1
|
Liu Y, Xia F, Zhu C, Song J, Tang B, Zhang B, Huang Z. Protein serine/threonine phosphatases in tumor microenvironment: a vital player and a promising therapeutic target. Theranostics 2025; 15:1164-1184. [PMID: 39776803 PMCID: PMC11700861 DOI: 10.7150/thno.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear. Decoding the pathological features of the TME is urgently needed to understand the tumor ecosystem and develop novel antitumor treatments. Protein serine/threonine phosphatases (PSPs) are responsible for inverse protein phosphorylation processes. Aberrant expression and dysfunction of PSPs disturb cellular homeostasis, reprogram metabolic processes and reshape the immune landscape, thereby contributing to cancer progression. Some therapeutic implications, such as the use of PSPs as targets, have drawn the attention of researchers and clinicians. To date, the effects of PSP inhibitors are less satisfactory in real-world practice. With breakthroughs in sequencing technologies, scientists can decipher TME investigations via multiomics and higher resolution. These benefits provide an opportunity to explore the TME in a more comprehensive manner and inspire more findings concerning PSPs in the TME. The current review starts by introducing the canonical knowledge of PSPs, including their members, structures and posttranslational modifications for activities. We then summarize the functions of PSPs in regulating cellular homeostasis. In particular, we specified the up-to-date roles of PSPs in modulating the immune microenvironment, adopting hypoxia, reprogramming metabolic processes, and responding to extracellular matrix remodeling. Finally, we introduce preclinical PSP inhibitors with translational value and conclude with clinical trials of PSP inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang J, Bi W, Lv R, Wang Z, Xin Q, Li K, Chen Y, Liu Q, Zhang X. SMEK1 promotes clear cell renal cell carcinoma progression via EGFR tyrosine-kinase dependent pathway. Cancer Lett 2024; 601:217148. [PMID: 39098759 DOI: 10.1016/j.canlet.2024.217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Studying the mechanisms underlying clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, may address an unmet need in ccRCC-targeted drug research. Growing evidences indicate that protein phosphatase 4 (PP4) plays an important role in cancer biology. Here, we characterized the upregulation of PP4 core component SMEK1 in ccRCC using tissue microarrays and revealed that its high expression is closely associated with reduced patient survival. We then conducted cell function experiments and animal experiments to prove the tumor-promoting effect of SMEK1. Next, RNA-seq was performed to explore its underlying mechanism, and the results revealed that SMEK1-regulated genes were extensively involved in cell motility, and the canonical tyrosine kinase receptor EGFR was one of its targets. Moreover, we verified the regulatory effect of SMEK1 on EGFR and its downstream MAPK and AKT pathway through molecular experiments, in which erlotinib, a tyrosine kinase inhibitor, can partially block this regulation, demonstrating that SMEK1 mediates its effects dependent on the tyrosine kinase activity of EGFR. Mechanistically, SMEK1 bond to PRMT5 and facilitated PRMT5-mediated histone methylation to promote the transcription of EGFR. Furthermore, we studied the upstream regulators of SMEK1 and demonstrated that the transcription factor E2F1 could directly bind to the SMEK1 promoter by chromatin immunoprecipitation. Functionally, E2F1 could also induce ccRCC progression by manipulating the expression of SMEK1. Collectively, our findings demonstrate the overexpression of SMEK1 in ccRCC, and reveal a novel E2F1/SMEK1/PRMT5/EGFR-tyrosine-kinase-dependent pathway for ccRCC progression.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Wenhao Bi
- Department of Urology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Urology, Zibo 148 Hospital, Zibo, Shandong, 255300, China
| | - Renguang Lv
- Department of Urology, Jinan Seventh People's Hospital, Jinan, Shandong, 251400, China
| | - Zekun Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Xin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Kailin Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yuan Chen
- Institute of Medical Sciences, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China; NHC Key Laboratory of Birth Defects Prevention, Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, Henan, China.
| | - Xiang Zhang
- Department of Urology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Wang K, Peng B, Xu R, Lu T, Chang X, Shen Z, Shi J, Li M, Wang C, Zhou X, Xu C, Chang H, Zhang L. Comprehensive analysis of PPP4C's impact on prognosis, immune microenvironment, and immunotherapy response in lung adenocarcinoma using single-cell sequencing and multi-omics. Front Immunol 2024; 15:1416632. [PMID: 39026674 PMCID: PMC11254641 DOI: 10.3389/fimmu.2024.1416632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Elevated PPP4C expression has been associated with poor prognostic implications for patients suffering from lung adenocarcinoma (LUAD). The extent to which PPP4C affects immune cell infiltration in LUAD, as well as the importance of associated genes in clinical scenarios, still requires thorough investigation. Methods In our investigation, we leveraged both single-cell and comprehensive RNA sequencing data, sourced from LUAD patients, in our analysis. This study also integrated datasets of immune-related genes from InnateDB into the framework. Our expansive evaluation employed various analytical techniques; these included pinpointing differentially expressed genes, constructing WGCNA, implementing Cox proportional hazards models. We utilized these methods to investigate the gene expression profiles of PPP4C within the context of LUAD and to clarify its potential prognostic value for patients. Subsequent steps involved validating the observed enhancement of PPP4C expression in LUAD samples through a series of experimental approaches. The array comprised immunohistochemistry staining, Western blotting, quantitative PCR, and a collection of cell-based assays aimed at evaluating the influence of PPP4C on the proliferative and migratory activities of LUAD cells. Results In lung cancer, elevated expression levels of PPP4C were observed, correlating with poorer patient prognoses. Validation of increased PPP4C levels in LUAD specimens was achieved using immunohistochemical techniques. Experimental investigations have substantiated the role of PPP4C in facilitating cellular proliferation and migration in LUAD contexts. Furthermore, an association was identified between the expression of PPP4C and the infiltration of immune cells in these tumors. A prognostic framework, incorporating PPP4C and immune-related genes, was developed and recognized as an autonomous predictor of survival in individuals afflicted with LUAD. This prognostic tool has demonstrated considerable efficacy in forecasting patient survival and their response to immunotherapeutic interventions. Conclusion The involvement of PPP4C in LUAD is deeply intertwined with the tumor's immune microenvironment. PPP4C's over-expression is associated with negative clinical outcomes, promoting both tumor proliferation and spread. A prognostic framework based on PPP4C levels may effectively predict patient prognoses in LUAD, as well as the efficacy of immunotherapy strategy. This research sheds light on the mechanisms of immune interaction in LUAD and proposes a new strategy for treatment.
