103. [PMID: 27436874 DOI: 10.15252/embj.201694699] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.
Collapse
Affiliation(s)
- Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Florencia Del Viso
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Luo W, Lin Y, Meng S, Guo Y, Zhang J, Zhang W. miRNA-296-3p modulates chemosensitivity of lung cancer cells by targeting CX3CR1. Am J Transl Res 2016; 8:1848-1856. [PMID: 27186308 PMCID: PMC4859913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Lung cancer is the most common type of cancer-related death in developed countries. MicroRNAs (miRNAs) are small non-coding RNAs, which regulates gene expression in cancer. Recent studies demonstrate that the microRNA-293-3p (miR-293-3p) may play as an oncogene or a tumor suppressor. However, its expression and roles in non-small cell lung cancer (NSCLC) is not known. In this study, our purpose is to investigate the expression and roles of miR-296-3p in NSCLC. The findings indicated that miR296-3p inhibited NSCLC cell proliferation, enhance the drug resistance, and apoptosis. Data of luciferase reporter assays demonstrated that the CX3CR1 gene was a direct regulator of tumorsuppressive miR296-3p. Moreover, overexpressed CX3CR1 was confirmed in NSCLC clinical specimens. Inhibition of CX3CR1 could inhibit cancer cellular survival and increase chemotherapy sensitivity. There was a negative relationship between miR296-3p and CX3CR1 expression in NSCLC tissues. Our study elucidates that miR296-3p plays a suppressive role in NSCLC by inhibiting CX3CR1 expression.
Collapse
Affiliation(s)
- Wen Luo
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yuanlong Lin
- Department of Infection, Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Shanshan Meng
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yuening Guo
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Jiawen Zhang
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Wei Zhang
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
50
|
Maltby S, Plank M, Tay HL, Collison A, Foster PS. Targeting MicroRNA Function in Respiratory Diseases: Mini-Review. Front Physiol 2016; 7:21. [PMID: 26869937 PMCID: PMC4740489 DOI: 10.3389/fphys.2016.00021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/15/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that modulate expression of the majority of genes by inhibiting protein translation. Growing literature has identified functional roles for miRNAs across a broad range of biological processes. As such, miRNAs are recognized as potential disease biomarkers and novel targets for therapies. While several miRNA-targeted therapies are currently in clinical trials (e.g., for the treatment of hepatitis C virus infection and cancer), no therapies have targeted miRNAs in respiratory diseases in the clinic. In this mini-review, we review the current knowledge on miRNA expression and function in respiratory diseases, intervention strategies to target miRNA function, and considerations specific to respiratory diseases. Altered miRNA expression profiles have been reported in a number of respiratory diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. These include alterations in isolated lung tissue, as well as sputum, bronchoalveolar lavage fluids and peripheral blood or serum. The observed alterations in easily accessible body fluids (e.g., serum) have been proposed as new biomarkers that may inform disease diagnosis and patient management. In a subset of studies, miRNA-targeted interventions also improved disease outcomes, indicating functional roles for altered miRNA expression in disease pathogenesis. In fact, direct administration of miRNA-targeting molecules to the lung has yielded promising results in a number of animal models. The ability to directly administer compounds to the lung holds considerable promise and may limit potential off-target effects and side effects caused by the systemic administration required to treat other diseases.
Collapse
Affiliation(s)
- Steven Maltby
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Maximilian Plank
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Hock L Tay
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Adam Collison
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Experimental and Translational Respiratory Medicine, Faculty of Health, School of Medicine and Public Health, University of NewcastleCallaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|