Collapse
Affiliation(s)
- Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiping Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meifeng Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengyu Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Hui X, Li L, Xiong W, Liu Y, Li H, Zhang H, Zhao S, Zhang Y. High PPP4C expression predicts poor prognosis in diffuse large B-cell lymphoma. Clin Exp Med 2024; 24:89. [PMID: 38683255 PMCID: PMC11058967 DOI: 10.1007/s10238-024-01356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The significance of Protein phosphatase 4 catalytic subunit (PPP4C) in diffuse large B-cell lymphoma (DLBCL) prognosis is not well understood. This work aimed to investigate the expression of PPP4C in DLBCL, investigate the correlation between PPP4C expression and clinicopathological parameters, and assess the prognostic significance of PPP4C. The mRNA expression of PPP4C was investigated using data from TCGA and GEO. To further analyze PPP4C expression, immunohistochemistry was performed on tissue microarray samples. Correlation analysis between clinicopathological parameters and PPP4C expression was conducted using Pearson's chi-square test or Fisher's exact test. Univariate and multivariate Cox hazard models were utilized to determine the prognostic significance of clinicopathological features and PPP4C expression. Additionally, survival analysis was performed using Kaplan-Meier survival curves. In both TCGA and GEO datasets, we identified higher mRNA levels of PPP4C in tumor tissues compared to normal tissues. Upon analysis of various clinicopathological features of DLBCL, we observed a correlation between high PPP4C expression and ECOG score (P = 0.003). Furthermore, according to a Kaplan-Meier survival analysis, patients with DLBCL who exhibit high levels of PPP4C had worse overall survival (P = 0.001) and progression-free survival (P = 0.002). PPP4C was shown to be an independent predictive factor for OS and PFS in DLBCL by univariate and multivariate analysis (P = 0.011 and P = 0.040). This study's findings indicate that high expression of PPP4C is linked to a poor prognosis for DLBCL and may function as an independent prognostic factors.
Collapse
Affiliation(s)
- Xue Hui
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Liru Li
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Wenjing Xiong
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yue Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Hongbin Li
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Han Zhang
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Shu Zhao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Yue Zhang
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| |
Collapse
|
5
|
Wang X, Wang Y, Zhang W, Zhu X, Liu Z, Liu M, Liu S, Li B, Chen Y, Wang Z, Zhu P, Zhao W, Wang Y, Chen Z. Biomimetic-gasdermin-protein-expressing nanoplatform mediates tumor-specific pyroptosis for cancer immunotherapy. J Control Release 2024; 367:61-75. [PMID: 38242210 DOI: 10.1016/j.jconrel.2024.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Pyroptosis, mediated by gasdermin proteins, has shown excellent efficacy in facilitating cancer immunotherapy. The strategies commonly used to induce pyroptosis suffer from a lack of tissue specificity, resulting in the nonselective activation of pyroptosis and consequent systemic toxicity. Moreover, pyroptosis activation usually depends on caspase, which can induce inflammation and metabolic disorders. In this study, inspired by the tumor-specific expression of SRY-box transcription factor 4 (Sox4) and matrix metalloproteinase 2 (MMP2), we constructed a doubly regulated plasmid, pGMD, that expresses a biomimetic gasdermin D (GSDMD) protein to induce the caspase-independent pyroptosis of tumor cells. To deliver pGMD to tumor cells, we used a hyaluronic acid (HA)-shelled calcium carbonate nanoplatform, H-CNP@pGMD, which effectively degrades in the acidic endosomal environment, releasing pGMD into the cytoplasm of tumor cells. Upon the initiation of Sox4, biomimetic GSDMD was expressed and cleaved by MMP2 to induce tumor-cell-specific pyroptosis. H-CNP@pGMD effectively inhibited tumor growth and induced strong immune memory effects, preventing tumor recurrence. We demonstrate that H-CNP@pGMD-induced biomimetic GSDMD expression and tumor-specific pyroptosis provide a novel approach to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenyan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zimai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meiyi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yalan Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ziyan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Shan Y, Zheng L, Zhang S, Qian B. Abnormal expression of FOXM1 in carcinogenesis of renal cell carcinoma: From experimental findings to clinical applications. Biochem Biophys Res Commun 2024; 692:149251. [PMID: 38056162 DOI: 10.1016/j.bbrc.2023.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Renal cell carcinoma (RCC) is a prevalent malignancy within the genitourinary system. At present, patients with high-grade or advanced RCC continue to have a bleak prognosis. Mounting research have emphasized the significant involvement of Forkhead box M1 (FOXM1) in RCC development and progression. Therefore, it is imperative to consolidate the existing evidence regarding the contributions of FOXM1 to RCC tumorigenesis through a comprehensive review. This study elucidated the essential functions of FOXM1 in promoting RCC growth, invasion, and metastasis by regulating cell cycle progression, DNA repair, angiogenesis, and epithelial-mesenchymal transition (EMT). Also, FOXM1 might serve as a novel diagnostic and prognostic biomarker as well as a therapeutic target for RCC. Clinical findings demonstrated that the expression of FOXM1 was markedly upregulated in RCC samples, while a high level of FOXM1 was found to be associated with a poor overall survival rate of RCC. Furthermore, it is worth noting that FOXM1 may have a significant impact on the resistance of renal cell carcinoma (RCC) to radiotherapy. This observation suggests that inhibiting FOXM1 could be a promising strategy to impede the progression of RCC and enhance its sensitivity to radiotherapy. The present review highlighted the pivotal role of FOXM1 in RCC development. FOXM1 has the capacity to emerge as not only a valuable diagnostic and prognostic tool but also a viable therapeutic option for unresectable RCC.
Collapse
Affiliation(s)
- Yanmei Shan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
7
|
Li M, Ni QY, Yu SY. Integration of single-cell transcriptomics and epigenetic analysis reveals enhancer-controlled TIMP1 as a regulator of ferroptosis in colorectal cancer. Genes Genomics 2024; 46:121-133. [PMID: 38032469 DOI: 10.1007/s13258-023-01474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Ferroptosis is an iron-dependent non-apoptotic programmed cell death. However, the regulatory mechanism of ferroptosis in colorectal cancer (CRC) is still unclear. OBJECTIVE The aim of this study was to investigate the role and mechanism of enhancer-controlled genes in ferroptosis in CRC. METHODS Dimensionality reduction and differentially expressed genes (DEGs) identification were conducted using Seurat algorithm based on single-cell RNA sequencing (scRNA-seq) data from the GSE200997 dataset. Ferroptosis-related pathway enrichment analysis was performed using the FerrDb V2 database. Enhancers were identified using HOMER algorithm based on H3K27ac ChIP-seq data from the GSE166254 dataset. Kaplan-Meier Plotter online tool was used to analyze prognosis and gene expression correlation. Transcription factors were predicted using the transcription factor affinity prediction web tool. The binding of enhancer to transcription factor and H3K27ac enrichment were detected by ChIP-qPCR. RSL3 was used to induce ferroptosis in CRC cells. Gene transcription was detected by qRT-PCR. Cell proliferation was detected by CCK8 assay. RESULTS Nine cell clusters including T cells, natural killer cells, macrophages, mast cells, epithelial cells, fibroblasts, goblet cells, B cells and dendritic cells were identified in CRC and normal colonic tissue samples. Compared to normal colonic tissue-derived epithelial cells, 1075 DEGs were screened in CRC tissue-derived epithelial cells. Ferroptosis-related pathway enrichment suggested that DEGs were associated with the regulation of ferroptosis. DPEP1, ETV4, CEBPG, TIMP1, DUOX2 and LCN2 were identified as the significantly upregulated genes enriched in the "ferroptosis regulator" term, and their H3K27ac signals were significantly higher in CRC tissues than in normal colonic tissues. Of these, only the expression of TIMP1 predicted a poor prognosis of CRC patients. Transcription factor SPI1 drove TIMP1 transcription by binding to its enhancer. Overexpression of TIMP1 significantly promoted the resistance to ferroptosis induced by RSL3 in CRC cells, which was partially restored by SPI1 knockdown. CONCLUSION Transcription of TIMP1 was driven by transcription factor SPI1 in combination with its enhancer, consequently promoting CRC cells against ferroptosis. The SPI1/TIMP1 axis confers ferroptosis resistance in CRC, and thus has the potential to be the molecular targets for CRC treatment.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Qian-Yang Ni
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Su-Yang Yu
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China.
| |
Collapse
|
8
|
Dutriaux A, Diazzi S, Bresesti C, Hardouin S, Deshayes F, Collignon J, Flagiello D. LADON, a Natural Antisense Transcript of NODAL, Promotes Tumour Progression and Metastasis in Melanoma. Noncoding RNA 2023; 9:71. [PMID: 37987367 PMCID: PMC10661258 DOI: 10.3390/ncrna9060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
The TGFβ family member NODAL, repeatedly required during embryonic development, has also been associated with tumour progression. Our aim was to clarify the controversy surrounding its involvement in melanoma tumour progression. We found that the deletion of the NODAL exon 2 in a metastatic melanoma cell line impairs its ability to form tumours and colonize distant tissues. However, we show that this phenotype does not result from the absence of NODAL, but from a defect in the expression of a natural antisense transcript of NODAL, here called LADON. We show that LADON expression is specifically activated in metastatic melanoma cell lines, that its transcript is packaged in exosomes secreted by melanoma cells, and that, via its differential impact on the expression of oncogenes and tumour suppressors, it promotes the mesenchymal to amoeboid transition that is critical for melanoma cell invasiveness. LADON is, therefore, a new player in the regulatory network governing tumour progression in melanoma and possibly in other types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Jérôme Collignon
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France; (A.D.); (S.D.)
| | - Domenico Flagiello
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France; (A.D.); (S.D.)
| |
Collapse
|
9
|
Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep 2023; 56:618-623. [PMID: 37605615 PMCID: PMC10689085 DOI: 10.5483/bmbrep.2023-0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 05/07/2025] Open
Abstract
Most cancer cells utilize glucose at a high rate to produce energyand precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly. [BMB Reports 2023; 56(11): 618-623].
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
10
|
Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep 2023; 56:618-623. [PMID: 37605615 PMCID: PMC10689085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Most cancer cells utilize glucose at a high rate to produce energyand precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly. [BMB Reports 2023; 56(11): 618-623].
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
11
|
Hailiwu R, Zeng H, Zhan M, Pan T, Yang H, Li P. Salvianolic acid A diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis. Phytother Res 2023; 37:4540-4556. [PMID: 37337901 DOI: 10.1002/ptr.7925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Myofibroblasts activation intensively contributes to cardiac fibrosis with undefined mechanism. Salvianolic acid A (SAA) is a phenolic component derived from Salvia miltiorrhiza with antifibrotic potency. This study aimed to interrogate the inhibitory effects and underlying mechanism of SAA on myofibroblasts activation and cardiac fibrosis. Antifibrotic effects of SAA were evaluated in mouse myocardial infarction (MI) model and in vitro myofibroblasts activation model. Metabolic regulatory effects and mechanism of SAA were determined using bioenergetic analysis and cross-validated by multiple metabolic inhibitors and siRNA or plasmid targeting Ldha. Finally, Akt/GSK-3β-related upstream regulatory mechanisms were investigated by immunoblot, q-PCR, and cross-validated by specific inhibitors. SAA inhibited cardiac fibroblasts-to-myofibroblasts transition, suppressed collage matrix proteins expression, and effectively attenuated MI-induced collagen deposition and cardiac fibrosis. SAA attenuated myofibroblasts activation and cardiac fibrosis by inhibiting LDHA-driven abnormal aerobic glycolysis. Mechanistically, SAA inhibited Akt/GSK-3β axis and downregulated HIF-1α expression by promoting its degradation via a noncanonical route, and therefore restrained HIF-1α-triggered Ldha gene expression. SAA is an effective component for treating cardiac fibrosis by diminishing LDHA-driven glycolysis during myofibroblasts activation. Targeting metabolism of myofibroblasts might occupy a potential therapeutic strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Réthi-Nagy Z, Ábrahám E, Sinka R, Juhász S, Lipinszki Z. Protein Phosphatase 4 Is Required for Centrobin Function in DNA Damage Repair. Cells 2023; 12:2219. [PMID: 37759442 PMCID: PMC10526779 DOI: 10.3390/cells12182219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
| | - Szilvia Juhász
- Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
13
|
Whitehead CA, Fang H, Su H, Morokoff AP, Kaye AH, Hanssen E, Nowell CJ, Drummond KJ, Greening DW, Vella LJ, Mantamadiotis T, Stylli SS. Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner. Cell Oncol (Dordr) 2023; 46:909-931. [PMID: 37014551 PMCID: PMC10356899 DOI: 10.1007/s13402-023-00786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Huaqi Su
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Microscopy Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Vella
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia.
| |
Collapse
|
14
|
Rasti G, Becker M, Vazquez BN, Espinosa-Alcantud M, Fernández-Duran I, Gámez-García A, Ianni A, Gonzalez J, Bosch-Presegué L, Marazuela-Duque A, Guitart-Solanes A, Segura-Bayona S, Bech-Serra JJ, Scher M, Serrano L, Shankavaram U, Erdjument-Bromage H, Tempst P, Reinberg D, Olivella M, Stracker T, de la Torre C, Vaquero A. SIRT1 regulates DNA damage signaling through the PP4 phosphatase complex. Nucleic Acids Res 2023; 51:6754-6769. [PMID: 37309898 PMCID: PMC10359614 DOI: 10.1093/nar/gkad504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/β. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.
Collapse
Affiliation(s)
- George Rasti
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maximilian Becker
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Berta N Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Espinosa-Alcantud
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Fernández-Duran
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231Bad Nauheim, Germany
| | - Jessica Gonzalez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IrisCC). Experimental Sciences and Methodology Department. Faculty of Health Sciences and Welfare (FCSB), University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Guitart-Solanes
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Current affiliation: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joan-Josep Bech-Serra
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Michael Scher
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ08854, USA
| | - Lourdes Serrano
- Department of Science, BMCC, The City University of New York (CUNY), 199 Chambers Street N699P, New Yirk, NY10007, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD20892, USA
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY10016, USA
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ08854, USA
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, NY10016, USA
| | - Mireia Olivella
- Bioinfomatics and Medical Statistics Group, Faculty of Science, Technology and Engineering. University of Vic-Central University of Catalonia, Vic, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD20892, USA
| | - Carolina de la Torre
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Wang Y, Han W, Yun S, Han J. Identification of protein phosphatase 4 catalytic subunit as a Wnt promoting factor in pan-cancer and Xenopus early embryogenesis. Sci Rep 2023; 13:10240. [PMID: 37353511 PMCID: PMC10290155 DOI: 10.1038/s41598-023-35719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Protein Phosphatase 4 Catalytic Subunit (PPP4C) is an evolutionarily conserved protein involved in multiple biological and pathological events, including embryogenesis, organogenesis, cellular homeostasis, and oncogenesis. However, the detailed mechanisms underlying these processes remain largely unknown. Thus, we investigated the potential correlation between PPP4C and biological processes (BPs) and canonical Wnt signaling using pan-cancer analysis and Xenopus laevis (X. laevis) embryo model. Our results indicate that PPP4C is a potential biomarker for specific cancer types due to its high diagnostic accuracy and significant prognostic correlation. Furthermore, in multiple cancer types, PPP4C-related differentially expressed genes (DEGs) were significantly enriched in pattern specification, morphogenesis, and canonical Wnt activation. Consistently, perturbation of Ppp4c in X. laevis embryos interfered with normal embryogenesis and canonical Wnt responses. Moreover, biochemical analysis of X. laevis embryos demonstrated that both endogenous and exogenous Ppp4c negatively regulated AXIN1 (Wnt inhibitor) abundance. This study provides novel insights into PPP4C roles in pattern specification and Wnt activation. The similarities in BPs and Wnt signaling regulation regarding PPP4C support the intrinsic link between tumorigenesis and early embryogenesis.
Collapse
Affiliation(s)
- YiLi Wang
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - WonHee Han
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - SeokMin Yun
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - JinKwan Han
- Laboratory of Developmental Biology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
16
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
17
|
Xie W, Sun Y, Zeng Y, Hu L, Zhi J, Ling H, Zheng X, Ruan X, Gao M. Comprehensive analysis of PPPCs family reveals the clinical significance of PPP1CA and PPP4C in breast cancer. Bioengineered 2022; 13:190-205. [PMID: 34964699 PMCID: PMC8805822 DOI: 10.1080/21655979.2021.2012316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
The phosphoprotein phosphatase catalytic subunit (PPPCs) family has been shown to play an important role in the development and progression of various malignancies, but its expression patterns and biological functions in breast cancer (BC) remain unclear. Therefore, we aimed to investigate the clinical significance and biological functions of the PPPCs family to understand its possible significance in the diagnosis, prognosis and treatment of breast cancer. We comprehensively investigated the expression levels, diagnostic accuracy, prognostic outcomes, biological functions and effects on immune cell infiltration of the PPPCs family in breast cancer using online databases. Except for PPP1CB, PPP1CC, PPP5C and PPEF1, the mRNA expression levels of the PPPCs family in breast cancer tissues were significantly different from those in paracancerous tissues. The differentially expressed genes (DEGs) were associated with the clinicopathological parameters and prognosis of breast cancer. The DEGs were mainly associated with the WNT signaling pathway, antigen presentation and DNA repair. In addition, the DEGs significantly affected the infiltration of immune cells in breast cancer tissues. Among the PPPCs family, PPP1CA and PPP4C played a prominent role in the progression of breast cancer, and inhibition of PPP1CA and PPP4C expression by siRNA can significantly inhibit breast cancer cells proliferation and migration. In conclusion, the PPPCs family, especially PPP1CA and PPP4C, could be used as new biomarkers to improve diagnostic accuracy, predict prognosis and novel targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Wenjun Xie
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
| | - Ying Sun
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jingtai Zhi
- Department of Otolaryngology-Head and Neck Surgery, Tianjin First Center Hospital, Nankai District of Tianjin, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Clinical Discipline of Tianjin (Otolaryngology), Otolaryngology Clinical Quality Control Centre, Tianjin, China
| | - Hang Ling
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ming Gao
- Department of Thyroid and Neck Tumour, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
18
|
Kurmann L, Okoniewski M, Dubey RK. Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells 2021; 10:cells10092314. [PMID: 34571963 PMCID: PMC8472363 DOI: 10.3390/cells10092314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stroke is the third leading cause of mortality in women and it kills twice as many women as breast cancer. A key role in the pathophysiology of stroke plays the disruption of the blood–brain barrier (BBB) within the neurovascular unit. While estrogen induces vascular protective actions, its influence on stroke remains unclear. Moreover, experiments assessing its impact on endothelial cells to induce barrier integrity are non-conclusive. Since pericytes play an active role in regulating BBB integrity and function, we hypothesize that estradiol may influence BBB by regulating their activity. In this study using human brain vascular pericytes (HBVPs) we investigated the impact of estradiol on key pericyte functions known to influence BBB integrity. HBVPs expressed estrogen receptors (ER-α, ER-β and GPER) and treatment with estradiol (10 nM) inhibited basal cell migration but not proliferation. Since pericyte migration is a hallmark for BBB disruption following injury, infection and inflammation, we investigated the effects of estradiol on TNFα-induced PC migration. Importantly, estradiol prevented TNFα-induced pericyte migration and this effect was mimicked by PPT (ER-α agonist) and DPN (ER-β agonist), but not by G1 (GPR30 agonist). The modulatory effects of estradiol were abrogated by MPP and PHTPP, selective ER-α and ER-β antagonists, respectively, confirming the role of ER-α and ER-β in mediating the anti-migratory actions of estrogen. To delineate the intracellular mechanisms mediating the inhibitory actions of estradiol on PC migration, we investigated the role of AKT and MAPK activation. While estradiol consistently reduced the TNFα-induced MAPK and Akt phosphorylation, only the inhibition of MAPK, but not Akt, significantly abrogated the migratory actions of TNFα. In transendothelial electrical resistance measurements, estradiol induced barrier function (TEER) in human brain microvascular endothelial cells co-cultured with pericytes, but not in HBMECs cultured alone. Importantly, transcriptomics analysis of genes modulated by estradiol in pericytes showed downregulation of genes known to increase cell migration and upregulation of genes known to inhibit cell migration. Taken together, our findings provide the first evidence that estradiol modulates pericyte activity and thereby improves endothelial integrity.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | | | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
19
|
Cha N, Jia B, He Y, Luan W, Bao W, Han X, Gao W, Gao Y. MicroRNA-124 suppresses the invasion and proliferation of breast cancer cells by targeting TFAP4. Oncol Lett 2021; 21:271. [PMID: 33717268 PMCID: PMC7885155 DOI: 10.3892/ol.2021.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/miR)-124 is widely accepted as the suppressor of different tumors. The present study aimed to improve understanding of the potential role of miR-124 in breast cancer. The gene expression profile change derived from the overexpression of miR-124 was investigated using RNA sequencing and bioinformatics analysis of the breast cancer cell line SKBR3. The results demonstrated that the gene expression profile of SKBR3 cells significantly changed. In addition, the transcription factor activating enhancer-binding protein 4 (TFAP4) gene was identified among the top 10 differentially expressed genes, and was identified as a novel target gene of miR-124 using a dual-luciferase reporter assay. TFAP4 knockdown in notably impaired SKBR3 cell migration and proliferation, which was consistent with decreasing migration and proliferation ability following overexpression of miR-124. Taken together, these results suggest that overexpression of miR-124 can suppress the migration and proliferation of SKBR3 cells by tarsgeting TFAP4. Thus, TFAP4 may act as a novel therapeutic target of breast cancer.
Collapse
Affiliation(s)
- Nier Cha
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Baoqing Jia
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Yinzai He
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Wei Luan
- Department of Medical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Wenhua Bao
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Xiuhua Han
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Weishi Gao
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Yanwei Gao
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| |
Collapse
|
20
|
The role of phosphoprotein phosphatases catalytic subunit genes in pancreatic cancer. Biosci Rep 2021; 41:227135. [PMID: 33270085 PMCID: PMC7785039 DOI: 10.1042/bsr20203282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Compelling evidence suggests that phosphoprotein phosphatases (PPPs) are involved in a large spectrum of physiological and pathological processes, but little is known about their roles in pancreatic cancer. We investigated the expression level, prognostic value, and potential function of PPPs with data from Oncomine, GEPIA, THPA, and TCGA databases and an independent cohort of patients with pancreatic cancer. Among all the PPP catalytic subunits (PPPcs), the transcription levels of PPP1CA, PPP1CB, PPP3CA, PPP3CB, and PPP4C were higher in pancreatic cancer than in normal pancreas (P<0.01, fold change > 2). Kaplan–Meier analysis showed that high transcription levels of PPP1CA, PPP1CB, PPP2CA, PPP2CB, PPP3CA, and PPP4C correlated with poorer survival. In contrast, patients with high levels of PPP3CB, PPP3CC, PPP5C, PPP6C, and PPEF2 had much better prognoses. Data from THPA and patients with pancreatic cancer enrolled in our hospital also confirmed the prognostic value of PPP1CA, PPP1CB, PPP2CA, PPP2CB, PPP3CA, PPP3CB, and PPP6C at the protein level. In addition, the Pearson Chi-square test showed that PPP3CB level was significantly correlated with T and N stages. GO and KEGG analyses showed that the genes and pathways related to the pathogenesis and progression of pancreatic cancer were greatly affected by alterations in PPPcs. Results of the present study suggest that PPP1CA, PPP1CB, PPP2CA, PPP2CB, and PPP3CA have deleterious effects but PPP3CB, PPP5C, and PPP6C have beneficial effects on pancreatic cancer.
Collapse
|
21
|
Park J, Lee DH. Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Rep 2021. [PMID: 32192570 PMCID: PMC7196183 DOI: 10.5483/bmbrep.2020.53.4.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186; Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
22
|
Luan M, Shi SS, Shi DB, Liu HT, Ma RR, Xu XQ, Sun YJ, Gao P. TIPRL, a Novel Tumor Suppressor, Suppresses Cell Migration, and Invasion Through Regulating AMPK/mTOR Signaling Pathway in Gastric Cancer. Front Oncol 2020; 10:1062. [PMID: 32719745 PMCID: PMC7350861 DOI: 10.3389/fonc.2020.01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.
Collapse
Affiliation(s)
- Meng Luan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shan-Shan Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Ting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Jing Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
23
|
Zhang N, Di J, Wang Z, Gao P, Jiang B, Su X. Genomic profiling of colorectal cancer with isolated lung metastasis. Cancer Cell Int 2020; 20:281. [PMID: 32624706 PMCID: PMC7329491 DOI: 10.1186/s12935-020-01373-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Metastasis is a major cause of failed colorectal cancer (CRC) treatment. While lung metastasis (LM) is observed in 10-15% of patients with CRC, the genetic mechanisms that cause CRC to metastasize to the lung remain unclear. METHODS In this study, we employed whole exome sequencing (WES) of primary CRC tumors and matched isolated LM lesions to compare their genomic profiles. Comprehensive genomic analyses of five freshly frozen primary tumor lesions, five paired LM lesions, and matched non-cancerous tissues was achieved by WES. RESULTS An integrated analysis of somatic mutations, somatic copy number alterations, and clonal structures revealed that genomic alterations were present in primary and metastatic CRCs with various levels of discordance, indicating substantial levels of intertumor heterogeneity. Moreover, our results suggest that the founder clone of the primary tumor was responsible for the formation of the metastatic lesion. Additionally, only a few metastasis-specific mutations were identified, suggesting that LM-promoting mutations might be pre-existing in primary tumors. CONCLUSIONS Primary and metastatic CRC show intertumor heterogeneity; however, both lesions were founded by the same clone. These results indicate that malignant clones contributing to disease progression should be identified during the genetic prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Pin Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 China
| | - Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 China
| |
Collapse
|
24
|
Wang B, Zhu XX, Pan LY, Chen HF, Shen XY. PP4C facilitates lung cancer proliferation and inhibits apoptosis via activating MAPK/ERK pathway. Pathol Res Pract 2020; 216:152910. [PMID: 32139257 DOI: 10.1016/j.prp.2020.152910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Protein phosphatase 4 catalytic subunit (PP4C) has been shown to play crucial regulatory roles in biological process and is frequently upregulated in cancer such as breast and colorectal carcinoma. However, the function and potential molecular mechanism of PP4C in lung cancer remains unclear. METHODS Bioinformatic analysis was used to detect the expression level and prognosis of patients. Western blot, quantitative real-time PCR (qRT-PCR), CCK8, 5-Ethynyl-2'-deoxyuridine (Edu) proliferation assay and flow cytometric were used to explore the function in lung cancer cells. RESULTS In this study, we found that PP4C was upregulated in lung cancer tissues as compared with that in normal lung tissues. Furthermore, patients with high expression level of PP4C were correlated with a poor prognosis in lung cancer patients. In vitro, CCK8, Edu proliferation assays and flow cytometry analysis showed that PP4C could promote lung cancer cell growth and inhibit apoptosis. Mechanistic investigations revealed that PP4C may interact with PP4R1 and promote ERK activation. Additionally, PP4C depletion resulted in lower tumor growth in vivo. CONCLUSIONS Taken together, these data showed the oncogenic of PP4C in NSCLC tumorigenesis and provide a new insight of PP4C in the progression of NSCLC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, No. 221 West Yan-an Road, Shanghai 200040, China
| | - Xun-Xia Zhu
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, No. 221 West Yan-an Road, Shanghai 200040, China
| | - Lin-Yue Pan
- Department of Respiration, The Affiliated Huadong Hospital of Fudan University, No. 221 West Yan-an Road, Shanghai 200040, China
| | - He-Feng Chen
- Department of Respiration, The Affiliated Huadong Hospital of Fudan University, No. 221 West Yan-an Road, Shanghai 200040, China.
| | - Xiao-Yong Shen
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, No. 221 West Yan-an Road, Shanghai 200040, China.
| |
Collapse
|
25
|
Park J, Lee J, Lee DH. Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response. Mol Cells 2019; 42:546-556. [PMID: 31272138 PMCID: PMC6681864 DOI: 10.14348/molcells.2019.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Jihye Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186,
Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
26
|
Coscia F, Lengyel E, Duraiswamy J, Ashcroft B, Bassani-Sternberg M, Wierer M, Johnson A, Wroblewski K, Montag A, Yamada SD, López-Méndez B, Nilsson J, Mund A, Mann M, Curtis M. Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer. Cell 2019; 175:159-170.e16. [PMID: 30241606 DOI: 10.1016/j.cell.2018.08.065] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.
Collapse
Affiliation(s)
- Fabian Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | | - Bradley Ashcroft
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Michal Bassani-Sternberg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alyssa Johnson
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anthony Montag
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - S Diane Yamada
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Mund
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Marion Curtis
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
28
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
29
|
Low expression of B-Cell-Associated protein 31 is associated with unfavorable prognosis in human colorectal cancer. Pathol Res Pract 2018; 214:661-666. [DOI: 10.1016/j.prp.2018.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
|
30
|
Song Z, Feng C, Lu Y, Gao Y, Lin Y, Dong C. Overexpression and biological function of MEF2D in human pancreatic cancer. Am J Transl Res 2017; 9:4836-4847. [PMID: 29218083 PMCID: PMC5714769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
To explore the expression, clinical significance, biological function, and potential mechanism of MEF2D in pancreatic cancer, the expression of MEF2D in human pancreatic cancer tissues and corresponding adjacent normal tissues was analyzed through immunohistochemical staining. The association between MEF2D expression, clinicopathological parameters, overall survival, and disease-free survival was evaluated. Human pancreatic cancer cell lines BxPC-1 and SW1990 were selected to investigate the effect of MEF2D knockdown on cell proliferation, migration, and invasion. Western blot analysis was used to assess the effect of MEF2D expression on the Akt/GSK pathway, as well as the protein expression of cyclin B1, cyclin D1, matrix metalloprotein (MMP)-2, and MMP-9. Our results revealed that the expression of MEF2D was increased in pancreatic cancer tissues compared to adjacent normal tissues and the increased expression of MEF2D was associated with tumor size, histological differentiation, and TNM stage of pancreatic cancer patients. Moreover, the expression of MEF2D was an independent prognostic indicator for pancreatic cancer patients. In addition, knockdown of MEF2D in pancreatic cancer cells inhibited cell proliferation, migration, and invasion by down-regulating the protein expression of cyclin B1, cyclin D1, MMP-2, and MMP-9. Knockdown of MEF2D reduced the levels of phosphorylated Akt and GSK-3β. Our data indicated that MEF2D expression was increased in pancreatic cancer and was an independent molecular prognostic factor for pancreatic cancer patients. Furthermore, we showed that MEF2D controlled cell proliferation, migration, and invasion abilities in pancreatic cancer via the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Zhiwang Song
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai, People's Republic of China
| | - Chan Feng
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai, People's Republic of China
| | - Yonglin Lu
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai, People's Republic of China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai, People's Republic of China
| | - Yun Lin
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai, People's Republic of China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai, People's Republic of China
| |
Collapse
|
31
|
Song Z, Feng C, Lu Y, Lin Y, Dong C. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 2017; 642:43-50. [PMID: 29128633 DOI: 10.1016/j.gene.2017.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the expression, clinical significance, biological function, and the potential mechanism of PHGDH in pancreatic cancer. METHODS The expression of PHGDH in human pancreatic cancer tissues and corresponding adjacent normal tissues were analyzed through immunohistochemistry staining. Simultaneously, the association between the PHGDH expression and the clinicopathological parameters and OS and DFS was evaluated. Human pancreatic cancer cell line BxPC-3 and SW1990 were selected to investigate the effect of PHGDH knockdown on cell proliferation, migration, and invasion. In addition, we performed western blot to assess the expression of cyclin B1, and cyclin D1, MMP-2, and MMP-9 protein. RESULTS Our results suggested that the expression of PHGDH is increased in pancreatic cancer compared with adjacent normal tissues and the increased expression of PHGDH is associated with tumor size, lymph node metastasis, and TNM state of pancreatic cancer patients. Moreover, the expression of PHGDH is an independent prognostic indicator for pancreatic cancer patients. In addition, we found that knockdown of PHGDH in pancreatic cancer cells inhibits the cell proliferation, migration, and invasion abilities by down-regulating the expression of cyclin B1, and cyclin D1, MMP-2, and MMP-9. CONCLUSIONS Our data indicated that the expression of PHGDH is increased in pancreatic cancer and is an independent molecular prognostic factor for pancreatic cancer patients. In addition, PHGDH controls cell proliferation, migration and invasion abilities. Therefore, PHGDH could serve as an important prognostic indicator and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwang Song
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chan Feng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yonglin Lu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yun Lin
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
32
|
Wei J, Yang P, Zhang T, Chen Z, Chen W, Wanglin L, He F, Wei F, Huang D, Zhong J, Yang Z, Chen H, Hu H, Zeng S, Sun Z, Cao J. Overexpression of transcription factor activating enhancer binding protein 4 (TFAP4) predicts poor prognosis for colorectal cancer patients. Exp Ther Med 2017; 14:3057-3061. [PMID: 28912857 PMCID: PMC5585722 DOI: 10.3892/etm.2017.4875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Transcription factor activating enhancer binding protein 4 (TFAP4) is an important regulator in the genesis and progression of human cancers. Overexpression of TFAP4 has been found to be correlated with several malignancies. The present study assessed the clinical importance of TFAP4 in colorectal cancer (CRC). First, immunohistochemistry was used to analyze TFAP4 expression and the association of TFAP4 expression with clinicopathological features on a tissue microarray containing 208 CRC patients. The results revealed that TFAP4 protein expression was significantly upregulated in CRC tissues compared with that in normal colon tissues (P<0.001). Of note, statistical analysis revealed that TFAP4 expression was significantly correlated with a high pathological grade (P=0.034), advanced clinical stage (P=0.024), enhanced tumor invasion (P=0.002) and lymph node metastasis (P=0.041). In addition, the Cancer Genome Atlas dataset further validated that TFAP4 mRNA levels were increased in CRC with advanced clinical stage (P=0.026), lymph node metastasis (P=0.018) and vascular invasion (P=0.046). Kaplan-Meier survival analysis demonstrated that CRC patients with high TFAP4 expression had shorter overall survival compared with those with low TFAP4 expression (P=0.011). Importantly, overexpression of TFAP4 was a valuable independent prognostic factor for CRC patients (hazard ratio, 8.200; 95% confidence interval, 1.838-36.591; P=0.006). In summary, TFAP4 may have an important role in CRC progression and upregulation of TFAP4 may be a predictor of poor prognosis for CRC patients.
Collapse
Affiliation(s)
- Jianchang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zhuanpeng Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wei Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510180, P.R. China
| | - Li Wanglin
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Feng He
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Fang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Di Huang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Junbin Zhong
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zhi Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Huacui Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - He Hu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Shanqi Zeng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zheng Sun
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
33
|
Zhang M, Ma F, Xie R, Wu Y, Wu M, Zhang P, Peng Y, Zhao J, Xiong J, Li A, Kequan C, Zhang Y, Liu S, Wang J, Chen X. Overexpression of Srcin1 contributes to the growth and metastasis of colorectal cancer. Int J Oncol 2017; 50:1555-1566. [PMID: 28393242 PMCID: PMC5403293 DOI: 10.3892/ijo.2017.3952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
The adaptor protein Srcin1 is a novel Src-binding protein that regulates Src activation through C-terminal Src kinase (Csk). Srcin1 behaves as a tumour suppressor in breast cancer, but the role of Srcin1 in the development of colorectal cancer (CRC) remains unknown. In the present study, Srcin1 expression in normal tissue was examined by tissue microarray and assessed by immunohistochemistry in 10 patients. In addition, the biological impact of Srcin1 knockdown on CRC cells was investigated in vitro and in vivo. The results showed that Srcin1 was expressed in different types of normal human tissues, whereas its expression was increased in human CRC tissues. Srcin1 expression also correlated with tumour progression. The suppression of Srcin1 induced cell differentiation and G0/G1 cell cycle arrest. Furthermore, Srcin1 increased cell growth as well as the capacity of migration and invasion in CRC cells. Srcin1 induced the activation of the Wnt/β-catenin signalling pathway. Moreover, Srcin1 suppression sensitized cancer cells to 5-fluorouracil (5-FU)-induced apoptosis in vitro and in vivo. Together, these results demonstrate that Srcin1 contributes to CRC carcinogenesis, invasion and metastasis. These findings provide a rationale for a mechanistic approach to CRC treatment based on the development of Srcin1-targeted therapies.
Collapse
Affiliation(s)
- Mengnan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Feng Ma
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ruyi Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Meiyan Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinjun Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Xiong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cheng Kequan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xueqing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
34
|
Winfree LM, Speese SD, Logan MA. Protein phosphatase 4 coordinates glial membrane recruitment and phagocytic clearance of degenerating axons in Drosophila. Cell Death Dis 2017; 8:e2623. [PMID: 28230857 PMCID: PMC5386485 DOI: 10.1038/cddis.2017.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
Neuronal damage induced by injury, stroke, or neurodegenerative disease elicits swift immune responses from glial cells, including altered gene expression, directed migration to injury sites, and glial clearance of damaged neurons through phagocytic engulfment. Collectively, these responses hinder further cellular damage, but the mechanisms that underlie these important protective glial reactions are still unclear. Here, we show that the evolutionarily conserved trimeric protein phosphatase 4 (PP4) serine/threonine phosphatase complex is a novel set of factors required for proper glial responses to nerve injury in the adult Drosophila brain. Glial-specific knockdown of PP4 results in reduced recruitment of glia to severed axons and delayed glial clearance of degenerating axonal debris. We show that PP4 functions downstream of the the glial engulfment receptor Draper to drive glial morphogenesis through the guanine nucleotide exchange factor SOS and the Rho GTPase Rac1, revealing that PP4 molecularly couples Draper to Rac1-mediated cytoskeletal remodeling to ensure glial infiltration of injury sites and timely removal of damaged neurons from the CNS.
Collapse
Affiliation(s)
- Lilly M Winfree
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sean D Speese
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mary A Logan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
35
|
Protein phosphatase 4 catalytic subunit is overexpressed in glioma and promotes glioma cell proliferation and invasion. Tumour Biol 2016; 37:11893-11901. [DOI: 10.1007/s13277-016-5054-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022] Open
|